Por favor, use este identificador para citar o enlazar este ítem:
https://dspace.ucuenca.edu.ec/handle/123456789/45820Registro completo de metadatos
| Campo DC | Valor | Lengua/Idioma |
|---|---|---|
| dc.contributor.author | Mejia Coronel, Julio Danilo | |
| dc.contributor.author | Vazquez Zambrano, Raul Fernando | |
| dc.contributor.author | Hampel , Henrietta | |
| dc.date.accessioned | 2025-01-29T13:30:01Z | - |
| dc.date.available | 2025-01-29T13:30:01Z | - |
| dc.date.issued | 2024 | |
| dc.identifier.issn | 2073-4441 | |
| dc.identifier.uri | https://dspace.ucuenca.edu.ec/handle/123456789/45820 | - |
| dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85213230572&doi=10.3390%2fw16243570&partnerID=40&md5=047a39d030add2ee3b19e741f87ee050 | |
| dc.description.abstract | Multispectral modelling of 114 tropical Andean lakes in Southern Ecuador was implemented using observations of the maximum depth (Zmax). Five machine learning methods (MLMs), namely the multiple linear regression model (MLRM), generalised additive model (GAM), generalised linear model (GLM), multivariate adaptive regression splines (MARS), and random forest (RF), were applied on a LANDSAT 8 mosaic. Within the scope of a split-sample (SS) evaluation test, for each of the MLMs, a single model was developed for 70% (i.e., 80) of the studied lakes. Statistical measures and graphical inspection were used in the evaluation tests. An analysis of the absolute value of the model residuals (|res|) revealed that the MARS method outperformed the other MLMs. Nevertheless, a |res| > 10 m was observed for approximately 10% of the lakes. The worst predictions were produced by the GLM. These findings were confirmed in the model validation phase (SS test). With the exception of the GLM, the MLMs correctly predicted whether a lake was shallow or deep in more than 80% of the cases. In a more stringent multi-site (MS) test, the performance of the five Zmax models was assessed in predicting the bathymetry of 11,636 pixels that were not considered when fitting the models. Once more, MARS outperformed the other MLMs. However, a |res| > 10 m for 20% of the pixels was observed. Nevertheless, the quality of the predictions may still be regarded as acceptable for management purposes. Promising multispectral bathymetric predictions could be obtained, even with only a limited number of observations. The evaluation tests used in this pioneering study could be easily replicated elsewhere. | |
| dc.language.iso | es_ES | |
| dc.source | Water (Switzerland) | |
| dc.subject | Machine learning | |
| dc.subject | Multi-site | |
| dc.subject | Multispectral modelling | |
| dc.subject | Model performance | |
| dc.subject | Lake bathymetry | |
| dc.subject | Remote sensing | |
| dc.subject | High-mountain lake | |
| dc.subject | Ecuadorian Andes | |
| dc.subject | Tropical lake | |
| dc.title | Estimating the Maximum Depth of Andean Lakes: A Comparative Analysis Using Machine Learning | |
| dc.type | ARTÍCULO | |
| dc.ucuenca.idautor | 0102059441 | |
| dc.ucuenca.idautor | 0107313041 | |
| dc.ucuenca.idautor | 0103638581 | |
| dc.identifier.doi | 10.3390/w16243570 | |
| dc.ucuenca.version | Versión publicada | |
| dc.ucuenca.areaconocimientounescoamplio | 07 - Ingeniería, Industria y Construcción | |
| dc.ucuenca.afiliacion | Vazquez, R., Universidad de Cuenca, Facultad de Ciencias Químicas, Laboratorio de Ecología Acuática (LEA), Cuenca, Ecuador | |
| dc.ucuenca.afiliacion | Hampel, H., Universidad de Cuenca, Facultad de Ciencias Químicas, Cuenca, Ecuador; Hampel, H., Universidad de Cuenca, Facultad de Ciencias Químicas, Laboratorio de Ecología Acuática (LEA), Cuenca, Ecuador | |
| dc.ucuenca.afiliacion | Mejia, J., Universidad de Cuenca, Facultad de Ciencias Químicas, Cuenca, Ecuador | |
| dc.ucuenca.correspondencia | Vazquez Zambrano, Raul Fernando, raul.vazquezz@ucuenca.edu.ec | |
| dc.ucuenca.volumen | Volumen 16, número 24 | |
| dc.ucuenca.indicebibliografico | SCOPUS | |
| dc.ucuenca.factorimpacto | 0.72 | |
| dc.ucuenca.cuartil | Q1 | |
| dc.ucuenca.numerocitaciones | 0 | |
| dc.ucuenca.areaconocimientofrascatiamplio | 2. Ingeniería y Tecnología | |
| dc.ucuenca.areaconocimientofrascatiespecifico | 2.1 Ingeniería Civil | |
| dc.ucuenca.areaconocimientofrascatidetallado | 2.1.1 Ingeniería Civil | |
| dc.ucuenca.areaconocimientounescoespecifico | 071 - Ingeniería y Profesiones Afines | |
| dc.ucuenca.areaconocimientounescodetallado | 0712 - Tecnología de Protección del Medio Ambiente | |
| dc.ucuenca.urifuente | https://www.mdpi.com/2073-4441/16/24/3570 | |
| Aparece en las colecciones: | Artículos | |
Ficheros en este ítem:
| Fichero | Tamaño | Formato | |
|---|---|---|---|
| documento.pdf | 7.89 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está protegido por copyright original |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.
Centro de Documentacion Regional "Juan Bautista Vázquez" | ||||||||||
| ||||||||||
