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Abstract: Multispectral modelling of 114 tropical Andean lakes in Southern Ecuador was imple-
mented using observations of the maximum depth (Zmax). Five machine learning methods (MLMs),
namely the multiple linear regression model (MLRM), generalised additive model (GAM), gener-
alised linear model (GLM), multivariate adaptive regression splines (MARS), and random forest (RF),
were applied on a LANDSAT 8 mosaic. Within the scope of a split-sample (SS) evaluation test, for
each of the MLMs, a single model was developed for 70% (i.e., 80) of the studied lakes. Statistical
measures and graphical inspection were used in the evaluation tests. An analysis of the absolute
value of the model residuals (|res|) revealed that the MARS method outperformed the other MLMs.
Nevertheless, a |res| > 10 m was observed for approximately 10% of the lakes. The worst predictions
were produced by the GLM. These findings were confirmed in the model validation phase (SS test).
With the exception of the GLM, the MLMs correctly predicted whether a lake was shallow or deep in
more than 80% of the cases. In a more stringent multi-site (MS) test, the performance of the five Zmax

models was assessed in predicting the bathymetry of 11,636 pixels that were not considered when
fitting the models. Once more, MARS outperformed the other MLMs. However, a |res| > 10 m for
20% of the pixels was observed. Nevertheless, the quality of the predictions may still be regarded
as acceptable for management purposes. Promising multispectral bathymetric predictions could
be obtained, even with only a limited number of observations. The evaluation tests used in this
pioneering study could be easily replicated elsewhere.

Keywords: high-mountain lake; tropical lake; lake bathymetry; remote sensing; multispectral
modelling; machine learning; multi-site; model performance; Ecuadorian Andes

1. Introduction

Natural resources are fundamental for developing countries such as Ecuador. Hence,
it is essential to have appropriate tools for scientifically/technically acquiring data to
contribute to the better management of these resources. The generation of this information
often requires significant financial resources, time, and/or physical effort. This is especially
relevant in Ecuador, where the topography is highly variable [1] and there are extended
areas where the accessibility is poor or almost non-existent, even from nearby populated
cities (e.g., high mountain regions above 3000 m of elevation, the Amazonian forest, etc.).
Cajas National Park (CNP) is only 20 km away from Cuenca, the third largest city in
Ecuador, with approximately half a million inhabitants [2]. However, the generation
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of scientific knowledge about CNP requires important financial resources and physical
effort [1,3,4], which could explain why there are still many under-investigated aspects of
this valuable but extremely fragile ecosystem [1,5]. Hence, the use of alternative methods
that significantly reduce these high temporal, financial, and physical costs, but still produce
acceptable environmental information, is greatly needed.

The use of remote sensing data is likely to be a feasible option to produce the required
technical information with lower costs. These data are successfully being used in different
environmental assessments. Hence, the development of a robust method for the digital
interpretation of satellite images and the use of geographic information systems (GISs)
has the potential to provide highly useful products for the management and conservation
of natural resources [6] within a much shorter timeframe and with significantly lower
physical/financial costs than traditional methods.

In this regard, admissible hydromorphological information on tropical high-mountain
lakes can play an important role in local and regional management, as lakes are fundamental
for hydrological and biochemical cycles, storing a large proportion of surface freshwater
and offering numerous valuable services within the ecosystem [7,8]. The mapping of the
lake bathymetry is critical in understanding and characterising these ecosystems [3,9,10] to
provide a foundation for their appropriate management and conservation [11].

Satellite-derived bathymetry (SDB) applications are conventionally based on the (em-
pirical or physically based) identification of wavelength attenuation in the water col-
umn [12–15]. Commonly, these applications include a form of regression analysis (e.g., the
generalised linear model—GLM) and/or principal component analysis (PCA) between
field bathymetric observations (targets) and multispectral information. Different levels of
accuracy have been achieved through the application of these methods [16]. More recent
studies, registering better accuracy in many cases, are based on the use of empirical ma-
chine (or data) learning methods [17,18] to develop predictive models of the bathymetry in
water environments. For example, Hassan and Nadaoka [10], Manessa et al. [19], Mabula
et al. [20], and Xie et al. [21] applied supervised learning methods for SDB calculations,
such as the GLM, random forest (RF), support vector machine (SVM), and multivariate
adaptive regression splines (MARS), together with more traditional methods such as neural
networks (NNs). Furthermore, other methods such as the multiple linear regression model
(MLRM), generalised additive model (GAM), least square boosting (LSB) fitting algorithm,
Gaussian process regression (GPR), decision tree regression, and K-neighbour regressors
have been used for SDB calculations [19,22–24].

In particular, SDB applications have been carried out in shallow water environments
such as coastal areas and the nearby shorelines of lakes [9,10,13,15,20,21,24–26]. However,
few SDB studies have focused on deeper waters [9,25], although the SDB validation did in-
clude shallow water observations in some of these cases (e.g., Li, Gao, Zhao, and Tseng [9]).
Furthermore, the few SDB studies on lakes have not simultaneously considered multiple
lake domains; rather, they have focused on isolated lake environments.

The Cajas Massif (MzC), located in the southern Andes of Ecuador and encompass-
ing CNP, has a large density of water bodies (more than 6000 across a surface area of
approximately 9700 km2). CNP provides good-quality waters [5] that satisfy an important
proportion of the diverse water demands of Cuenca City, and even of Ecuador, including
water for drinking, industry, irrigation, and electricity generation. The management of
these lakes is therefore focused on their ecological conservation; in this context, knowledge
of the bathymetric parameters of the lakes is critical in understanding and characterising
these ecosystems. It is also important to investigate the potential for the use of remotely
sensed imagery for their management, including SDB studies that—unlike those commonly
reported in the literature—simultaneously focus on several water bodies given the large
number of lakes in the study area (many of which are deep).
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Therefore, the main objective of the current research was to investigate the potential to
derive bathymetric maximum depth (Zmax) information, which is useful for the (conserva-
tion) management of the tropical Andean lakes in Southern Ecuador, using remotely sensed
imagery in a simultaneous multiple-lake framework. The specific research questions were
the following: (i) Is it possible to delineate a methodology for the estimation of Zmax with
acceptable accuracy from remote sensing imagery? (ii) Is it possible to estimate, with an
acceptable rate of success, whether a lake is shallow or deep by using this methodology?
(iii) Is it possible to define an evaluation protocol to effectively characterise the accuracy of
the Zmax derived from remote sensing imagery? To the best of our knowledge, this is the
first attempt to use remotely sensed imagery to characterise a key hydromorphological vari-
able, i.e., Zmax, for multiple tropical high-mountain lakes, many of which are deep, using a
single SDB model for several lakes and a small number of bathymetric observations. Both
the use of a few bathymetric observations per lake (in this case, only a single observation)
and the simultaneous modelling of all studied lakes with a single model reflect the lake
management conditions that are usually observed in developing countries, where financial
constraints prevent the detailed monitoring and modelling of lake districts.

