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Introduction

The increasing capacity of renewable energy offers a key opportunity to address the

growing global energy crisis. Despite reaching 27% for renewable energy and 24%

for natural gas in 2019 (Zhu et al., 2022), challenges persist due to the variable

nature of renewable energy production. Governments and policymakers advocate

for increased penetration of renewables, with projections suggesting that their con-

tribution could reach 85% by 2050, highlighting their crucial role in the future

energy landscape (Alkabbani et al., 2021). Global electricity demand rises with

population and economic growth, primarily fueled by conventional fossil fuel-based

power plants emitting harmful greenhouse gases (Islam & Roy, 2023). To address

this, the integration of renewable energy sources (RES) like wind, solar, hydro-

power, and biogas is essential for sustainable energy production. Advances in wind

and photovoltaic (PV) technologies have significantly increased renewable energy

generation (Li et al., 2020). However, the inherent uncertainty of RES requires

innovative solutions. Technologies such as smart inverters and machine learning

enhance integration, while research in frequency control aims to manage high RE

penetrations (Wen et al., 2019). The volatility of renewable energy production

underscores the need for advanced forecasting techniques to ensure system balance.

Accurate predictions are crucial for informed decision-making in energy system

management. This chapter explores energy forecasting concepts, highlighting the

importance of precision and introducing advanced techniques to address specific

challenges (Alkabbani et al., 2021).

The evolution of RES necessitates robust forecasting methods for efficient grid

integration and sustainable energy planning. In a Sicily wind energy study (Cellura

et al., 2008), traditional approaches, including statistical analyses and geostatistical

interpolation, were employed to estimate wind probability distribution functions,

emphasizing the need for reliable tools, such as artificial neural networks (ANNs),

for spatial wind speed estimation. In Germany, autoregressive integrated moving

average (ARIMA)-based forecasting models have optimized renewable energy gen-

eration (Fattah et al., 2023). A hybrid methodology, derived from four years of

Towards Future Smart Power Systems with High Penetration of Renewables. DOI: https://doi.org/10.1016/B978-0-443-29871-4.00016-6

© 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

https://doi.org/10.1016/B978-0-443-29871-4.00016-6


data, improved yearly accuracy by approximately 89.5%. The REN4KAST software

platform was introduced to address the stochastic nature of renewable energy gener-

ation. Examining wind speed forecasts in Karnataka, a weather model with a 3 km

resolution identified regions suitable for wind power plants (Gangopadhyay et al.,

2019), recommending new locations based on factors like transport facilities and

diurnal patterns. The economic viability of a compressed air energy storage

(CAES)-PV system was addressed through a novel model-free deep reinforcement

learning (DRL) method (Dolatabadi et al., 2023). This approach optimized CAES

energy arbitrage using a hybrid forecasting model based on 2-D convolutional neu-

ral networks (CNNs) and bidirectional long short-term memory (BLSTM) units.

On the other hand, various techniques and procedures for forecasting generation

from random REs exist. A comprehensive review of the study highlighted the

importance of tailored forecast products for end-users (Sweeney et al., 2020).

Emphasis was placed on integrating blockchain technology for decentralized yet

trusted data exchange, addressing uncertainties, and enhancing predictive dispatch

tools for system stability with higher renewable energy integration. The dynamic

nature of solar and wind energy, subject to fluctuations on various timescales, pre-

sents challenges in managing stable and reliable energy supplies. Accurate forecast-

ing becomes imperative for optimal energy production management in intermittent

and stochastic RES (Notton et al., 2018). The review emphasizes the cost implica-

tions of variability and stochastic variations in REs, highlighting the economic ben-

efits of efficient forecasting. It underscores the role of forecasting in mitigating

integration costs, becoming an essential tool for electrical grid managers.

Integrating renewables and the increasing demand for electricity necessitate effi-

cient energy management strategies. Smart grid technology emerges as a solution to

enhance energy efficiency, particularly in the context of renewable energy integra-

tion (Sharma et al., 2023). The comprehensive overview provided in this survey

paper explores various techniques for demand forecasting across residential, indus-

trial, and agricultural sectors. Load forecasting, demand response management, and

implementing smart meters are crucial for achieving energy efficiency and green

energy goals. Electricity price forecasting is fundamental for grid management and

renewable energy integration. Complex generation mix data and heteroskedasticity

pose challenges for accurate forecasting, addressed in this study using advanced

analytics methods like principal component analysis (PCA) (Nyangon &

Akintunde, 2024). The research emphasizes the importance of PCA in improving

forecasting accuracy, particularly in highly renewable energy markets like the

California independent system operator, contributing to grid stability and optimal

resource utilization. Furthermore, the pivotal role of renewable energy in a low-

carbon society requires understanding the impact of weather and climate on energy

demand and supply. A systematic review of seasonal forecasting for wind and wind

power in the Iberian Peninsula and the Canary Islands sheds light on the importance

of teleconnection patterns and the stratosphere in predicting wind variability (Bayo-

Besteiro et al., 2022). The limited existing literature underscores the need for

increased research efforts to enhance the operation and planning of renewables.

Integrating variable and nondispatchable renewable power generation requires
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assessing variability and accurate forecasting. This review paper surveys previous

research on solar, wind, wave, and tidal energy resources, emphasizing the need for

coherent studies that analyze variability and forecasting methods consistently

(Widén et al., 2015). The conclusion stresses the importance of comparable studies,

metrics, and evaluations across different renewable energy resources.

Although the reviewed studies have significantly contributed to the understand-

ing of renewable energies and their forecasts, there is a lack of integration that

addresses traditional methods, meteorological models, machine learning, and ANNs

in a holistic manner. Most existing approaches focus on specific aspects, without

providing a comprehensive and comparative view. For example, the study presented

in Sweeney et al. (2020) emphasizes the importance of forecast products tailored to

end-users, highlighting the need to integrate blockchain technology for decentra-

lized yet reliable data exchange. However, a greater integration of diverse methods

is required to more comprehensively address the challenges associated with vari-

ability and stochasticity in REs, as evidenced in previous studies (Bayo-Besteiro

et al., 2022; Widén et al., 2015). This lack of global integration underscores the

need for future research aimed at developing more unified and comprehensive

approaches, leveraging the strengths of different methodologies to improve the

accuracy and applicability of forecasts in the context of renewable energies. Zhu

et al. (2022) highlighted that the continual increase in renewable energy capacity

presents a crucial opportunity to address the growing energy crisis and the ever-

rising global demand. Islam and Roy (2023) pointed out that, despite the significant

electricity generation by conventional fossil fuel-based power plants, they also emit

environmentally harmful greenhouse gases. Alkabbani et al. (2021) mentioned that

accuracy in predicting renewable energy generation becomes a crucial factor in

addressing challenges associated with the variability and intermittency of these

sources.

These findings underline the importance of considering the specific needs of

end-users and exploring decentralized solutions for data exchange in forecast man-

agement within the realm of renewable energies. The lack of uniformity in renew-

able energy generation, in contrast to conventional resources, emphasizes the need

for broader and more effective strategies to address these challenges and ensure a

successful transition to a more sustainable energy matrix. Alkabbani et al. (2021)

highlighted the need for improved accuracy in predicting renewable energy genera-

tion to address challenges associated with the variability and intermittency of these

sources. The projected increase in the contribution of REs to the future energy

matrix, as mentioned in the citation from Alkabbani et al. (2021), emphasizes the

urgency of developing more advanced and accurate forecasting methods to ensure a

successful and sustainable integration of these sources into global energy systems.

