Logo Repositorio Institucional

Please use this identifier to cite or link to this item: https://dspace.ucuenca.edu.ec/handle/123456789/46211
Title: Integrating geographic data and the SCS-CN method with LSTM networks for enhanced runoff forecasting in a complex mountain basin
Authors: Merizalde Mora, Maria Jose
Celleri Alvear, Rolando Enrique
Samaniego Alvarado, Esteban Patricio
Munoz Pauta, Paul Andres
Keywords: GSMaP
Feature engineering
Tropical Andes
SCS-CN method
Machine learning
Hydrological forecasting
metadata.dc.ucuenca.areaconocimientofrascatiamplio: 2. Ingeniería y Tecnología
metadata.dc.ucuenca.areaconocimientofrascatidetallado: 2.7.1 Ingeniería Ambiental y Geológica
metadata.dc.ucuenca.areaconocimientofrascatiespecifico: 2.7 Ingeniería del Medio Ambiente
metadata.dc.ucuenca.areaconocimientounescoamplio: 07 - Ingeniería, Industria y Construcción
metadata.dc.ucuenca.areaconocimientounescodetallado: 0714 - Electrónica y Automatización
metadata.dc.ucuenca.areaconocimientounescoespecifico: 071 - Ingeniería y Profesiones Afines
Issue Date: 2023
metadata.dc.ucuenca.volumen: Volumen 5
metadata.dc.source: Frontiers in Water
metadata.dc.identifier.doi: 10.3389/frwa.2023.1233899
metadata.dc.type: ARTÍCULO
Abstract: 
Introduction: In complex mountain basins, hydrological forecasting poses a formidable challenge due to the intricacies of runoff generation processes and the limitations of available data. This study explores the enhancement of short-term runoff forecasting models through the utilization of long short-term memory (LSTM) networks. Methods: To achieve this, we employed feature engineering (FE) strategies, focusing on geographic data and the Soil Conservation Service Curve Number (SCS-CN) method. Our investigation was conducted in a 3,390 km2 basin, employing the GSMaP-NRT satellite precipitation product (SPP) to develop forecasting models with lead times of 1, 6, and 11 h. These lead times were selected to address the needs of near-real-time forecasting, flash flood prediction, and basin concentration time assessment, respectively. Results and discussion: Our findings demonstrate an improvement in the efficiency of LSTM forecasting models across all lead times, as indicated by Nash-Sutcliffe efficiency values of 0.93 (1 h), 0.77 (6 h), and 0.67 (11 h). Notably, these results are on par with studies relying on ground-based precipitation data. This methodology not only showcases the potential for advanced data-driven runoff models but also underscores the importance of incorporating available geographic information into precipitation-ungauged hydrological systems. The insights derived from this study offer valuable tools for hydrologists and researchers seeking to enhance the accuracy of hydrological forecasting in complex mountain basins.
URI: https://dspace.ucuenca.edu.ec/handle/123456789/46211
https://www.scopus.com/record/display.uri?eid=2-s2.0-85173943365&origin=resultslist&sort=plf-f&src=s&sid=e648b7011f66e292c0cb14445f9ede12&sot=b&sdt=b&s=TITLE-ABS-KEY%28Integrating+geographic+data+and+the+SCS-CN+method+with+LSTM+networks+for+enhanced+runoff+forecasting+in+a+complex+mountain+basin%29&sl=143&sessionSearchId=e648b7011f66e292c0cb14445f9ede12&relpos=0
metadata.dc.ucuenca.urifuente: https://www.frontiersin.org/journals/water
ISSN: 2624-9375
Appears in Collections:Artículos

Files in This Item:
File SizeFormat 
documento.pdf5.94 MBAdobe PDFView/Open


This item is protected by original copyright



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00