2. Materials and Methods
2.1. The Study Area

The study area was Cajas National Park (CNP; Figure 1), which belongs to the Cajas
Massif (MzC) UNESCO Biosphere Reserve, located in the southern Andes of Ecuador. The
surface of CNP amounts to approximately 285 km2. It drains into the Pacific Ocean through
the Jubones River basin and into the Atlantic Ocean through the Paute River basin and
posterior (lower) Amazonian basins. CNP is the source of drinking water for nearly 60%
of the population of Cuenca, which is the third largest city in Ecuador (approximately
600,000 inhabitants). The elevation of CNP (Figure 1) spans between 3150 and 4460 m
above sea level (a.s.l.). The main soil units in the study region are Holocene Andosols
and Histosols of volcanic origin [27]. The Pleistocene Tarqui volcanic bedrock is the main
formation, which includes rhyolite, andesite, tuff, pyroclastics, and ignimbrites [28,29].
Herbaceous vegetation with the predominant presence of the Stipa and Calamagrostis
genera covers approximately 90% of the total extent of CNP [30]. Only Polylepis spp. [31]
are present at elevations higher than 3400 m a.s.l. A high-mountain forest (i.e., “bosque
montano”) is present below the alpine lake’s lower elevation bound. The yearly precipita-
tion ranges between 900 and 1600 mm, with contrasting seasons and large variation from
year to year [32].

CNP (Figure 1) includes a large number of lentic systems of glacial origin [1,5]. In
this work, one hundred and fourteen lakes (i.e., nL = 114) were studied. Only one lake is
situated below 3500 m a.s.l. (Figure 2a); two of them are located above 4300 m a.s.l. Most
of them (i.e., 99) are deeper than 4 m (Figure 2b). With the exception of one of them, their
surfaces are larger than half a hectare (Figure 2c); four of them cover surfaces greater than
46 ha. Their storage volumes also vary across a wide range (Figure 2d). These lakes are
situated in the upper portion of the Paute River basin (Figure 3a); some of them are located
outside the bounds of CNP (Figures 1 and 3b).
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2.2. Satellite Imagery

LANDSAT 8 (L8) Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS)
images were used (Figure 3a). These were gathered from the website https://earthexplorer.
usgs.gov/ (accessed on 9 March 2018) of the United States Geological Survey (USGS),
which houses archives from the 2013 L8 project. LANDSAT images are subject to distortion
from the sun, atmosphere, and topography; pre-processing minimises these distortions
in the images [10,33]. Hence, the acquired Level-1T (L1T) images belonged to pad 10,
row 62, and they had already undergone pre-processing with the following corrections:
topographic (TOA), spectral, terrain accuracy, systematic terrain, and systematic geomet-
ric [34,35]. They were acquired on 20 November 2016, when the cloudiness in the study
area was very low (Figure 3a). Only one scene was necessary to cover the whole study
area (Figure 3a). Nine images, amounting to one per LANDSAT sensor band (Bm, with
m = 1, 2,. . ., nB = 9)—namely bands 01 to 07 (from the OLI sensor) and bands 10 and 11
(from the TIRS)—were used. Bands 08 (panchromatic) and 09 (for cloudiness studies) were
discarded. The resolution of bands 01 to 07 was 30 m, while that for bands 10 and 11 was
100 m. The images were further cropped to a shorter extent (Figure 3b) to speed up the
different calculation processes.

2.3. True Lake Bathymetry and Selection of Bathymetric Target Values

The lake bathymetry derived from the interpolation of detailed sonar survey data for
the studied lakes was available [3], from which bathymetric target values (i.e., the maximum
depth Zmax) for the current modelling were obtained. To limit the length of the present
manuscript, only a brief description of the process used to generate the true bathymetry is
given here. For further details, the reader is referred to Vázquez, Mosquera, and Hampel [3].
Surveying field campaigns [1] were carried out with the aid of an inflatable rubber boat
(Navigator II, RTS, Hong Kong, China) and a sonar device (echo sounder, HumminbirdVR
model 1198c SI, Eufaula, AL, USA) equipped with a GPS positioning system (Figure 4a). The
distance between the surveyed bathymetric points was very small for small-surface lakes;
moreover, for the larger lakes, it did not exceed 5 m [3]. Detailed field observations were
used to model the bathymetry of the 114 studied lakes through an interpolation process
that included the following steps [3]: (i) pre-processing of the bathymetric observations to

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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correct any potential anomalies that arose during the surveying campaigns (e.g., incorrect
georeferencing or data outliers, etc.); (ii) processing of the bathymetric observations to
ensure the correct format; (iii) random splitting of the available observations into training
and validation data sets (split-sample (SS) test); (iv) application of eleven interpolation
algorithms to the training data set to select the best algorithm (Figure 4a); (v) validation of
the selected algorithm using the respective validation data set (SS test); and (vi) application
of the selected algorithm (Kriging Standard [36]) to obtain the true bathymetry of each of the
114 study lakes (Figure 4a). For the (automatic) interpolation process, SURFER version 16
was used. Data handling, including the random splitting of the available observations into
training and validation data sets (SS test) and the statistical assessment of the performance
of the interpolation algorithms (Figure 4a), was conducted with task-specific subroutines
programmed with the Practical Extraction and Reporting Language (PERL).
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2.4. Selection of Bathymetric Targets (Ztl,j) and Multispectral Observations (Btl,j) of the Different
LANDSAT 8 (L8) Bands

Once the bathymetric surfaces of the study lakes were produced, a target bathymetric
value (Ztl,j), i.e., Zmax in the current case, was selected for each of the 114 lakes (Figure 4b).
Then, the geographically corresponding multispectral values (Btl,j) were obtained for each
of the L8 sensor bands. Nine digital levels (DLs) for bands 01, 02, 03, 04, 05, 06, 07, 10,
and 11 of L8 level L1T were used. Thus, data matrix A (Figure 4b), with 114 entries (one
per study lake) containing the Ztl,j of a given lake and its respective (nine) multispectral
values (i.e., Btl,j; Figure 4b), was built for further use during the multispectral bathymetric
modelling. Both Ztl,j and Btl,j were selected with the aid of SURFER, ArcGIS version 10.3,
and a task-specific PERL subroutine.