The lack of uniformity in renewable energy generation, as evidenced in Islam and

Roy (2023), poses specific challenges in planning and managing optimal electricity

generation, highlighting the need for more comprehensive approaches that address

the inherent variability of these sources. Collectively, these studies underscore

existing gaps in current research on renewable energy forecasts, emphasizing the

need for more integrative reviews and advanced methods that effectively address

383Forecasting techniques for power systems with renewables



the variability and stochastic nature of these energy sources. In summary, to address

identified gaps in the literature, this chapter makes a significant contribution by

bridging this divide, presenting a unified and in-depth perspective on forecasting

techniques for renewable energy integration. The following key contributions are

proposed:

� Conducting a comparative and integrated analysis of the uniqueness of the load forecast-

ing problem in integrated energy systems, highlighting its crucial differences compared to

conventional electrical systems.
� Thoroughly investigating traditional methods, meteorological models, machine learning

techniques, and ANNs, providing a critical understanding of their specific applicability to

renewable energy generation.
� Emphasizing the unique contributions of this chapter by offering a critical analysis of case

studies and practical applications. The aim is to provide valuable insights for effective

implementations in real-world environments.

Fundamentals of forecasting

Basic concepts

In light of the expansive growth within the realm of RES, acquiring an in-depth

comprehension of their inherently stochastic nature has become imperative. This

understanding is pivotal not only for the seamless dispatch of energy but also for

preemptively addressing potential stability challenges within the electrical grid.

Consequently, there arises a pressing need for predictive modeling, grounded in his-

torical data and a meticulous analysis of the power outputs from RES (Li et al.,

2020). The temporal horizon, denoting the timeframe during which such prognosti-

cations are formulated, is contingent upon the specific application at hand.

Emphasizing the pivotal role of precision in forecasting becomes paramount, serv-

ing as a foundational cornerstone for informed decision-making in the realm of

renewable energy systems. The dependability of these prognostications holds direct

implications for the efficacy of planning and operation strategies within the energy

infrastructure. Armed with a profound understanding of these foundational con-

cepts, we position ourselves to delve into the intricate realm of forecasting techni-

ques, precisely tailored to accommodate the nuances introduced by the variability

inherent in RES, thereby addressing the intricate challenge of accurately predicting

the dynamics of energy supply and demand (Koltsaklis et al., 2021).

The efficacy of forecasting techniques within renewable energy systems is inher-

ently linked to a meticulous consideration of temporal scales. Categorized into four

primary groups, these temporal scales act as a dynamic framework, facilitating the

nuanced adaptation of forecasting strategies to the diverse planning requirements

dictated by different timescales. In the ultrashort term (0�4 h), the focus of fore-

casts sharpens to manage near-real-time events, thereby enabling immediate and

responsive adjustments to abrupt changes. Extending this temporal window, the

short-term scale (0�72 h) emerges as a crucial domain for anticipating variations in
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both energy generation and consumption. This extension proves pivotal in optimiz-

ing the daily operation of the energy system (Wen et al., 2019).

Stepping into the arena of medium to long-term planning (1 month�1 year)

necessitates a comprehensive consideration of seasonal factors and trends extending

over more extended durations. This temporal domain is indispensable for shaping

strategic decisions governing the development of energy infrastructures. Finally, the

long-term forecasting horizon (. 1 year) transcends immediate concerns, projecting

overarching trends that provide invaluable insights for policymaking and formulat-

ing transformative strategies for the evolution of the energy matrix. A nuanced and

comprehensive understanding of these diverse temporal scales forms the bedrock

for the effective implementation of forecasting techniques, thereby ensuring a pre-

cise, adaptive, and sustainable management approach to the intricacies of energy

systems (Moret et al., 2016). To further illustrate these concepts, Fig. 16.1 provides

a concrete example of a demand prediction system over the course of a day. The

graph captures the dynamic interplay between actual and predicted renewable

energy generation, offering a visual insight into the accuracy and responsiveness of

the forecasting model within this relatively brief temporal window. This visualiza-

tion serves to underscore the importance of precise short-term predictions in ensur-

ing optimal energy management and grid stability, particularly in the context of

RES with inherent variability.

Traditional forecasting methods

The traditional forecasting methods refer to established and conventional approaches

used to anticipate future events or trends. These methods are generally based on histori-

cal data and observed patterns from the past. Some of the most common traditional

methods include MA, ARIMA method, linear regression, time series decomposition,

exponential smoothing models, relative index method, and Delphi method.

Figure 16.1 Example of renewable energy prediction for a short-term interval

(24 hours). Anticipating tomorrow’s energy: A 24-hour snapshot of renewable energy

prediction.
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Moving average and autoregressive integrated moving average
methods

The MA method is a fundamental technique in time series analysis and forecasting.

It involves calculating the average of a set of past observations to predict future

values. In the context of solar irradiance forecasting, the MA model generates a set

of random variables using past values of solar irradiance, resembling a random

walk with zero mean and constant variance of white noise (Mishra et al., 2017).

This method is expressed as MA (q), where “q” represents the order of the process,

determining the number of past steps considered for calculating the average along

the time series. In the evaluated models, MA contributes to point forecasts within

the broader framework of solar irradiance forecasting. The main idea is to smooth

temporal fluctuations and highlight general trends.

In recent years, the ARIMA method has emerged as an evolution of MA. Given

the inherent uncertainty in predictions, models have been developed to forecast not

only the mean but also the associated uncertainty, emphasizing the need for rigor-

ous comparisons to assess their ability and accuracy in the dynamic field of solar

energy. David et al. (2018) focused on intraday forecasts with time horizons of 1 to

6 hours, using models that employ only endogenous inputs, specifically past solar

irradiance data. The selected models combine three point forecast models (autore-

gressive and moving average recursive [ARMArls] and coupled autoregressive and

dynamic system) with seven probabilistic methods (linear quantile regression

model, weighted quantile regression, quantile regression neural network, recursive

generalized conditional heteroskedasticity, sieve bootstrap, quantile regression for-

est, and gradual boosting decision trees), resulting in a comprehensive comparison

of 20 model combinations (David et al., 2018).

The ARIMA model is a versatile approach widely used in renewable energy

forecasting, known for its simplicity and efficiency. It combines autoregressive,

integrated (I), and MA components to capture temporal dependencies and patterns

in the data (David et al., 2016; Malhan & Mittal, 2022). The ARIMA model is par-

ticularly effective in capturing the persistence of solar irradiance datasets, making it

a robust competitor in forecasting scenarios (David et al., 2016). Specifically,

ARMArls model, a variant of the ARIMA model, has proven to be robust in pre-

dicting renewable energies, demonstrating its effectiveness in providing accurate

short-term forecasts of solar irradiance (David et al., 2016). In summary, the com-

parison of these forecasting methods reveals the complexities of solar irradiance

prediction. The MA method, with its simplicity, contributes to the set of models,

while the ARIMA model, and its ARMArls variant, demonstrate their effectiveness

in capturing the dynamics of solar irradiance in short-term forecasts. The exhaustive

evaluation involving various combinations of these methods highlights the nuanced

nature of forecasts in the renewable energy domain, shedding light on the strengths

and limitations of each approach (David et al., 2016, 2018; Mishra et al., 2017;

Zhang et al., 2022). As the renewable energy landscape evolves, these methods

serve as essential tools to optimize energy management and network stability, pro-

moting a sustainable energy future.
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However, there are some drawbacks, as the MA technique can be sensitive to noisy

data or random fluctuations in the time series. Sudden oscillations can affect forecast

accuracy, especially in high-variability environments. Additionally, the performance of

the MA method depends on the appropriate choice of the moving window size (the num-

ber of observations used for the average). In situations where the time series exhibits

complex patterns, determining the optimal window length can be a challenge. The MA

assumes that the time series is stationary, and the trend is linear. In the presence of

nonlinear trends or structural changes in the data, the model may provide inaccurate fore-

casts. Sensitivity to parameter choice is a key feature of the ARIMA method, similar to

the MA. The performance of ARIMA is inherently linked to the appropriate choice of

parameters, including autoregression (p), differencing (d), and MA (q) orders. Incorrect

determination of these parameters can lead to inaccurate forecasts.

