Logo Repositorio Institucional

Por favor, use este identificador para citar o enlazar este ítem: https://dspace.ucuenca.edu.ec/handle/123456789/45820
Título : Estimating the Maximum Depth of Andean Lakes: A Comparative Analysis Using Machine Learning
Autor: Mejia Coronel, Julio Danilo
Vazquez Zambrano, Raul Fernando
Hampel , Henrietta
Correspondencia: Vazquez Zambrano, Raul Fernando, raul.vazquezz@ucuenca.edu.ec
Palabras clave : Machine learning
Multi-site
Multispectral modelling
Model performance
Lake bathymetry
Remote sensing
High-mountain lake
Ecuadorian Andes
Tropical lake
Área de conocimiento FRASCATI amplio: 2. Ingeniería y Tecnología
Área de conocimiento FRASCATI detallado: 2.1.1 Ingeniería Civil
Área de conocimiento FRASCATI específico: 2.1 Ingeniería Civil
Área de conocimiento UNESCO amplio: 07 - Ingeniería, Industria y Construcción
ÁArea de conocimiento UNESCO detallado: 0712 - Tecnología de Protección del Medio Ambiente
Área de conocimiento UNESCO específico: 071 - Ingeniería y Profesiones Afines
Fecha de publicación : 2024
Volumen: Volumen 16, número 24
Fuente: Water (Switzerland)
metadata.dc.identifier.doi: 10.3390/w16243570
Tipo: ARTÍCULO
Abstract: 
Multispectral modelling of 114 tropical Andean lakes in Southern Ecuador was implemented using observations of the maximum depth (Zmax). Five machine learning methods (MLMs), namely the multiple linear regression model (MLRM), generalised additive model (GAM), generalised linear model (GLM), multivariate adaptive regression splines (MARS), and random forest (RF), were applied on a LANDSAT 8 mosaic. Within the scope of a split-sample (SS) evaluation test, for each of the MLMs, a single model was developed for 70% (i.e., 80) of the studied lakes. Statistical measures and graphical inspection were used in the evaluation tests. An analysis of the absolute value of the model residuals (|res|) revealed that the MARS method outperformed the other MLMs. Nevertheless, a |res| > 10 m was observed for approximately 10% of the lakes. The worst predictions were produced by the GLM. These findings were confirmed in the model validation phase (SS test). With the exception of the GLM, the MLMs correctly predicted whether a lake was shallow or deep in more than 80% of the cases. In a more stringent multi-site (MS) test, the performance of the five Zmax models was assessed in predicting the bathymetry of 11,636 pixels that were not considered when fitting the models. Once more, MARS outperformed the other MLMs. However, a |res| > 10 m for 20% of the pixels was observed. Nevertheless, the quality of the predictions may still be regarded as acceptable for management purposes. Promising multispectral bathymetric predictions could be obtained, even with only a limited number of observations. The evaluation tests used in this pioneering study could be easily replicated elsewhere.
URI : https://dspace.ucuenca.edu.ec/handle/123456789/45820
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85213230572&doi=10.3390%2fw16243570&partnerID=40&md5=047a39d030add2ee3b19e741f87ee050
URI Fuente: https://www.mdpi.com/2073-4441/16/24/3570
ISSN : 2073-4441
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
documento.pdf7.89 MBAdobe PDFVisualizar/Abrir


Este ítem está protegido por copyright original



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00