2.5. Modelling the Lake’s Maximum Depth (Zmax) Using Ztl,j and Btl,j

2.5.1. Splitting the Total Observations into Training and Validation Data Sets (Split-
Sample Test)

Data matrix A of the total bathymetric and multispectral observations (Figure 4b)
was randomly split (SS test) into sub-matrices B (training) and C (validation) of sizes
(fL) (ntj × nL) × (1 + nB) and (1 − fL) (ntj × nL) × (1 + nB), respectively; this included the
number of bathymetric targets for lake j, ntj = 1 (i.e., Zmax), for every study lake. The data
splitting fraction for training (fL) was fixed in this study at 0.7. In other words, 70% of the
studied lakes (i.e., 80) were randomly selected for the training phase of the SS test (i.e., for
the fitting of the Zmax models). The data for the remaining 30% of the lakes (i.e., 34) were
used in the validation phase. Cluster sampling was used to ensure that 70% of the shallow
lakes (i.e., having Zmax < 4 m) and deep lakes (i.e., Zmax ≥ 4 m) were randomly selected for
the training data set.

2.5.2. Modelling Methods

Five different machine learning methods (MLMs) for the estimation of Zmax as a func-
tion of the bathymetric and multispectral observations were used, namely (a) the multiple
linear regression model (MLRM), (b) the generalised additive model (GAM) using spline
functions, (c) the generalised linear model (GLM), (d) multivariate adaptive regression
splines (MARS), and (e) random forest (RF). These MLMs were chosen to inspect the per-
formance of both linear and non-linear supervised learning algorithms, given that several
recent bathymetric studies have used these with varying success (e.g., [10,13,19,34,37,38]).
Although the use of linear models in the context of problems, such as the current one,
that are inherently non-linear requires us to explicitly address these non-linearities, these
methods were applied blindly. R® version 4.1.0 was used for their application. GIS opera-
tions, including map algebra, statistical analyses, data format conversion, and cartography
preparation, were carried out with ArcGIS version 10.0, Terrset version 18, and SURFER
version 16. In the following, only a brief description of each method is provided.

It is important to note that, contrasting other studies (e.g., [38–41]) that mainly address
shallow waters, no spectral band ratios were used in the current modelling. In particular,
given that most of the study lakes were deep, and for the sake of simplicity and uniformity,
absolute optical information was used. In this research, it was assumed that the bottom
surface of a given lake was homogenous and the respective water column was uniform
across the whole lake [10,41]. Furthermore, no selection of the most relevant independent
variables (i.e., spectral bands) was carried out; rather, all of the bands were used, aiming
for a fairer comparison of the bathymetric predictions produced by the different MLMs.
When applying the MLMs, Zmax was the dependent variable, and the observations of the
nine L8 sensor bands (Xm) were the independent ones.

The MLRM is a well-known multi-layer method that is applied in remotely sensed em-
pirical modelling [42], including the bathymetry of water bodies [19,43]. The built-in multi-
ple linear regression lm( ) function of R® (version 5.1.0) was used for its implementation.
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The GLM is based on a linear combination of non-random X variables with a random
dependent variable, namely Zmax ([38,39]). The GLM has typically been used to model
shallow lakes [40]; nevertheless, in this study, it was also applied to model the bathymetry
of deep lakes (Figure 2b). We chose to use the quasi-Poisson error distribution, which
assumes that the variance of the data is the respective mean multiplied by a dispersion
parameter (α). This is normally suitable for data that are over-dispersed, i.e., when the
data variance exceeds the mean [44]. A negative binomial distribution [45], which is a
generalisation of the Poisson distribution, is an alternative error distribution used to handle
over-dispersed data; it was also tested in the current research. The GLM was implemented
through the glm( ) function from the base R® stats package, version 4.1.0. The fitting process
was based on the least-squares method.

The more flexible GAM, as an extension to the traditional GLM, enables researchers to
account for non-linear relationships through non-parametric smoothing functions applied
to the predictor variables [37,46]. The GAM was implemented through the gam( ) function
of the R® package “GAM” version 1.22-5. Gaussian distribution was chosen, with the link
function “identity”. The iteratively reweighted least-squares (IWLS) method was used to
fit the parametric part of the model.

MARS is a multivariate, piecewise, non-parametric linear regression technique. It
involves dividing the training data set into regions and then generating a linear regression
equation for each of them [22]; these are connected to each other through “nodes” or
“knots” [47–50]. MARS was implemented through the R® package “Earth” version 5.3.4.

RF is a non-linear ensemble learning method that belongs to the decision tree automatic
learning family and is suitable for regression, classification, and prediction. It is formed
through the growth of trees depending on a random vector [19,34]. This produces a
series of subsets of the entire data set, among which information is exchanged. Finally, all
the decision trees are aggregated to produce a single forest. The version utilised herein
relied on the root mean square error (RMSE) criterion, defined later in the text; this was
used to calculate the quality of a subset division, aiming at minimising the error variance.
It has been successfully used in several SDB studies [19–21,24,34,38] and other remote
sensing studies [46]. The R® package “randomForest” version 4.7−1.2 was used for its
implementation.

2.5.3. Statistics for the Evaluation of the Performance of the Zmax Multispectral Models

Model performance indices were used to characterise the quality of the empirical
algorithms used to simulate Zmax. This was conducted for each of the considered empir-
ical algorithms and for both the training and validation data sets (within the scope of a
traditional split-sample test, as discussed later in the text). This involved developing ap-
propriate subroutines in TerrSet®, ArcGIS®, and R®, as well as programming task-specific
subroutines with PERL®, to carry out the assessment automatically. In general, GNUPLOT®

and Excel® were used for plotting purposes.
These performance indices were based on residuals (resq [L]), i.e., the difference

between the q-th bathymetric target (Ztq [L]) and the respective prediction (Zpq [L]), and
were selected to measure [51] (i) the average (model) systematic error, (ii) the average
combined systematic and random error, and (iii) the correlation among the bathymetric
target data and predictions. Hereafter, the mean absolute error (MAE) [L], defined as the
average of the absolute value of the residuals (|resq| [L]), was used as a measure of the
average (systematic) error of each of the multispectral models. This was used as it prevents
residuals of the opposite sign cancelling each other out (which produces a false impression
of model accuracy, as in the case of the BIAS index, although this has been used in past
SDB studies [21]) [52]. Its optimal value is zero, and it has also been used in past SDB
studies [10,20,21,24,38].
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The efficiency coefficient (EF2) [−], also known as the Nash–Sutcliffe coefficient [53],
was used as a dimensionless measure of the total (combined systematic and random)
average model error. It is defined as a function of the square of the residuals:

EF2 = 1 −

nt
∑

q = 1

(
ztq − zpq

)2

nt
∑

q = 1

(
ztq − zt

)2
(1)

where zt [L] is the average of the bathymetric target observations used in the model evalua-
tion, and nt [−] is the total number of bathymetric target observations considered in the
model evaluation. In this expression, the composed sub-index “l,j” is replaced by the sub-
index “q” because once the geographical points for the evaluation of the bathymetric predic-
tions have been defined, the evaluation of EF2 becomes a simpler, one-dimensional expres-
sion. The optimal value of EF2 is 1.0, and the feasible range of variation is −∞ < EF2 ≤ 1.0.
Negative values of EF2 indicate that the model performs poorly in comparison to using zt
as a predictive model [53,54]. A literature review indicated that it has not yet been used in
the context of SDB.