Another significant limitation of ARIMA is its lack of suitability for nonlinear

data. The model assumes that the relationship between observations is linear, mean-

ing that it may struggle to capture the complexity of nonlinear patterns present in

the time series. The inability to effectively handle irregular seasonality is another

challenge associated with ARIMA. If the time series exhibits irregular seasonal pat-

terns or seasonality that changes over time, the model may not fit optimally, affect-

ing forecast accuracy. Additionally, ARIMA works best with stationary time series,

where the mean and variance are constant over time. In cases where the series is

nonstationary, additional preprocessing, such as differencing, is required, adding

complexity to the analysis. Another crucial limitation of ARIMA is its lack of con-

sideration for external effects or exogenous variables in the model. This deficiency

can limit its ability to capture external influences that may affect the time series,

resulting in less accurate forecasts. Finally, ARIMA’s sensitivity to abrupt changes

in the time series can impact the reliability of long-term forecasts. Significant

changes in series behavior over time can affect the model’s effectiveness in accu-

rately predicting future events (Malhan & Mittal, 2022). Fig. 16.2 illustrates an

example prediction using an MA for a random signal with a 100-hour interval and a

window size of 5. The signal was generated in MATLABs 2021a using the “mov-

mean” function.

Figure 16.2 Original time series and MA forecast. Analyzing trends: Original time series

vs. moving average forecast.
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Linear regression in renewable energy prediction

Linear regression analyzes the relationship between two variables, such as time and

the magnitude of an event. Through this relationship, the future behavior of the

dependent variable can be predicted. Linear regression emerges as a fundamental

technique in predicting renewable energy production, particularly in solar energy,

where the variability of solar radiation poses challenges for grid management.

Various studies have addressed this issue, emphasizing the importance of accurate

prediction to ensure system stability and optimal resource allocation. In a study

(Hassan et al., 2017), the focus was on predicting solar radiation using linear regres-

sion techniques, specifically the least squares regression. The simple linear regression

equation is employed to model the relationship between solar radiation and a time-

related variable, showing a 32% improvement in prediction accuracy compared to

other reference models. Another study (Sharma et al., 2011) addressed solar power

generation prediction in distributed systems. Both linear regression and support vector

machines (SVM) with different kernel functions were utilized. SVM-based models

proved to be 27% more accurate than the existing models, highlighting the effective-

ness of these techniques in distributed generation prediction.

In the context of wind energy, Sanusi and Corne (2016) concentrated on wind

speed prediction to optimize the integration of this RES. Multivariate linear regres-

sion is applied, emphasizing the importance of derived features, such as the gradient

in wind speed, to enhance model accuracy. Uncertainty in electricity prices in

renewable energy environments is tackled in a fourth study (Minhas et al., 2017).

Here, linear regression is applied to forecast electricity prices, leveraging the inter-

mittency of RES. A load control algorithm based on logistic regression is proposed

to activate consumer load demands during low-price periods. Subsequently, in a

study (Wahbah et al., 2020), a nonparametric model of solar irradiance probability

density using local linear regression was proposed. This method surpasses both

parametric and nonparametric models in terms of fit and precision. In summary,

these studies demonstrate the versatility and effectiveness of linear regression in

predicting key variables for renewable energy generation. The combination of linear

regression with advanced machine learning techniques offers a comprehensive

approach to address the challenges of variability in renewable energy production,

contributing to the transition to more sustainable energy systems.

Despite its utility in predicting related variables, linear regression has some dis-

advantages that must be considered. It assumes a linear relationship between vari-

ables, which may not accurately reflect the complexity of certain phenomena,

leading to inaccurate models in nonlinear cases. Additionally, linear regression is

sensitive to outliers, where extreme data points can disproportionately impact

results, affecting model robustness. It also lacks automatic handling of categorical

variables, necessitating additional transformations for inclusion. Moreover, linear

regression may suffer from multicollinearity, where predictor variables are highly

correlated, making it challenging to precisely identify individual contributions. It

may not be suitable for describing nonconstant relationships over time or in differ-

ent data segments, as it assumes a constant relationship. In environments with large
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datasets, linear regression can become computationally expensive and less efficient

compared to more advanced machine learning approaches. In summary, while linear

regression offers simplicity and ease of interpretation, its limitations in terms of lin-

ear assumptions, sensitivity to outliers, and challenges with nonlinear relationships

suggest the need to carefully consider its applicability in specific contexts.

Exploring more advanced approaches becomes essential when dealing with com-

plex data. Fig. 16.3 illustrates an example of data prediction using linear regression.

Analysis and decomposition of time series in renewable energy
prediction

The analysis of time series and its decomposition are crucial components in the pre-

diction of renewable energy, contributing to understanding and forecasting complex

patterns. A widely used approach involves decomposing time series data into com-

ponents such as trend, seasonality, and residuals. This method enhances the under-

standing of underlying patterns, enabling more accurate predictions (Pujari et al.,

2023). The study (Pujari et al., 2023) on wind energy prediction utilizes the

Brock�Dechert�Scheinkman test to detect nonlinearity and the augmented dickey-

fuller test to assess stationarity. Long-term dependencies are analyzed using the

Hurst exponent. Subsequently, the time series is decomposed into trend, cycle, and

seasonal patterns using the seasonal and trend decomposition using loess (STL)

method. Furthermore, the study introduces an evolutionary algorithm for neural

architecture search (NAS) to efficiently optimize models, comparing nonlinear

autoregressive (NAR) models, LSTM neural networks, and wavelet neural networks

(WNN) (Pujari et al., 2023). In another study (Malhan & Mittal, 2022), a novel pre-

diction model was proposed for combined wind and hydroelectric power generation.

The model consists of three phases: phase-I utilizes ARIMA and BiLSTM and

Figure 16.3 Regression prediction illustration, capturing trends and forecasting new

data. Unlocking insights: Regression prediction revealing trends and forecasting future data.
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phase-II integrates forecasts of seasonal and off-season periods obtained through a

diligent search algorithm (DSA). Finally, phase-III facilitates the amalgamation of

results from phases I and II to construct the proposed prediction model. Seasonal

effects are crucial, and DSA identifies hidden seasonality, improving overall perfor-

mance. This model offers advantages in terms of accuracy, diversity, and unifor-

mity, demonstrating its effectiveness for long-term prediction scenarios.

On the other hand, Damaševičius et al. (2024) presented a novel recurrent neural

network (RNN) model based on attention for long-term prediction of renewable

energy generation, focusing on wind and solar energy datasets. Decomposition tech-

niques are applied, and a modified metaheuristic is introduced to optimize hyper-

parameters. The proposed approach demonstrates an improvement in prediction

accuracy, especially in addressing challenges related to the storage and management

of renewable energy generation. The introduced HHO algorithm proves effective in

handling the large number of hyperparameters in RNN-type networks. These studies

highlight the importance of time series analysis and decomposition in improving

the accuracy of renewable energy prediction models. The proposed methods, such

as evolutionary NAS and ensemble prediction, contribute to overcoming challenges

in nonlinear and dynamic patterns of renewable energy. The attention-based RNN

approach, along with metaheuristic optimization, emerges as a promising strategy

for long-term prediction. Like in any research, there are limitations, and future

directions include refining optimization algorithms, exploring additional decompo-

sition methods, and examining alternative metaheuristics for further improvements.

The continuous evolution of methodologies and models remains essential for

advancing the capabilities of renewable energy prediction systems.

