Logo Repositorio Institucional

Por favor, use este identificador para citar o enlazar este ítem: https://dspace.ucuenca.edu.ec/handle/123456789/46211
Título : Integrating geographic data and the SCS-CN method with LSTM networks for enhanced runoff forecasting in a complex mountain basin
Autor: Merizalde Mora, Maria Jose
Celleri Alvear, Rolando Enrique
Samaniego Alvarado, Esteban Patricio
Munoz Pauta, Paul Andres
Palabras clave : GSMaP
Feature engineering
Tropical Andes
SCS-CN method
Machine learning
Hydrological forecasting
Área de conocimiento FRASCATI amplio: 2. Ingeniería y Tecnología
Área de conocimiento FRASCATI detallado: 2.7.1 Ingeniería Ambiental y Geológica
Área de conocimiento FRASCATI específico: 2.7 Ingeniería del Medio Ambiente
Área de conocimiento UNESCO amplio: 07 - Ingeniería, Industria y Construcción
ÁArea de conocimiento UNESCO detallado: 0714 - Electrónica y Automatización
Área de conocimiento UNESCO específico: 071 - Ingeniería y Profesiones Afines
Fecha de publicación : 2023
Volumen: Volumen 5
Fuente: Frontiers in Water
metadata.dc.identifier.doi: 10.3389/frwa.2023.1233899
Tipo: ARTÍCULO
Abstract: 
Introduction: In complex mountain basins, hydrological forecasting poses a formidable challenge due to the intricacies of runoff generation processes and the limitations of available data. This study explores the enhancement of short-term runoff forecasting models through the utilization of long short-term memory (LSTM) networks. Methods: To achieve this, we employed feature engineering (FE) strategies, focusing on geographic data and the Soil Conservation Service Curve Number (SCS-CN) method. Our investigation was conducted in a 3,390 km2 basin, employing the GSMaP-NRT satellite precipitation product (SPP) to develop forecasting models with lead times of 1, 6, and 11 h. These lead times were selected to address the needs of near-real-time forecasting, flash flood prediction, and basin concentration time assessment, respectively. Results and discussion: Our findings demonstrate an improvement in the efficiency of LSTM forecasting models across all lead times, as indicated by Nash-Sutcliffe efficiency values of 0.93 (1 h), 0.77 (6 h), and 0.67 (11 h). Notably, these results are on par with studies relying on ground-based precipitation data. This methodology not only showcases the potential for advanced data-driven runoff models but also underscores the importance of incorporating available geographic information into precipitation-ungauged hydrological systems. The insights derived from this study offer valuable tools for hydrologists and researchers seeking to enhance the accuracy of hydrological forecasting in complex mountain basins.
URI : https://dspace.ucuenca.edu.ec/handle/123456789/46211
https://www.scopus.com/record/display.uri?eid=2-s2.0-85173943365&origin=resultslist&sort=plf-f&src=s&sid=e648b7011f66e292c0cb14445f9ede12&sot=b&sdt=b&s=TITLE-ABS-KEY%28Integrating+geographic+data+and+the+SCS-CN+method+with+LSTM+networks+for+enhanced+runoff+forecasting+in+a+complex+mountain+basin%29&sl=143&sessionSearchId=e648b7011f66e292c0cb14445f9ede12&relpos=0
URI Fuente: https://www.frontiersin.org/journals/water
ISSN : 2624-9375
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
documento.pdf5.94 MBAdobe PDFVisualizar/Abrir


Este ítem está protegido por copyright original



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00