Further, the root mean square error (RMSE) [L], defined as the square root of the
average summation of the square of the residuals, has been widely used—in remote sens-
ing in general [37,47] and in SDB research in particular [10,20,21,24,34,39,40,55]—for the
characterisation of the average systematic error. Similarly to the MAE, it is expressed in the
same units as the bathymetry (although in some studies, its units are not acknowledged,
e.g., [39]), and its optimal value is also zero. However, the RMSE index is directly cor-
related with the EF2 coefficient [52], implying that both of them measure essentially the
same information about the model residuals: the total (combined systematic and random)
average model error. Nevertheless, it was also used herein (together with the EF2) to enable
a comparison with past research [19–21,24,38].

The R2 (or r2) coefficient of determination, or the square of the Pearson’s type cor-
relation coefficient (R or r), is also commonly reported for the characterisation of the
performance of simulation models [20,21,24,37,47]. Nevertheless, it presents several short-
comings in this context, including its oversensitivity to the prediction of peak values [53].
This is also one of the limitations of the EF2 index, although to a lesser extent than for
the R2. Hence, R2 was used in this study, but only to characterise the correlation between
the observed and predicted bathymetric data and for a direct comparison with previously
published SDB and water level modelling studies [12,19–21,24,38,39,55].

An alternative model performance measure to the EF2 is Kling–Gupta efficiency (KGE)
[−], which is widely used in hydrological modelling [56,57]. This was also used in this
research, as in past SDB studies [38]. It has the same range of variation as the EF2 and is
calculated through the following expression:

KGE = 1 −

√
(R − 1)2 +

(µsim

zt
− 1

)2
+

(
σsim

σobs
− 1

)2
(2)

where µsim [L] is the mean of the bathymetric predictions, and σobs [L] and σsim [L] are
the standard deviations of the (observed) bathymetric targets and bathymetric predictions,
respectively.

The above-depicted indices use a single value to characterise the multispectral model’s
performance in simulating the nt bathymetric spots. When inspecting the spatial and
frequency distributions of the residuals, for every pixel of interest, |resq|, as well as the
dimensionless absolute relative error (|req| = |resq|/ Ztq), was considered. Hence, the
spatial distribution of the residuals was assessed through the use of GIS software (ArcGIS®

and TerrSet®), with its visual and arithmetic capabilities. Meanwhile, the frequency distri-
bution of the residuals was assessed through the use of empirical exceedance probability
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distribution curves, which were defined on the basis of the Weibull plotting position of a
quantile method [58].

2.5.4. Test for the Evaluation of the Performance of the Zmax Multispectral Models

A traditional split-sample (SS) test was initially carried out. Thereafter, a single
bathymetric multispectral model was developed using the training data set (80 lakes) for
each of the MLMs. Six multispectral models were built. Each model considered all 80 values
of Zmax. The assessment of the quality of the predictions was carried out by inspecting the
evolution of the curves of the empirical probability of the exceedance of |res| and |re|,
as well as the distribution of the 80 pairs of observed and predicted Zmax values through
scatter plots. The model performance statistics were also evaluated for this purpose. The
SS test included an examination of the performance of the models using the validation
data set (34 lakes) for each of the MLMs. The main objective of this SS model performance
evaluation was to select the most convenient MLM for the current multispectral modelling
of the SDB.

Within the scope of this test, the performance of the GLM involved different parametri-
sations as a function of the type of error distribution (either quasi-Poisson or negative
binomial) and the values adopted by the dispersion parameter (α) of the negative bino-
mial distribution. This analysis was also implemented as it is known that GLMs cannot
cope with multi-collinearity among the independent variables, which was possible within
the multispectral information considered in this study. Nevertheless, it is emphasised
that a variable selection procedure to identify the most important and simultaneously
uncorrelated L8 bands was beyond the scope of this study.

A second model performance evaluation was carried out to address the management
requirement for knowledge of whether a given lake is either shallow or deep. This was
achieved by examining the proportion of correct lake classifications as either shallow or
deep for each of the five Zmax multispectral models. For this, the bathymetric threshold of
4 m, determined in prior research [1], was used, so that lakes were considered shallow when
Zmax < 4 m and deep when Zmax ≥ 4 m, either for observed or predicted conditions. This
test is independent of the SS test as it does not deal with the training of the implemented
bathymetric models; it is entirely focused on model performance evaluation. Therefore, it
was implemented considering three sub-analyses, namely global (using all of the 114 study
lakes), shallow (using only the 15 shallow lakes), and deep (considering the 99 deep lakes).

A final model performance evaluation, namely a multi-site (MS) test [51,52], was
carried out to address the management requirement for the estimation of the bathymetric
properties of non-instrumented remote lake districts. In this test, each of the six Zmax
multispectral models was required to predict the bathymetry of (multi-site) lake pixels
situated at different locations compared to the Zmax positions that were considered in the
SS test. Consequently, it was also independent of the SS test. Thus, pixels belonging to each
of the 114 study lakes were considered in this MS test. In total, each of the multispectral
models was required to predict the bathymetry of 11,636 pixels.

3. Results
Modelling the Lake’s Maximum Depth (Zmax) Based on the Use of Bathymetric Targets and
Multispectral Observations

The Zmax predictions of the different inspected MLMs for the studied lakes were
evaluated against the respective Zmax target values for both the training and validation
phases of the modelling in the split-sample (SS) test. Figure 5 shows the empirical cu-
mulative frequency distributions of both (i) the absolute values of the residuals (|res|)
among the observed and modelled Zmax and (ii) the absolute values of the relative errors
(|re|) among the observed and modelled Zmax. The ranges of |res| and |re| used in
the figure were chosen subjectively with the intention of presenting a clear picture of the
general performance of each MLM; higher values than the plotted ranges were obtained
for some of the deeper modelled lakes. The empirical distributions depict the estimated
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exceedance probability of occurrence. The figure illustrates that for either |res| or |re|, in
the SS model training phase, the best performance was achieved with the MARS method.
Furthermore, the GLM (using quasi-Poisson distribution) produced Zmax estimates that
were far less accurate than those of the other applied methods. Although not depicted
herein, these results were also confirmed in the SS model validation phase.