Fig. 16.4 illustrates an example of decomposing a time series into its fundamental

components using the STL method in MATLABs 2021a. In the first subplot, the

original time series is shown, which in this hypothetical example is a combination of

a sinusoidal function with random noise. The second subplot presents the trend com-

ponent of the series, obtained through a smoothing process that highlights long-term

variations and eliminates short-term fluctuations. This trend provides information

about the overall direction of the time series. The third subplot shows two additional

components. The green line represents the seasonal component, capturing repetitive

or cyclical patterns in the original series. Obtaining this component involves remov-

ing the trend from the original series. The blue line in the third subplot represents the

residuals, which are the variations not explained by the trend and seasonality.

Residuals are essential for understanding irregularities and unexpected changes in the

time series. Together, this STL decomposition allows for a more detailed analysis of

the time series, facilitating the identification of seasonal patterns, long-term trends,

and unusual events. This approach is crucial for making more accurate forecasts and

understanding the underlying structure of temporal data.

Exponential smoothing models

Exponential smoothing models play a crucial role in predicting electricity produc-

tion, especially from RES. These models assign exponential weights to past values,
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giving more importance to recent observations. By adapting to changes in trends

over time, they provide valuable insights into future electricity production trends,

particularly in the context of renewable energy. The application of exponential

smoothing models has been demonstrated in predicting electricity production in var-

ious countries, such as China, Japan, and the United States. These models have

shown superior prediction accuracy compared to classical versions like error, trend,

seasonal models. The ability to estimate and predict electricity production from

both coal and RES is essential for informed decision-making and sustainable energy

management (Tulkinov, 2023). In a study (Boland & Farah, 2021), the focus was

on wind and solar systems connected to the grid in Australia. Accurate prediction

of the production of these systems is crucial for increasing renewable energy pene-

tration. Exponential smoothing is explored as an efficient alternative for predicting

variance, considering the changing nature of error variance over time. The study

emphasizes the importance of constructing prediction intervals, especially in situa-

tions where variance is not constant, such as in wind farms with conditional

changes or due to diurnal effects in solar parks.

The discussion on predicting the production of wind or solar parks is conducted

in the study (Boland & Farah, 2021), introducing two approaches: predicting the

resource (wind speed or solar radiation) and using a power conversion model, or

predicting directly from historical performance. The latter approach is preferred due

to lower model error levels and considerations about the complexity of power con-

version models. The study demonstrates the effectiveness of building prediction

Figure 16.4 Time series decomposition: original, trend, seasonal, and residual

components. Decoding time series: Original, trend, seasonal, and residual components unveiled.
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interval forecasts for situations where common assumptions for time series predic-

tion may not hold. Despite their advantages, some drawbacks of exponential

smoothing models include sensitivity to sudden and extreme changes in data, as

well as the need to properly adjust parameters, which can be challenging in

dynamic environments (Boland & Farah, 2021). Additionally, these models may

not capture highly complex data patterns and are not ideal for datasets with irregu-

lar seasonality or pronounced nonlinear trends. The choice of exponential smooth-

ing method may also depend on the specific nature of the data and require

adjustments on a case-by-case basis.

In Fig. 16.5, an example of exponential smoothing applied to a time series is pre-

sented. The original time series (in blue) exhibits a sinusoidal pattern with random

noise. The exponential smoothing process is carried out manually, using a smooth-

ing parameter (alpha) set to 0.8. The dashed red line represents the predictions gen-

erated by the exponential smoothing method. This approach weighs past values and

assigns more weight to recent observations. The technique aims to adapt to changes

in the trend of the time series over time. The visualization of the original time series

alongside predictions highlights how the exponential smoothing method smoothens

fluctuations and captures the underlying trends of the time series. This approach is

useful for generating forecasts that more accurately reflect the evolution of the

series as new data is incorporated.

Delphi method in time series forecasting

In the context of renewable energy, this approach involves consulting experts anon-

ymously and in a structured manner to gain insights into the future of sustainable

energy. Initially, relevant experts in the field of renewable energy are identified.

These may be professionals with expertise in specific technologies, energy policies,

or any other crucial aspect for understanding the future landscape of RES. Once a

representative group of experts is selected, key questions related to the subject are

Figure 16.5 Exponential smoothing example. Illustrating smoothing power: A practical

example of exponential smoothing.
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formulated. These questions often address various aspects such as the expected

adoption of renewable technologies, potential challenges, the influence of govern-

ment policies, or even possible technological advancements in the sector. It is

essential that the responses are collected anonymously to encourage honesty and

openness from the experts.

The Delphi method has proven to be a valuable tool in predicting and analyzing

various aspects related to energy, as evidenced in recent studies. In Panda et al.

(2023), a significant transformation of the conventional energy system is

highlighted due to the integration of emerging technologies, RES, and storage

devices. This analysis proposes a shift toward a decentralized system to address the

limited adaptability of traditional energy systems. The effects of privatization and

restructuring of the electrical system are explored, along with the integration of dis-

tributed generations and consumer-side demand management with information and

communication technology protocols. Challenges related to deregulated electricity

markets are addressed, and demand management is suggested to handle supply and

demand variability in distribution sectors. In Obrecht and Denac (2016), the focus

was on the correlation between energy policy and the development of the energy

industry with technological prediction. Based on a Delphi survey in Slovenia, the

study addressed the importance of energy efficiency and reducing final energy con-

sumption compared to keeping energy prices low. Findings on the future prices of

various energy sources, including wood biomass, were discussed, and the feasibility

of achieving the 20% renewable energy target in the European Union by 2020 was

questioned. Experts emphasize the need for a radical transformation in energy pol-

icy toward efficient energy use and local renewable energy production. In another

study (Ribeiro & da Silva, 2015), the Delphi method was used to provide support in

strategic decision-making regarding microalgae-derived biofuels. The goal was to

determine the prospects of employing microalgae in biofuel production by 2030.

The method proved successful in qualitative research for long-term forecasting

situations, where expert opinions are the main source of information. Results pro-

vide a clear insight into current and future issues in the microalgae-derived biofuel

market. These studies illustrate the applicability of the Delphi Method in different

energy research contexts, providing valuable insights that influence decision-

making, policies, and future development in the field of renewable energy.

While the Delphi Method is valuable in prediction and decision-making, it is not

without disadvantages and challenges. Firstly, the quality of predictions heavily

depends on the selection of experts, which can introduce biases if the group is not

representative. Additionally, there is a risk of conformity, where participants may

be influenced by majority opinions or prominent experts, limiting the diversity of

perspectives. The process can also be costly and time-consuming, involving anony-

mous response collection, iterations, and controlled feedback. This temporal and

financial limitation can be a barrier in situations with budget or time constraints.

Furthermore, the lack of direct interaction among participants may limit the ability

to discuss, exchange information, and refine opinions in real time. The dependence

on the quality of questions is another critical consideration. Poorly formulated ques-

tions can lead to inaccurate or unhelpful responses, compromising the validity of
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the results. In rapidly changing areas like renewable energy, long-term predictions

can quickly become obsolete due to unexpected technological advancements.

Effective management of feedback also poses challenges, as deciding what feed-

back to provide to experts and how to balance divergence of opinions requires spe-

cific skills. Additionally, in contexts where a deep understanding of market

dynamics is sought, the lack of direct interaction and reliance on anonymous

responses can limit the thoroughness of the analysis. Despite these limitations, the

Delphi method remains a valuable tool for addressing uncertainty and leveraging

expert experience in long-term planning. It is crucial to use it consciously, recogniz-

ing its challenges and complementing it with other methodologies when necessary

to obtain a more comprehensive and accurate perspective.

