Logo Repositorio Institucional

Please use this identifier to cite or link to this item: https://dspace.ucuenca.edu.ec/handle/123456789/46030
Title: Forecasting techniques for power systems with renewables
Authors: Arevalo Cordero, Wilian Paul
Ochoa Correa, Danny Vinicio
Keywords: Energías renovables
Modelos meteorológicos
Redes neuronales
metadata.dc.ucuenca.areaconocimientofrascatiamplio: 2. Ingeniería y Tecnología
metadata.dc.ucuenca.areaconocimientofrascatidetallado: 2.2.1 Ingeniería Eléctrica y Electrónica
metadata.dc.ucuenca.areaconocimientofrascatiespecifico: 2.2 Ingenierias Eléctrica, Electrónica e Información
metadata.dc.ucuenca.areaconocimientounescoamplio: 07 - Ingeniería, Industria y Construcción
metadata.dc.ucuenca.areaconocimientounescodetallado: 0713 - Electricidad y Energia
metadata.dc.ucuenca.areaconocimientounescoespecifico: 071 - Ingeniería y Profesiones Afines
Issue Date: 2025
metadata.dc.ucuenca.paginacion: 381-412
metadata.dc.source: Towards Future Smart Power Systems with High Penetration of Renewables
metadata.dc.identifier.doi: 10.1016/B978-0-443-29871-4.00016-6
Publisher: Academic Press
metadata.dc.type: CAPÍTULO DE LIBRO
Abstract: 
This chapter conducts a comprehensive analysis of renewable energy generation prediction methods, ranging from classical to contemporary approaches. Fundamental concepts of forecasting are explored, and traditional techniques, as well as meteorological models, are examined. Additionally, a deep dive into the use of machine learning and neural networks for accurately anticipating renewable energy production is presented. The review highlights the effectiveness and limitations of each method, providing a comprehensive insight into the current state of the field. The existing challenges are identified, such as the adaptability of traditional methods to the evolving energy landscape and the optimization of accuracy in meteorological models. Furthermore, the need for computational resources in machine learning approaches is addressed. Based on this analysis, future research directions are proposed. These include enhancing the adaptability of traditional methods, optimizing accuracy in meteorological models, and exploring more resource-efficient approaches in terms of computational resources. This chapter serves as a valuable guide for researchers interested in addressing current challenges and advancing the prediction of renewable energy generation.
URI: https://dspace.ucuenca.edu.ec/handle/123456789/46030
https://shop.elsevier.com/books/towards-future-smart-power-systems-with-high-penetration-of-renewables/tostado-veliz/978-0-443-29871-4
ISBN: 9780443298721, 9780443298714
ISSN: 0000-0000
Appears in Collections:Artículos

Files in This Item:
File SizeFormat 
documento.pdf1.24 MBAdobe PDFView/Open


This item is protected by original copyright



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00