Water 2024, 16, x FOR PEER REVIEW 12 of 23 
 

 

 
Figure 5. The empirical exceedance probability distributions of (a) the absolute values of the resid-
uals (|res|) among the observed and modelled maximum lake depths (Zmax) and (b) the absolute 
values of the relative errors (|re|) among the observed and modelled Zmax, as a function of the ap-
plied machine learning methods, considering 70% (i.e., 80) of the total study lakes for training (split-
sample test). MLRM = multiple linear regression model; GAM = generalised additive model; GLM 
= generalised linear model; MARS = multivariate adaptive regression splines; RF = random forest. 

Furthermore, Figure 6 shows the scatter plots of the observed (Depthobs) versus the 
modelled (Depthsim) Zmax as a function of the MLM. The plots also include the 1:1 diagonal 
line. Each plot corresponds to one of the applied MLMs and contains the respective values 
for the model performance statistics. Each dot relates to one of the 80 (i.e., 70%) studied 
lakes randomly selected for the SS training phase. Each of the model performance statis-
tics was calculated using these 80 pairs of Depthobs and Depthsim values. 

 
Figure 6. Scatter plots of the observed (Depthobs) versus modelled (Depthsim) maximum lake depths 
(Zmax) as a function of the applied machine learning methods (MLMs), considering 70% of the total 
study lakes for training (split-sample test). Each dot in a given plot represents a study lake; there-
fore, there are 80 dots in each plot. Model performance statistics are also shown. MAE = mean abso-
lute error (m); EF2 = Nash–Sutcliffe coefficient of efficiency (−); KGE = Kling–Gupta efficiency (−); R2 
= Pearson’s coefficient of determination (−); RMSE = root mean square error (m). (a) MLRM = multi-
ple linear regression model; (b) GAM = generalised additive model; (c) GLM = generalised linear 
model; (d) MARS = multivariate adaptive regression splines; (e) RF = random forest. 

0
10
20
30
40
50
60
70
80

0 10 20 30 40 50 60 70 80

D
ep

th
si

m
(m

)

Depthobs (m)

MARS

0
10
20
30
40
50
60
70
80

0 10 20 30 40 50 60 70 80

D
ep

th
si

m
(m

)

Depthobs (m)

MLRM

0
10
20
30
40
50
60
70
80

0 10 20 30 40 50 60 70 80

De
pt

h s
im

(m
)

Depthobs (m)

GAM

0
10
20
30
40
50
60
70
80

0 10 20 30 40 50 60 70 80

D
ep

th
si

m
(m

)

Depthobs (m)

RF

0
10
20
30
40
50
60
70
80

0 10 20 30 40 50 60 70 80

De
pt

h s
im

(m
)

Depthobs (m)

GLM(a) (b) (c)

(d) (e)

MAE =  9.48
EF2 =   0.45
KGE =  0.54

R² =   0.45
RMSE =  12.54

MAE =  9.59
EF2 =   0.44
KGE =  0.53

R² =   0.44
RMSE =  12.65

MAE = 15.96
EF2 = –0.82

KGE = –0.32
R² =   0.42

RMSE =  20.82

MAE =  4.74
EF2 =   0.87
KGE =  0.90

R² =   0.87
RMSE =   6.17

MAE =  9.04
EF2 =   0.45

KGE =   0.37
R² =   0.55

RMSE =  12.54

Figure 5. The empirical exceedance probability distributions of (a) the absolute values of the residuals
(|res|) among the observed and modelled maximum lake depths (Zmax) and (b) the absolute values of
the relative errors (|re|) among the observed and modelled Zmax, as a function of the applied machine
learning methods, considering 70% (i.e., 80) of the total study lakes for training (split-sample test).
MLRM = multiple linear regression model; GAM = generalised additive model; GLM = generalised
linear model; MARS = multivariate adaptive regression splines; RF = random forest.

Furthermore, Figure 6 shows the scatter plots of the observed (Depthobs) versus the
modelled (Depthsim) Zmax as a function of the MLM. The plots also include the 1:1 diagonal
line. Each plot corresponds to one of the applied MLMs and contains the respective values
for the model performance statistics. Each dot relates to one of the 80 (i.e., 70%) studied
lakes randomly selected for the SS training phase. Each of the model performance statistics
was calculated using these 80 pairs of Depthobs and Depthsim values.

The scatter plots confirm that in the training phase of the modelling, the MARS method
produced the best estimates of Zmax for the 80 studied lakes, and the GLM (with quasi-
Poisson distribution) produced the least accurate Zmax predictions. These findings were
confirmed in the validation phase (Figure 7) of the SS test using the data of the remaining
34 lakes that were not considered in the training phase.

Figure 8a,b illustrate the results of the assessment of the effects in the performance
of the GLM when using the negative binomial error distribution rather than the quasi-
Poisson distribution. Besides the distributions of the |res| among the observed and
modelled Zmax (Figure 8a), the results include the distributions of the |re| among the
observed and modelled Zmax (Figure 8b). This figure depicts the distributions of six GLM-
based multispectral bathymetric models, namely GLM1, which used the quasi-Poisson
distribution; GLM2, which used the negative binomial distribution with the automatic
optimisation of α; and GLM3 to GLM6, which used the negative binomial distribution with
different explicit α-values in the range of 2.0 to 6.4 (optimal value). The depicted results
were obtained for the SS training phase. These plots indicate that there were almost no
differences among the respective predictions of the GLM-based models.

Table 1 lists the results of the second model performance evaluation, which assessed
how well the Zmax multispectral models could distinguish between shallow and deep
lakes. For the global analysis, proportions larger than 80% were observed for all methods
except the GLM. The latter method had a successful classification rate of almost 0% for
deep lakes; however, it had a 100% success rate for shallow lakes. The remaining methods
performed well for deeper lakes, particularly RF. These results are of particular relevance
for management. It must be emphasised that this evaluation test is not focused on the
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bathymetric prediction accuracy but rather on the ability of the bathymetric model to
predict whether a lake is deep or shallow.

Table 1. The proportion of shallow/deep lake classifications correctly predicted by the maximum lake
depth (Zmax) multispectral models based on the applied machine learning methods: MLRM = multi-
ple linear regression model; GAM = generalised additive model; GLM = generalised linear model;
MARS = multivariate adaptive regression splines; RF = random forest. The “global” analysis con-
sidered both shallow and deep lakes, the “shallow” analysis considered only shallow lakes, and
the “deep” analysis considered only deep lakes. Numbers in bold depict either a perfect (1.0) or
completely incorrect (0.0) predicting capability of the applied machine learning methods.