Fig. 16.6 illustrates the iterative process of the Delphi method applied to the pre-

diction of solar energy growth over five iterations. Each subplot represents the esti-

mates provided by a different expert (expert 1, expert 2, and expert 3) across the

iterative consultations. The x-axis denotes the iteration number, while the y-axis

represents the evolving estimates of solar energy growth. The markers (“o”) depict

the estimated values at each iteration. In the initial iteration (iteration 1), each

expert offers their respective random estimates. As the Delphi method progresses,

controlled feedback is applied, leading to a convergence of estimates toward a con-

sensus in subsequent iterations (iteration 2 to iteration 5). The legends provide a

clear distinction between the estimates contributed by each expert throughout the

iterative process. This visual representation showcases how the Delphi method

facilitates collaboration among experts, allowing their insights to inform and adjust

predictions over successive iterations, ultimately aiming for a refined consensus in

long-term forecasting.

Meteorological models

In the realm of renewable energy generation, various types of meteorological mod-

els are employed to forecast atmospheric conditions and optimize energy produc-

tion. Some of the common types include numerical weather prediction, solar

irradiance models, wind dispersion models, and data assimilation models.

Numerical weather prediction

Numerical weather prediction (NWP) models play a pivotal role in forecasting

wind and solar power output, offering insights into atmospheric conditions critical

for renewable energy generation. To grasp the foundations of successful NWP fore-

casts, a comprehensive understanding of key principles is essential (Haupt et al.,

2017). These principles encompass atmospheric motion, observation sources, data

assimilation, postprocessing, probabilistic predictions, and validation methods. The

NWP model, exemplified by the widely used weather research and forecasting

model, discretizes atmospheric equations, enabling numerical approximation crucial
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for accurate forecasts (Haupt et al., 2017). At the inception of the 20th century, the

conceptualization of NWP was rooted in predicting weather by applying fundamen-

tal conservation laws (Haupt et al., 2017). Early attempts involved human “calcula-

tors” and grid-based calculations, laying the groundwork for modern NWP models.

With the advent of digital computers, pioneering works by visionaries like

Richardson and Charney led to the development of successful NWP models (Haupt

et al., 2017). In solar energy forecasting, a focus on direct normal irradiance (DNI)

for concentrating solar thermal (CST) systems is paramount (Alkabbani et al.,

2021). This involves considering various forecasting methods, including numerical

weather prediction models, statistical forecasting, and nowcasting. Challenges in

immediate forecasting (up to 6 hours) necessitate harmonizing signals for high-

resolution spatial-temporal predictions at the plant level (Ramı́rez & Vindel, 2017).

For PV power systems, accurate forecasting methods are crucial for power sup-

ply and demand balancing (Kato, 2016). Forecasting tools, including NWP models,

satellite images, and measured PV power output data, contribute to various time

horizons, from minutes to days. The evolution of irradiance forecasting demands a

nuanced understanding of fluctuation characteristics and the application of

Figure 16.6 Delphi iterative convergence in solar energy growth projections. Navigating

Delphi iterative convergence: Solar energy growth projections.
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forecasting methods in both power systems and individual energy management sys-

tems (Kato, 2016). In the realm of CST systems, forecasting and nowcasting of

DNI are critical aspects (Ramı́rez & Vindel, 2017). The challenges lie in immediate

prediction periods (up to 6 hours), requiring harmonization of signals for reliable,

high-resolution forecasts. Considerations are presented regarding single versus

aggregated or regional forecasting (Ramı́rez & Vindel, 2017). Wind power genera-

tion, characterized by its intermittent nature, demands advanced forecasting techni-

ques (Shirzadi et al., 2023). Traditional NWP models face limitations in long-term

forecasting due to computational constraints. A hybrid AI-based approach, integrat-

ing deep learning with a probability distribution, enhances wind speed forecast

accuracy over a 48-hour horizon. The fusion of this improved model with NWP

models further refines accuracy, offering a promising avenue for efficient wind

speed forecasting in renewable energy systems (Shirzadi et al., 2023). In summary,

integrating NWP models and various forecasting methodologies is crucial for opti-

mizing the performance of renewable energy systems. These approaches provide

valuable insights into atmospheric conditions, contributing to more reliable and effi-

cient renewable energy generation.

Solar irradiance models

Solar irradiance models play a crucial role in the assessment and optimization of

PV energy systems, providing essential information about the amount of incident

solar radiation on the Earth’s surface. In this context, five prominent models stand

out: HOMER (hybrid optimization model for multiple energy resources), PVWatts,

SOLPOS (solar position and intensity), SMARTS (simple model of the atmospheric

radiative transfer of sunshine), and PVGIS (PV geographical information system).

Each of these models addresses specific aspects related to solar irradiance predic-

tion and has undergone detailed studies revealing their effectiveness and applicabil-

ity under various conditions. The following is a brief description of each model

followed by citations highlighting their utility and performance in particular

contexts.

Hybrid optimization model for multiple energy resources

HOMER is a versatile tool that not only serves as a simulator and optimizer but

also incorporates models for predicting solar irradiance. Its use extends to microgrid

systems, and a detailed study (Shaikh et al., 2021) on the configuration, operation,

and integration of multiple energy sources in microgrid systems emphasized the

prominence of HOMER Pro and the particle swarm optimization algorithm. This

study provides a comprehensive review of microgrid perspectives, considering

adopted technologies, control strategies, existing applications, software tools, and

artificial intelligence techniques.
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PVWatts

PVWatts, developed by the National Renewable Energy Laboratory (NREL), is an

online tool that models the performance of PV solar energy systems. This model

uses meteorological data and PV system specifications to estimate solar energy pro-

duction. In a comparative study (Milosavljević et al., 2022) evaluating 14 PV simu-

lation tools, PVWatts showed lower deviation in simulated results compared to

experimental measurements of a 2 kWp PV system in Niš.

Solar position and intensity

SOLPOS, developed by the NREL, focuses on calculating the sun’s position and solar

intensity at specific locations and times. In a study (Suh & Choi, 2017), methods for

converting monthly accumulated irradiation data into hourly data were compared. The

research concluded that the SOLPOS algorithm was the most suitable method, as it

showed highly similar monthly irradiation patterns to measured values at seven sites in

the United States and Korea.

Simple model of the atmospheric radiative transfer of sunshine

SMARTS, an acronym for simple model of the atmospheric radiative transfer of

sunshine, developed by NREL, is used to simulate spectral solar irradiance. In a

study (Ali & Zhao, 2022), spectral solar irradiance measured by a spectrometer in

the black hills area was analyzed, and a data-based model was developed to convert

measurements into absolute irradiance. This case study demonstrated that using

SMARTS to determine the energy production of PV systems improves accuracy by

avoiding absolute calibration of the light spectrometer.

Photovoltaic geographical information system

PVGIS, developed by the Joint Research Centre of the European Commission, provides

data and models to evaluate the performance of PV systems. In a study (Lehneis et al.,

2020), PVGIS was used to simulate the electricity generation of 1.612 million PV sys-

tems in Germany. This model relies on publicly accessible data and offers an alternative

for calculating highly resolved electricity generation data from PV systems, demonstrat-

ing its applicability in different regions and climatic conditions.

Machine learning and neural networks for renewable
energy generation prediction

Machine learning and ANNs emerge as innovative and efficient tools to precisely

anticipate energy production from RES. This research field not only addresses the

challenges associated with the inherent variability of these energy sources but also
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provides advanced solutions that can significantly enhance the planning and manage-

ment of renewable energy generation. In this section, we will explore the most pow-

erful techniques currently available and present some challenges and future trends.

Recurrent neural networks

The application of RNN in renewable energy generation forecasting signifies a sig-

nificant advancement in optimizing sustainable energy prediction. RNNs, with their

ability to grasp intricate temporal patterns, emerge as ideal tools for addressing the

inherent variability in RES. This technique enables the modeling of dynamic rela-

tionships among climatic variables, past generation patterns, and other relevant fac-

tors, thereby achieving more accurate forecasts. In this section, we will explore

how RNN, particularly the well-recognized techniques of LSTM and gated recur-

rent unit (GRU), offer a promising perspective to enhance prediction accuracy in

the context of renewable energy generation.

