Por favor, use este identificador para citar o enlazar este ítem:
https://dspace.ucuenca.edu.ec/handle/123456789/46211Registro completo de metadatos
| Campo DC | Valor | Lengua/Idioma |
|---|---|---|
| dc.contributor.author | Merizalde Mora, Maria Jose | |
| dc.contributor.author | Celleri Alvear, Rolando Enrique | |
| dc.contributor.author | Samaniego Alvarado, Esteban Patricio | |
| dc.contributor.author | Munoz Pauta, Paul Andres | |
| dc.date.accessioned | 2025-03-17T14:08:56Z | - |
| dc.date.available | 2025-03-17T14:08:56Z | - |
| dc.date.issued | 2023 | |
| dc.identifier.issn | 2624-9375 | |
| dc.identifier.uri | https://dspace.ucuenca.edu.ec/handle/123456789/46211 | - |
| dc.identifier.uri | https://www.scopus.com/record/display.uri?eid=2-s2.0-85173943365&origin=resultslist&sort=plf-f&src=s&sid=e648b7011f66e292c0cb14445f9ede12&sot=b&sdt=b&s=TITLE-ABS-KEY%28Integrating+geographic+data+and+the+SCS-CN+method+with+LSTM+networks+for+enhanced+runoff+forecasting+in+a+complex+mountain+basin%29&sl=143&sessionSearchId=e648b7011f66e292c0cb14445f9ede12&relpos=0 | |
| dc.description.abstract | Introduction: In complex mountain basins, hydrological forecasting poses a formidable challenge due to the intricacies of runoff generation processes and the limitations of available data. This study explores the enhancement of short-term runoff forecasting models through the utilization of long short-term memory (LSTM) networks. Methods: To achieve this, we employed feature engineering (FE) strategies, focusing on geographic data and the Soil Conservation Service Curve Number (SCS-CN) method. Our investigation was conducted in a 3,390 km2 basin, employing the GSMaP-NRT satellite precipitation product (SPP) to develop forecasting models with lead times of 1, 6, and 11 h. These lead times were selected to address the needs of near-real-time forecasting, flash flood prediction, and basin concentration time assessment, respectively. Results and discussion: Our findings demonstrate an improvement in the efficiency of LSTM forecasting models across all lead times, as indicated by Nash-Sutcliffe efficiency values of 0.93 (1 h), 0.77 (6 h), and 0.67 (11 h). Notably, these results are on par with studies relying on ground-based precipitation data. This methodology not only showcases the potential for advanced data-driven runoff models but also underscores the importance of incorporating available geographic information into precipitation-ungauged hydrological systems. The insights derived from this study offer valuable tools for hydrologists and researchers seeking to enhance the accuracy of hydrological forecasting in complex mountain basins. | |
| dc.language.iso | es_ES | |
| dc.source | Frontiers in Water | |
| dc.subject | GSMaP | |
| dc.subject | Feature engineering | |
| dc.subject | Tropical Andes | |
| dc.subject | SCS-CN method | |
| dc.subject | Machine learning | |
| dc.subject | Hydrological forecasting | |
| dc.title | Integrating geographic data and the SCS-CN method with LSTM networks for enhanced runoff forecasting in a complex mountain basin | |
| dc.type | ARTÍCULO | |
| dc.ucuenca.idautor | 0602794406 | |
| dc.ucuenca.idautor | 1721760955 | |
| dc.ucuenca.idautor | 0104645619 | |
| dc.ucuenca.idautor | 0102052594 | |
| dc.identifier.doi | 10.3389/frwa.2023.1233899 | |
| dc.ucuenca.version | Versión publicada | |
| dc.ucuenca.areaconocimientounescoamplio | 07 - Ingeniería, Industria y Construcción | |
| dc.ucuenca.afiliacion | Celleri, R., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador | |
| dc.ucuenca.afiliacion | Merizalde, M., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Merizalde, M., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador | |
| dc.ucuenca.afiliacion | Munoz, P., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador | |
| dc.ucuenca.afiliacion | Samaniego, E., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador | |
| dc.ucuenca.volumen | Volumen 5 | |
| dc.ucuenca.indicebibliografico | SCOPUS | |
| dc.ucuenca.factorimpacto | 0.7 | |
| dc.ucuenca.cuartil | Q2 | |
| dc.ucuenca.numerocitaciones | 0 | |
| dc.ucuenca.areaconocimientofrascatiamplio | 2. Ingeniería y Tecnología | |
| dc.ucuenca.areaconocimientofrascatiespecifico | 2.7 Ingeniería del Medio Ambiente | |
| dc.ucuenca.areaconocimientofrascatidetallado | 2.7.1 Ingeniería Ambiental y Geológica | |
| dc.ucuenca.areaconocimientounescoespecifico | 071 - Ingeniería y Profesiones Afines | |
| dc.ucuenca.areaconocimientounescodetallado | 0714 - Electrónica y Automatización | |
| dc.ucuenca.urifuente | https://www.frontiersin.org/journals/water | |
| Aparece en las colecciones: | Artículos | |
Ficheros en este ítem:
| Fichero | Tamaño | Formato | |
|---|---|---|---|
| documento.pdf | 5.94 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está protegido por copyright original |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.
Centro de Documentacion Regional "Juan Bautista Vázquez" | ||||||||||
| ||||||||||