Machine Learning Method

Analysis Number of Lakes MLRM GAM GLM MARS RF

Global 114 0.84 0.85 0.14 0.88 0.87
Shallow 15 0.40 0.40 1.00 0.33 0.00

Deep 99 0.91 0.92 0.01 0.96 1.00
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Figure 6. Scatter plots of the observed (Depthobs) versus modelled (Depthsim) maximum lake depths
(Zmax) as a function of the applied machine learning methods (MLMs), considering 70% of the total
study lakes for training (split-sample test). Each dot in a given plot represents a study lake; therefore,
there are 80 dots in each plot. Model performance statistics are also shown. MAE = mean abso-
lute error (m); EF2 = Nash–Sutcliffe coefficient of efficiency (−); KGE = Kling–Gupta efficiency (−);
R2 = Pearson’s coefficient of determination (−); RMSE = root mean square error (m). (a) MLRM = mul-
tiple linear regression model; (b) GAM = generalised additive model; (c) GLM = generalised linear
model; (d) MARS = multivariate adaptive regression splines; (e) RF = random forest.
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Figure 7. Scatter plots of the observed (Depthobs) versus modelled (Depthsim) maximum lake
depths (Zmax) as a function of the applied machine learning methods (MLMs), considering the
remaining 30% of the total study lakes for validation (split-sample test). Each dot in a given plot
represents a study lake; therefore, there are 34 dots in each plot. Model performance statistics are
also shown. MAE = mean absolute error (m); EF2 = Nash–Sutcliffe coefficient of efficiency (−);
KGE = Kling–Gupta efficiency (−); R2 = Pearson’s coefficient of determination (−); RMSE = root
mean square error (m). (a) MLRM = multiple linear regression model; (b) GAM = generalised additive
model; (c) GLM = generalised linear model; (d) MARS = multivariate adaptive regression splines;
(e) RF = random forest.
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Figure 8. The empirical exceedance probability distributions of (a) the absolute values of the residuals
(|res|) among the observed and modelled maximum lake depths (Zmax) and (b) the absolute values
of the relative errors (|re|) among the observed and modelled Zmax resulting from the assessment of
the performance of different versions of the generalised linear model (GLM). GLM1 = GLM using
the quasi-Poisson error distribution; GLM2 = GLM using the negative binomial distribution with the
automatic optimisation of the dispersion parameter (α); GLM3 to GLM6 = GLMs using the negative
binomial distribution with different explicit α-values in the range of 2.0 to 6.4 (optimal value). Results
were obtained for the split-sample training phase (i.e., using 80 randomly selected study lakes).
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With respect to the multi-site (MS) evaluation of the bathymetric predictions produced
by the five multispectral Zmax models, some negative bathymetric values were output by all
of the applied MLMs except RF. In the case of MARS, approximately 1.9% of the total pixels
(i.e., 11,636) were associated with negative bathymetric predictions. For instance, Figure 9a
depicts the concentration of these negative-value pixels (predicted using MARS) in lakes
located in the northern region of the study area (Figure 2b), outside the boundary of CNP.
This situation is representative of what was observed for other lakes, where negative-value
pixels were also predicted using MARS; these pixels tended to occur by the littorals, i.e., by
the boundaries between the ground surface and the (lake) water extent. Furthermore, this
issue tended to occur mainly for small-surface lakes, albeit with some exceptions.
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Figure 9. An illustration of the multi-site (MS) evaluation of the performance of the multispectral
models of the maximum lake depth (Zmax): the pixel distribution of negative (and positive) lake
depths predicted using (a) multivariate adaptive regression splines (MARS) and (b) the generalised
additive model (GAM). (c) The distribution of the bathymetry predicted using MARS after the
removal of negative-value pixels (equivalent to 1.9% of the total lake pixels) and (d) the distribution
of the absolute values of the residuals (|res|) lower than 20 m, predicted by MARS (pixels in
white have a no-data attribute). Coordinate system: UTM (m) 17S, WGS84. Bathymetric values are
expressed in m.
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The products of other MLMs, such as the GAM (Figure 9b), also produced negative-
value pixels near the littorals of the studied lakes, although with a higher density in
smaller-surface lakes. For the MARS bathymetric product, given the small proportion (i.e.,
1.9%) of negative-value pixels, and considering that these mainly occurred at the littorals
of the lakes (Figure 9a), we decided to eliminate these negative-value pixels from the MS
evaluation. Thus, for a given region of the study area, Figure 9c illustrates the resulting
spatial distribution of the predicted bathymetry from the MARS multispectral Zmax model.
Furthermore, for the same region, Figure 9d depicts the respective distributions of pixels
with |res| < 20 m.

The MS evaluation test was also carried out by calculating the empirical exceedance
distributions of |res| and |re| (Figure 10). The MARS method appeared to perform better
than the other methods, although only marginally in certain regions within the range of
variation of |res|. Herein, for |res| > 18 m, the Zmax predictions of the GLM were the
least accurate; however, for |res| ≤ 18 m, this was not the case. Figure 11 shows the
respective scatter plots of the observed (Depthobs) and simulated (Depthsim) lake depths as
a function of the MLMs. Each dot corresponds to a given pixel considered in the context
of the MS model performance evaluation, and each of the model performance statistics
was calculated using all 11,636 pairs of Depthobs and Depthsim values. Although the scatter
of the data is significantly greater than that depicted in Figure 7 (SS test), the plots in this
figure suggest that the MARS method produced the best bathymetric estimates and that
the GLM method (with the quasi-Poisson distribution) produced the least accurate MS
bathymetric predictions (using the Zmax multispectral models).
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Figure 10. The empirical exceedance probability distributions of the absolute values of residuals
(|res|) among the observed and modelled maximum lake depths (Zmax) as a function of the machine
learning methods. The bathymetry was modelled for all pixels (i.e., 11,636) that covered the 114 study
lakes and that were not considered in the split-sample (SS) model performance evaluation test.
MLRM = multiple linear regression model; GAM = generalised additive model; GLM = generalised
linear model; MARS = multivariate adaptive regression splines; RF = random forest.
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Figure 11. Scatter plots of the observed (Depthobs) versus modelled (Depthsim) lake depths as a
function of the applied machine learning methods (MLMs). Each dot in a given plot represents a
modelled pixel in the study domain; there are 11,636 dots in each plot. Model performance statistics
are also shown to characterise the performance of each applied MLM; they were calculated using
all 11,636 pairs of Depthobs and Depthsim values. The spatially distributed bathymetric predictions
were obtained through the application of the maximum depth (Zmax) multispectral models defined
previously in the context of the split-sample test. MAE = mean absolute error (m); EF2 = Nash–
Sutcliffe coefficient of efficiency (−); KGE = Kling–Gupta efficiency (−); R2 = Pearson’s coefficient of
determination (−); RMSE = root mean square error (m). (a) MLRM = multiple linear regression model;
(b) GAM = generalised additive model; (c) GLM = generalised linear model; (d) MARS = multivariate
adaptive regression splines; (e) RF = random forest.