Long short-term memory

LSTM stands out as a robust model for solar forecasting, adept at addressing chal-

lenges such as hyperparameter tuning and the consideration of meteorological para-

meters. The optimized stacked Bidirectional LSTM/LSTM model, introduced in the

referenced study, integrates stacked LSTM layers, dropout architecture, and

Bayesian optimization to augment performance. The model exhibits exceptional

accuracy in forecasting global horizontal irradiance (GHI) and observed plane of

array (POA) irradiance, achieving R2 values of 0.99 for univariate and multivariate

models using GHI data. Michael et al. (2022) underscored the model’s flexibility,

achieved through Bayesian optimization and the choice between BiLSTM and

LSTM architectures. The conclusions highlight the efficacy of the LSTM model in

delivering superior solutions for univariate and multivariate solar forecasting, sur-

passing benchmark models in terms of error metrics. The incorporation of POA

data and the model’s successful application to PV power forecasting further empha-

size its versatility. The study acknowledged the LSTM model’s prowess in handling

extensive time series data and proposed future efforts to mitigate errors in solar irra-

diance forecasting under nonlinear weather conditions.

On the other hand, some studies (Shirzadi et al., 2023; Rangelov et al., 2023)

discussed the hurdles posed by the unpredictable nature of RES, particularly wind

and solar power. They proposed innovative AI-based solutions to enhance the preci-

sion of energy generation forecasts. In Shirzadi et al. (2023), the emphasis was on

wind power, revealing the limitations of traditional numerical weather prediction

models due to computational constraints. The study introduced a hybrid AI

approach that integrates wind speed probability distribution with a deep learning

model, showcasing improved accuracy in a 48-hour forecast for Montreal. Results

indicate a substantial reduction in the root mean squared error, highlighting the effi-

cacy of combining AI techniques for enhanced wind power prediction. Similarly,

Rangelov et al. (2023) delved into challenges related to the integration of PV
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systems into the grid, emphasizing the volatile and intermittent nature of RES. The

paper evaluates three AI methods—random forest, deep neural network, and long

short-term memory network—for short-term PV output power forecasting in Berlin,

Germany. The study underscores the significance of accurate PV power output fore-

casts in reducing disruptions, refining capacity planning, and cutting operational

costs. The successful performance of the random forest and deep neural network

models underscores their ability to generate precise solar power forecasts and navi-

gate abrupt changes in PV power output. Collectively, these studies underscore the

pivotal role of AI in overcoming challenges tied to renewable energy integration

and refining the dependability of forecasting models.

Gated recurrent unit

GRU, as another variant of RNN, has demonstrated effectiveness in renewable

energy forecasting and energy management. In a study exploring a demand-supply

matching approach for renewable energy forecasting, DL models, including GRU,

were employed to enhance energy management for futuristic cities with 100%

renewables (Almalaq et al., 2021; Kim et al., 2021). The use of GRU in this context

aligns with its ability to capture dependencies in time series data, which is crucial

for forecasting intermittent RES. Furthermore, the study proposing a data-driven

bidding strategy for a DER aggregator in the day-ahead power market emphasizes

the role of GRU in the precise modeling of renewables and local load, showcasing

its superiority over LSTM, RNN, and SVR (Kim et al., 2021). The GRU model,

optimized using the ELPSO algorithm and IMI feature selection technique, outper-

formed other models in terms of forecasting accuracy, contributing to reduced pen-

alty costs and improved bidding strategies in the face of uncertainties. In summary,

LSTM and GRU, as sophisticated RNN variants, play crucial roles in addressing

the complexities of renewable energy forecasting. The cited studies provide com-

pelling evidence of their efficacy in capturing temporal dependencies, handling

uncertainties, and outperforming traditional models. The versatility of these models,

demonstrated across various scenarios and datasets, positions them as valuable tools

for advancing the accuracy and efficiency of renewable energy prediction, thereby

contributing to the sustainable evolution of energy systems.

Despite their notable advantages, RNN models, such as LSTM and GRU, are not

without challenges and limitations in predicting renewable energy generation. One key

challenge is the need for high-quality data for training, as the accuracy of these models

heavily depends on the quality and representativeness of historical data. Additionally,

the computational complexity associated with deeper architectures, such as deep neural

networks, may require significant resources. The interpretation of results can also be

challenging, especially for models based on deep learning, which may lack transpar-

ency. Moreover, extreme climatic variability and unpredictable weather conditions pose

additional challenges, as models must adapt to sudden changes in environmental vari-

ables. These challenges underscore the importance of continuously addressing data

quality, computational efficiency, and model interpretability to optimize accuracy in

renewable energy generation prediction.

399Forecasting techniques for power systems with renewables



Convolutional neural networks

CNNs, commonly associated with computer vision, have found innovative appli-

cations in predicting renewable energy generation, particularly in scenarios such

as wind speed maps. This discourse delves into the advancements achieved by

various studies in employing CNNs for renewable energy prediction, emphasizing

their potential to overcome challenges linked to the intermittent nature of renew-

ables. In Schreiber et al. (2021), the ComPonentNet (CPNet) family of architec-

tures utilizes CNNs for wind speed prediction. The study introduces three

architectures, illustrating that processing wind components separately, as in the

bottom-fused CPNet (BF-CPNet), significantly enhances forecasting accuracy.

The results underscore the promising nature of CNNs in addressing the stochastic

elements introduced by renewable energy, highlighting potential cost reductions

for power systems. Similarly, Schreiber et al. (2021) introduced a temporal convo-

lutional network (TCN) for day-ahead power forecasts, improving forecast accu-

racy by considering the diurnal cycle. The study demonstrated a notable

improvement (up to 25%) compared to traditional multilayer perceptrons in

renewable power forecasts. The proposed TCN architecture exhibits adaptability

for multitask learning, inductive transfer learning, and even zero-shot learning,

indicating its potential to overcome challenges associated with renewable power

prediction. In Bastos et al. (2021), the U-Convolutional model employs CNNs for

hourly wind speed prediction, displaying competitive performance against

advanced CNN architectures, fully connected neural networks, and univariate

models. The proposed architecture, combining U-Net and Convnet, proves prom-

ising for spatiotemporal wind speed prediction. The results underscore the impor-

tance of advanced models in supporting power systems grappling with the

increasing penetration of intermittent renewables.

Dolatabadi et al. (2023) addressed the economic optimization of a CAES-PV

system using DRL and a 2D-CNN-BLSTM hybrid forecasting model. By tackling

the intermittent nature of solar power production, the study demonstrates

the effectiveness of CNN-based forecasting in enhancing the profitability of the

CAES-PV system in energy markets. Lastly, Wu et al. (2023) introduced the

unrolled spatiotemporal graph convolutional network (USGCN) for distribution

system state estimation and forecasting. The model, incorporating complex spatio-

temporal correlations of RES, outperforms traditional methods and achieves at

least a 16.42% improvement in state estimation accuracy. The USGCN’s ability

to efficiently capture spatiotemporal correlations highlights its potential to address

challenges posed by high renewables.

The discussed studies illustrate the diverse applications of CNNs in predicting renew-

able energy generation. From wind speed maps to day-ahead power forecasts and distri-

bution system state estimation, CNNs have demonstrated their effectiveness in

enhancing accuracy and overcoming challenges associated with the intermittent nature

of renewables. These advancements not only contribute to more reliable renewable

energy predictions but also hold the potential to reduce operational costs and support the

integration of renewables into modern power systems. Future work may further refine
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these CNN-based approaches, exploring additional features, analyzing errors in-depth,

and incorporating confidence intervals to enhance spatiotemporal forecasts even further.