4. Discussion

Most previous studies have focused on the multispectral modelling of the bathymetry
of shallow coastal shores or the littorals of shallow and relatively flat lakes located at lower
elevations (e.g., Hassan and Nadaoka [10]; Li, Knapp, Lyons, Roelfsema, Phinn, Schill, and
Asner [11]; Mabula, Kisanga, and Pamba [20]; and Yunus, Dou, Song, and Avtar [34]). In
addition, previous studies have focused on single water environments or, at most, a few
water bodies distributed across a narrow geographical domain; an independent multispec-
tral bathymetric model was then fitted for each of the studied water bodies [10,11,34]. The
present study differs from past research as it is one of the first attempts to model the bathy-
metric features of multiple tropical water bodies located within the broad geographical
domain of the Andean highlands. Here, 114 water bodies, distributed across a moderately
wide geographical domain (Figures 1 and 2) and covering a large spectrum of different
bathymetric, geomorphological, and even functional conditions [1,4,5], were studied. A
single multispectral Zmax model for 70% (i.e., 80) of the 114 different study sites was de-
veloped, which is a particularly notable difference with respect to past research; however,
there are likely to be considerable constraints in applying a single model to predict the
bathymetry for such a large number of different water bodies with a comparable level of
accuracy to that achieved in previous research.
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In the split-sample (SS) evaluation test, a comparison of the 80 Zmax predictions with
the respective true bathymetric data in the form of the exceedance (empirical) probability
distributions of |res| and |re| (Figure 5) indicated that the MARS method significantly
outperformed the other MLMs. The analysis also showed that three methods, namely the
MLRM, GAM, and RF, produced very similar Zmax predictions, but these were less accurate
than the ones produced with MARS. This differs from what was reported by Hassan
and Nadaoka [10]. In their case, the RF method performed better than MARS, although
their study differed significantly from the present one as they considered three modelling
locations; these were coastal and lake regions that were relatively flat and shallow, and
they developed individual models for each of these sites. Our results also differ from
those of Yunus, Dou, Song, and Avtar [34], who found that RF performed very well, albeit
only up to depths of 30 m. In the current case, RF did not only perform poorly compared
to MARS but also failed to perform better than the GAM and MLRM (Figure 5). These
outcomes differ from the results of Manessa, Kanno, Sekine, Haidar, Yamamoto, Imai, and
Higuchi [19], who observed a considerably better performance of RF as compared to the
MLRM. These findings support the idea that MLMs should not be selected at random;
rather, it is necessary to carry out a selective analysis considering the different (physical)
characteristics of the study sites, the locally available observations, and, most importantly,
the available multispectral data, as was performed in this study and as also outlined by
Mabula, Kisanga, and Pamba [20].

The SS analysis also indicated that the GLM always generated the worst Zmax predic-
tions, as clearly represented by the nearly vertical |re| curve in Figure 5b. Nevertheless,
the |res| curve for the MARS method (Figure 5) also illustrates that important residual
values—for example, greater than 6 m—were observed for several of the studied lakes
(approximately 40%). Moreover, |res| values higher than 10 m were obtained for approxi-
mately 10% of the lakes (the deeper ones). Although these |res| values might seem higher
than those reported in past studies (e.g., Hassan and Nadaoka [10]; Li, Knapp, Lyons,
Roelfsema, Phinn, Schill, and Asner [11]; Mabula, Kisanga, and Pamba [20]; Xie, Chen,
Zhang, and Pan [21]; and Yunus, Dou, Song, and Avtar [34]), it should be noted that in
these studies, (i) only shallow bathymetries were modelled, whereas the current study also
included significantly deeper conditions, and (ii) an individual bathymetric model was
developed for each modelled water body. In contrast, here, a single model was defined for
all 80 different lakes considered in the SS training phase.

When evaluating the performance of the applied MLMs through the use of the perfor-
mance statistics, namely the MAE, EF2, KGE, R2, and RMSE, as well as the visual inspection
of the shapes of the calibration scatter plots (Figure 6), the above trends were confirmed. In
particular, they highlighted (i) the remarkable ability of MARS to predict lower, medium,
and higher Zmax values; (ii) the prediction problems associated with the MLRM, GAM,
and RF, which over-predicted lower Zmax values and under-predicted higher values; and
(iii) the lack of prediction capabilities of the GLM, as it systematically under-predicted
all of the Zmax values. Although both the MLRM and GLM have intrinsic linear features
(i.e., they are linear supervised learning algorithms), the better performance of the MLRM
should be noted. The above findings were confirmed by the SS evaluation test in the model
validation phase (Figure 7).

The lower prediction capabilities observed for the GLM contrast with what is com-
monly reported in the literature. The GLM has performed acceptably not only in SDB
studies [40] but also within the scope of other remote sensing applications, where GLMs
have even outperformed non-linear MLMs such as RF [46]. The lower GLM performance
observed here seems to be independent of the error distribution being considered in the
method, as suggested by Figure 8a,b. This figure shows that the use of either a quasi-Poisson
distribution [44] or a negative binomial distribution [45,46] yields an equivalent perfor-
mance, even when applying markedly different parameterisations. Overall, these results
confirm the important intrinsic limitations of GLM methods in predicting the bathymetric
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features of deeper lakes. This is in line with Elshazly, Elshemy, Zeidan, and Armanuos [40],
who recommend the GLM particularly for shallow lakes.

The second model evaluation test considered how well the Zmax multispectral models
could predict shallow and deep lakes. This indicated that in general and for most of the
MLMs, the proportions of correct lake classifications were high. An exception was the
GLM, which yielded perfect predictions for shallow lakes but could not produce accurate
predictions for deep lakes. These results are in line with the work of Elshazly, Elshemy,
Zeidan, and Armanuos [40] regarding the GLM method. Most of the applied MLMs yielded
successful predictions for deep lakes (Table 1). These results are particularly relevant for
the management of lake districts. Regardless of the precision of the respective bathymetric
multispectral models, even those based on very few bathymetric observations, some of the
applied MLMs may discretise well between shallow and deep lakes.