Despite the notable progress in the application of CNNs in renewable generation predic-

tion, challenges and limitations exist that must be addressed to optimize their utility in

practical settings. Firstly, the computational intensity of CNNs, especially in handling

large datasets and complex models, can lead to high processing power requirements and

prolonged training times. Additionally, the need for extensive training datasets can be a

drawback in areas with limited availability of high-quality data.

Generative adversarial networks

Generative adversarial networks have become pivotal tools in the domain of renew-

able energy prediction, particularly when confronted with limited historical data.

Their primary role lies in generating synthetic data to train models effectively, and

the following summaries encapsulate insights from five relevant studies. In a col-

laborative initiative, the Korea electrotechnology research institute and Korea

Institute of energy research introduced a renewables management system for large-

scale grids. Leveraging a 12-hour-ahead solar irradiance forecast model and a gen-

erative adversarial network (GAN) for generating future RES penetration scenarios,

the study underscored the potential of GANs in comprehensive grid management

(Song et al., 2023). To address the uncertainties of renewable energy, another study

introduced normalizing flows, a deep learning technique, for scenario-based proba-

bilistic forecasts in power systems. This novel approach competes with other gener-

ative models, including GANs, showcasing its efficacy in generating accurate

weather-based scenarios (Dumas et al., 2022). The Fed-LSGAN, an innovative fed-

erated deep generative learning framework, offers a privacy-preserving solution for

renewable scenario generation in power systems. By combining federated learning

and least square GANs, this model outperforms centralized methods, emphasizing

the versatility of GANs in overcoming privacy concerns (Li et al., 2022).

Shifting the focus to short-term cloud coverage forecasting through sky image

prediction using GANs, a study employs a deep CNN topology with adversarial

loss. This method aids in estimating available solar resources by providing realistic

images, evaluated using a cloud coverage metric (Andrianakos et al., 2019). In the

realm of wind park power modeling, various methods to estimate probability distri-

butions for individual turbine powers are explored. Comparisons between varia-

tional Bayesian inference models, GANs, and others reveal that Bayesian models

generally outperform GANs in terms of mean absolute errors (MAE) (Bentsen

et al., 2022). While GANs offer significant advantages in renewable energy predic-

tion, it is crucial to acknowledge certain disadvantages and future challenges.

Computational intensity poses challenges, particularly in handling large datasets

and complex models, leading to high processing power requirements and prolonged

training times. Additionally, interpreting decisions made by GANs can be complex,

hindering their adoption in critical environments where explainability is crucial.

Sensitivity to hyperparameter configuration underscores the importance of careful

selection to avoid suboptimal performance or overfitting.
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Looking ahead, improving the interpretability of GANs and developing techni-

ques for transparent decision-making stand out as key priorities. The adaptability to

scenarios with limited data presents a crucial challenge, where strategies like trans-

fer learning may play a pivotal role. Enhancing computational efficiency through

exploring more efficient architectures and techniques will be essential for real-time

applications. Integrating measures of uncertainty into GAN predictions is vital for

informed decision-making, especially in renewable energy generation characterized

by variability. Lastly, addressing the generalization of GANs to diverse geographi-

cal contexts and climatic conditions remains a significant challenge, requiring con-

siderations of data variability and location-specific conditions for effective

applicability in different regions. Overcoming these challenges will unlock the full

potential of GANs in renewable energy prediction, supporting a more efficient and

sustainable transition to clean energy sources.

Deep learning

Deep learning, a transformative paradigm in predicting renewable energy genera-

tion, leverages intricate architectures like deep neural networks to discern com-

plex and nonlinear patterns within data. The following summaries encapsulate

insights from five significant studies applying deep learning to renewable energy

prediction. In the realm of solar energy, the traditional encoder single deep learn-

ing method proves effective for short-term forecasts. The integration of this

method into the power grid addresses challenges posed by the irregular and

uncontrollable nature of power generation from renewables, showcasing a 27%

improvement in accuracy over conventional methods (Chang et al., 2021). For

accurate short-term PV power forecasts, a novel model, transformer neural net-

work (TransNN), integrated with CNN and utilizing variational mode decomposi-

tion, outperforms benchmark models with MAE values under 1 kW (Nguyen

Trong et al., 2023).

Addressing the intermittent and irregular nature of wave energy, an optimized

deep learning neural network, guided by the moth-flame optimization algorithm,

excels in forecasting wave energy flux. This approach, surpassing statistical and

physics-based methods, exhibits robust performance, especially over short-term hori-

zons (Bento et al., 2021). Climate change mitigation necessitates a transition to wind

energy, but the nonlinear nature of wind poses forecasting challenges. LSTM net-

works, NAR models, and WNN emerge as efficient models for accurate wind fore-

casting. An evolutionary multiobjective strategy for NAS optimally designs these

models, balancing computational cost and prediction accuracy (Pujari et al., 2023). In

the context of wind farm prediction, a deep, multilayered neural network demon-

strates efficacy in estimating wind farm generation 24 hours in advance. Trained and

validated with data from a wind farm, this model outperforms existing predictors,

highlighting the prowess of deep learning in enhancing predictive generation models

for wind farms (Torres et al., 2018). While deep learning offers remarkable advance-

ments, challenges and future endeavors persist. Computational intensity, model
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interpretability, and hyperparameter sensitivity emerge as notable disadvantages.

Future efforts should prioritize enhancing model interpretability, adapting to scenarios

with limited data, improving computational efficiency, and addressing model general-

ization across diverse geographical and climatic conditions. Overcoming these

challenges will usher in a new era of accurate and sustainable renewable energy

predictions.

Reinforcement learning

RL techniques offer promising avenues for real-time optimization in the renewable

energy sector. Let us delve into the application of RL in various scenarios. One

innovative application involves CAES combined with PV systems. A novel DRL

method is employed to optimize CAES energy arbitrage, considering the intermit-

tent nature of solar power production. A hybrid forecasting model, integrating 2-D

CNNs and BLSTM units, enhances solar irradiance predictions. The proposed

framework demonstrates effectiveness in real-time scheduling and profitability,

showcasing its superiority over state-of-the-art methods (Dolatabadi et al., 2023). In

the domain of building energy management, a decision tree-based RL approach is

introduced for accurate electricity consumption forecasting. The decision tree iden-

tifies different contexts, and a multiarmed bandit algorithm guides the selection of

the most suitable forecasting algorithm. The study, validated in building and indus-

trial contexts, highlights the methodology’s adaptability and efficacy in enhancing

prediction accuracy (Ramos et al., 2022). Addressing challenges in electrification

and decarbonization, RL techniques are applied to demand response scenarios.

Transfer learning, leveraging existing domain knowledge, is explored to mitigate

sample complexity and enhance the performance of machine learning and optimiza-

tion algorithms.

Despite progress, challenges such as the lack of benchmarks and consensus on

techniques for avoiding negative transfer persist in the application of RL to demand

response (Peirelinck et al., 2022). Virtual power plants (VPPs) offer the potential to

increase power system reliability and efficiency. RL is utilized to formulate profit-

maximizing strategies for a VPP aggregating solar systems and electric vehicle

(EV) chargers with vehicle-to-grid support. Two-stage stochastic optimization,

combining linear programs and RL techniques, optimizes energy trading decisions

in day-ahead and imbalance electricity markets. The study evaluates the proposed

strategies using real market data and emphasizes the potential profitability of VPPs

with EV integration (Rahman et al., 2022). While RL exhibits promising applica-

tions in renewable energy prediction, challenges persist. Model interpretability,

high sample complexity, and potential negative transfer in demand response scenar-

ios are notable disadvantages. Future endeavors should focus on improving

interpretability, addressing data limitations, and establishing benchmarks to over-

come the identified challenges. Additionally, research must extend into real-world

experiments for a more comprehensive understanding of RL’s effectiveness in

renewable energy applications.
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Transformer neural networks

These networks, initially designed for natural language processing, have proven

adaptable to various domains, including the prediction of renewable energy genera-

tion. A groundbreaking study in wind power forecasting explores the application of

a Transformer coupled with a CNN using attention mechanisms. This novel

approach, evaluated across different periods and time intervals, outperforms exist-

ing models for ultrashort-term and short-term forecasting. By effectively capturing

complex patterns and dependencies in wind power data, the transformer algorithm,

in conjunction with CNN and attention mechanisms, demonstrates superior accu-

racy, enhancing the integration of wind power into the grid (Mulewa et al., 2023).

Similarly, the spatial-temporal graph transformer network (STGTN) is proposed for

short-term wind speed forecasting. This model incorporates a transformer with an

external attention mechanism and a graph convolutional layer, enabling the extrac-

tion of both temporal and spatial features. The STGTN outperforms benchmark

methods in terms of MAE, root mean square error, and mean absolute percentage

error, showcasing its effectiveness in capturing wind speed fluctuations and spatial

dependencies (Pan et al., 2022).

Extending the application of transformers to solar energy, a study utilizes the

transformer deep neural network model for solar irradiance prediction. By combin-

ing features based on spatiotemporal properties, the transformer model, typically

applied in NLP or vision problems, demonstrates remarkable accuracy with a maxi-

mum worst-case mean absolute percentage error of 3.45% for one-day-ahead pre-

dictions. The model’s ability to utilize space�time bonds between features and

regional data proves advantageous for solar irradiance forecasting (Pospı́chal et al.,

2022). Expanding the scope to include VPPs, a study proposes a hybrid system for

renewable energy forecasting, integrating the traditional seasonal ARIMA with a

transformer neural network. Named H-transformer, this hybrid model outperforms

other single models and hybrid approaches across various datasets of wind speed

and solar energy. The study emphasizes the importance of accurate forecasting for

the profitability and stability of renewable energy systems (Padilha et al., 2022).

The integration of CNN, LSTM networks, and transformers is explored for solar

energy production forecasting. This hybrid model, outperforming existing models,

proves effective in providing accurate forecasts, facilitating the integration of solar

energy into grids. The combination of spatial and temporal features extracted by

CNN, LSTM, and transformer enhances forecasting accuracy (Al-Ali et al., 2023).

For wind speed and wind energy forecasting, a transformer-based deep neural

network-integrated with wavelet transform is proposed (Liu et al., 2023). This

model, evaluated in various regions in Bahia, Brazil, outperforms the LSTM base-

line, demonstrating effectiveness in forecasting wind speed and power generation.

The integration of the transformer model with wavelet decomposition further

improves forecast accuracy (Nascimento et al., 2023). While transformer ANNs

exhibit promising capabilities, challenges and areas for future research persist.

Some of the identified limitations include the complex training process, the need

for extensive computational power, and the scarcity of open multivariate renewable
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energy datasets. Future endeavors should focus on mitigating these challenges,

exploring long-term forecasting, incorporating seasonal factors, and enhancing the

models’ robustness across different weather conditions. Additionally, efforts should

be directed toward developing interpretable models, addressing optimization com-

plexities, and fostering broader applicability in various forecasting tasks.

Challenges and future research lines in renewable
generation prediction

Table 16.1 provides a concise overview of the challenges and future research directions

associated with various methods employed in renewable energy prediction. The methods

encompass traditional time series forecasting approaches, meteorological models, and

cutting-edge machine learning techniques. The challenges highlighted include issues

related to adaptability, linearity assumptions, nonlinear patterns, model sensitivity, and

the need for substantial data and computational resources. Additionally, future research

Table 16.1 Challenges and future research lines in renewable energy prediction methods.

Method Challenges Future Research Lines

Moving average

and

autoregressive

integrated

Sensitivity to outliers and

abrupt changes.

Improvements in adaptability to

sudden changes in energy

generation.

Integration of more advanced

methods to handle variability.

Linear regression Linearity assumptions may

not capture the

complexity of variability.

Development of more sophisticated

nonlinear models.

Integration of additional variables

for improved accuracy.

Analysis and

decomposition

of time series

Difficulty in handling

nonlinear patterns and

nonstationary trends.

Research on more advanced

decomposition techniques.

Adaptation to complex seasonal

patterns.

Exponential

smoothing

models

Sensitivity to parameter and

model structure choices.

Development of optimization

methods for automatic

parameter selection.

Improvements in predictive

capability.

Delphi method Dependence on experts and

subjectivity in data

collection.

Incorporation of methods to

manage uncertainty and enhance

objectivity.

Evaluation of method robustness.

Meteorological

models

Specific challenges for each

type of meteorological

model.

Research on improving the

accuracy of specific models.

Integration of multiple models for

more robust forecasts.

(Continued)

405Forecasting techniques for power systems with renewables



Table 16.1 (Continued)

Method Challenges Future Research Lines

Machine learning

and neural

networks

Need for large datasets and

computational resources.

Development of learning

techniques with limited data.

Research on more computationally

efficient models.

Recurrent Neural

Networks

Vanishing/exploding

gradient problems in long

sequences.

Research on more advanced and

efficient architectures.

Handling longer temporal

sequences.

Convolutional

Neural

Networks

(CNNs)

Challenges in capturing

temporal relationships in

sequential data.

Exploration of hybrid architectures

to combine temporal and spatial

features.

Improvements in interpretability.

Generative

Adversarial

Networks

(GANs)

Generation of realistic data

in low generation

scenarios.

Research on enhancement

techniques for generation in low

data availability situations.

More robust validation.

Deep learning Interpretability and

explainability of complex

models.

Development of methods to

increase the interpretability of

models.

Research on explainability

techniques.

Reinforcement

Learning (RL)

Need for efficient

algorithms for continuous

adaptation.

Development of more efficient and

adaptable RL algorithms.

Integration with traditional

approaches to improve

robustness.

Transformer

Neural

Networks

(TNNs)

Need for large amounts of

data for training.

Research on training techniques

with small datasets.

Exploration of more

computationally efficient

architectures.

Federated learning

(FL)

Challenges in collaboration

between distributed

models.

Improvements in security and

efficiency of distributed

collaboration.

Research on more robust federated

methods.

Transfer learning

(TL)

Effective transfer of

knowledge between

domains.

Development of transfer learning

techniques specific to renewable

energy forecasts.

Evaluation of generalization.

Ensemble methods Effective integration of

heterogeneous models for

improved accuracy.

Research on more sophisticated

ensemble methods.

Evaluation of ensemble robustness

and reliability.
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lines are outlined, suggesting potential improvements, advanced techniques, and specific

areas for exploration within each method to enhance the precision and reliability of

renewable energy predictions.

Conclusions

In this comprehensive analysis of renewable energy generation prediction methods, a

wide spectrum of approaches has been explored, ranging from classical methods to

advanced techniques in machine learning and ANN. The review of fundamental con-

cepts and traditional methods highlights their historical significance but also reveals

their limitations in the face of the increasing complexity of current energy landscapes.

The inclusion of meteorological models demonstrates the critical relevance of under-

standing and predicting atmospheric conditions to optimize renewable energy produc-

tion. However, specific challenges are evident in terms of accuracy and adaptability

to changing conditions. The section dedicated to machine learning techniques and

ANNs reveals the innovative potential of these approaches to address the inherent

variability of RES. Despite their significant contributions, challenges such as the

need for large datasets and substantial computational resources are noted.

As a result of this analysis, future research directions are highlighted to advance

renewable energy generation prediction. Adapting traditional methods to changing

energy landscapes, improving accuracy in meteorological models, and exploring more

resource-efficient approaches emerge as key areas for future investigations. In conclu-

sion, this study provides a comprehensive overview of the current state of renewable

energy generation prediction, identifying challenges and pointing towards promising

directions to advance this crucial field in the transition toward a sustainable future.
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