To the best of our knowledge, the third model evaluation test, namely the multi-site
(MS) test, has rarely been carried out in SDB research. Our analysis revealed that negative-
value pixels were obtained (Figure 9a,b) for some of the MLMs, including MARS. These
were mainly located by the littorals of small-surface lakes, i.e., at the boundaries between
the ground and water. In these areas, the MLMs might have experienced problems in
distinguishing between spectral information from the water and the surrounding ground.
In the case of MARS, the MS test revealed, for every studied lake, a strong consistency
in the depth distribution, with shallow depths by the littorals and deeper depths by the
central portions of the lakes. The respective scatter plots (Figure 11) indicated that MARS
also outperformed the other MLMs within the scope of this MS test, despite the fact that
the models were fitted only considering the Zmax data. Nevertheless, significant |res|
values were recorded when applying MARS (Figure 9d), although a large proportion of the
pixels (approximately 90%) had |res| values < 20 m. Furthermore, it should be noted that
the RMSE value (11.9 m) of the MARS predictions, achieved within the scope of this test,
is similar to those reported in previous SDB studies (e.g., Abdul Gafoor, Al-Shehhi, Cho,
and Ghedira [39]); however, they modelled significantly shallower bathymetries under less
demanding conditions in terms of the number of modelled study sites and the bathymetric
observations included in the modelling process compared to the present research. The MS
test confirmed that the GLM method produced the worst bathymetric predictions.

As the MS test evaluated the performance of the (Zmax) multispectral models in
predicting the bathymetry of pixels that were not considered in the (SS) model training
phase, it required the Zmax models to predict beyond the data limits that were considered for
their fitting. However, for each of the applied MLMs, a single model was fitted to encompass
the Zmax values of all 80 different water bodies. Thus, considering the broad range of
variation in the observed Zmax (i.e., [1.6, 75.8] m), it is likely that for the MARS method, this
single model had the ability to predict a similarly broad spectrum of bathymetric variability.
The outcome might be different for other local conditions—for instance, in the case of more
uniform variation in Zmax (or any other bathymetric feature). Therefore, we emphasise the
need to carry out local analyses, similar to those performed herein (and as highlighted, for
instance, by Mabula, Kisanga, and Pamba [20]), before adopting a bathymetric model for
management purposes.

This study devised a single multispectral bathymetric model for multiple study lakes
based on the consideration of a limited number of bathymetric observations (one per
lake) and after the comprehensive application of five different MLMs and three model
performance evaluation tests. The evaluation tests suggested that for the chosen study
site, the local conditions, and the available multispectral data, the best-performing MLMs
produced more reliable models for deeper lakes than for shallow ones.

The study lakes are located within a national park (CNP). Therefore, there are no
navigation issues associated with the ecosystem services of the study lakes. Therefore,
the present findings have no implications for transportation ecology. Rather, the lakes’
ecological management focuses on their conservation, including that of their surrounding
landscapes, because CNP provides good-quality water [5] that satisfies a large number
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of diverse water demands, including for drinking, industrial purposes, irrigation, and
electricity generation. Thus, they contribute to the sustainable development of the city of
Cuenca and even of Ecuador (in terms of satisfying the hydroelectricity generation quota).
Hereafter, knowledge of bathymetry-related parameters such as Zmax will be fundamental
in understanding, for example, the ecological functioning of these lakes [1,3] and, in turn,
for their appropriate conservation and management. Nevertheless, the different methods
and approaches used in this study could be applied at other latitudes where navigation and
other uses must be ecologically managed within the framework of sustainable development.
Knowledge of these bathymetric parameters would also be essential in these cases.

The main limitation of the current study is the significant residuals that were observed
for certain evaluated lakes/pixels as compared to published results, particularly for deeper
lakes. Nevertheless, as already stated, this study differs from past research in some key
aspects, which implies that its results cannot be directly compared to other published
findings. Despite this, future work aimed at improving the modelling performance should
be focused on the following: assessing the effects of using spectral band ratios; considering
alternative satellite products with finer resolutions (and similar spectral information),
which would involve a scalability assessment [26]; and identifying the most significant
spectral information for modelling, etc.

Furthermore, the single model that was developed in this study could be applied
to diverse data sets for lakes across the Andean region of Ecuador in order to assess
its generalisability and transferability to these locations. A related generalisability and
transferability assessment within the current study area could involve developing more
detailed SDB models of representative lakes—for instance, for shallow, average, and deep
conditions—and applying them to the data of other lakes that share similar conditions.
These analyses could be useful for conservational or management purposes.

5. Conclusions

Five different machine learning methods (MLMs) were applied to a LANDSAT 8
mosaic for the bathymetric modelling of 114 Andean tropical lakes in Southern Ecuador,
using a single observation per lake, namely the maximum depth (Zmax). The performance of
these five models was assessed through three different model evaluation tests that analysed
the models’ bathymetric residuals. Both the traditional split-sample (SS) test and the multi-
site (MS) test— that inspected the performance of each of the five Zmax models for pixels
(i.e., 11,636) that were not considered in the training phase of the SS test—revealed that the
multivariate adaptive regression splines (MARS)-based model outperformed the models
resulting from the other methods, including the renowned random forest (RF) method.
Despite the use of dissimilar error distributions, the worst predictions were produced
by the generalised linear model (GLM), particularly for deeper lakes. Furthermore, all
of the applied methods, with the exception of the GLM, yielded correct predictions in
more than 80% of the cases concerning whether a lake was shallow or deep. The GLM
yielded perfect predictions for shallow lakes, while it could not produce predictions for
deep lakes. However, even for the MARS method, important residual values were observed,
i.e., depending on the model performance evaluation test, |res| > 6 m for approximately
50% of the inspected pixels and |res| > 10 m for approximately 20% of the pixels (the
deeper ones). Despite this, the quality of the predictions could be considered acceptable
and useful for management purposes, particularly considering the convenience of using a
single bathymetric model to manage 114 lakes rather than developing a model for each lake.
The results of this pioneering study indicate that it is important to carry out different model
evaluation tests, since the application of the same modelling methods may produce results
that differ from those obtained in previous research owing to the prevailing local conditions.
The tests used herein proved to be highly useful in addressing the holistic performance of
the developed models; they can be easily replicated, independently of the geographical
location. Another conclusion is that the remote sensing-based modelling of (multiple) lakes’
bathymetry with relatively few observations might be feasible and sufficiently accurate for
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management purposes. This is particularly relevant for the Andean lake districts, which
are typically remote, similarly to the site analysed in the present study.
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