Logo Repositorio Institucional

Please use this identifier to cite or link to this item: https://dspace.ucuenca.edu.ec/handle/123456789/46010
Title: Feasibility analysis of the use of GPU to improve the efficiency of metaheuristics optimization algorithms
Authors: Guiracocha Yuquilima, Manuel Mesias
Astudillo Salinas, Darwin Fabian
Torres Contreras, Santiago Patricio
metadata.dc.ucuenca.correspondencia: Astudillo Salinas, Darwin Fabian, fabian.astudillos@ucuenca.edu.ec
Keywords: Metaheuristic
Optimization
Particle Swarm Optimization
Transmission Expansion Planning
AC Model
CUDA
GPU
metadata.dc.ucuenca.areaconocimientofrascatiamplio: 2. Ingeniería y Tecnología
metadata.dc.ucuenca.areaconocimientofrascatidetallado: 2.11.2 Otras Ingenierias y Tecnologías
metadata.dc.ucuenca.areaconocimientofrascatiespecifico: 2.11 Otras Ingenierias y Tecnologías
metadata.dc.ucuenca.areaconocimientounescoamplio: 06 - Información y Comunicación (TIC)
metadata.dc.ucuenca.areaconocimientounescodetallado: 0613 - Software y Desarrollo y Análisis de Aplicativos
metadata.dc.ucuenca.areaconocimientounescoespecifico: 061 - Información y Comunicación (TIC)
Issue Date: 2023
metadata.dc.ucuenca.volumen: Volumen 6, número 1
metadata.dc.source: Novasinergia
metadata.dc.identifier.doi: 10.37135/ns.01.11.04
metadata.dc.type: ARTÍCULO
Abstract: 
Currently, several real-world optimization problems have been mathematically modeled. The modeling process considers as much information as possible to provide valid results, and the obtained model is commonly computationally solved. However, as information increases, complexity also increases. Consequently, a larger computational capacity is needed to solve complex and scalable problems. As a result, meta-heuristic algorithms have been developed to solve complex optimization problems. These algorithms are commonly used for two or more dimensions in which vector and matrix operations are involved. Therefore, it is helpful to carry out parallel processes that reduce the runtime to solve this problem. Currently, multi-core central processing units (CPUs) manage to solve small problems with parallel calculations easily. However, the Graphics Processing Unit (GPU) improves performance because it integrates a more significant number of cores than the CPU. It is very useful for solving problems using several processes in parallel. The matrix operations, the Travelling Salesman Problem (TSP), and the electric transmission expansion planning (TEP) problem have been implemented using the GPU to verify the processor's contribution to the performance of scientific calculations. In the results, the GPU helped solve the TSP. Because more solutions or candidate particles were analyzed in less time. Because of these results, it was assumed that there would be a better performance in solving the TEP problem by using the GPU and analyzing a more significant number of candidate topologies in less time. However, this was not the case; according to the results, the use of the GPU takes longer when analyzing more particles.
Description: 
Actualmente, varios problemas de optimización del mundo real han sido modelados matemáticamente. El proceso de modelado considera la mayor cantidad de información posible para proporcionar resultados válidos, y el modelo obtenido comúnmente se resuelve computacionalmente. Sin embargo, a medida que aumenta la información, también aumenta la complejidad. En consecuencia, se necesita una mayor capacidad computacional para resolver problemas complejos y escalables. Como resultado, se han desarrollado algoritmos meta-heurísticos para resolver problemas complejos de optimización. Estos algoritmos se usan comúnmente para dos o más dimensiones en las que están involucradas operaciones vectoriales y matriciales. Por lo tanto, es útil realizar procesos paralelos que reduzcan el tiempo de ejecución para solucionar este problema. Actualmente, las unidades centrales de procesamiento (CPU, por sus siglas en inglés) multinúcleo logran resolver fácilmente pequeños problemas con cálculos paralelos. Sin embargo, la unidad de procesamiento de gráficos (GPU, por sus siglas en inglés) mejora el rendimiento porque integra una cantidad de núcleos más importante que la CPU. Es muy útil para resolver problemas utilizando varios procesos en paralelo. Las operaciones matriciales, el problema del vendedor y el problema de planificación de expansión de la transmisión (TEP) han sido seleccionados para implementarse utilizando la GPU para verificar la contribución del procesador al rendimiento de los cálculos científicos. En los resultados, la GPU ayudó a resolver el "problema del vendedor" porque se analizaron más soluciones o partículas candidatas en menos tiempo. Debido a estos resultados, se asumió que habría un mejor rendimiento resolviendo el problema TEP utilizando la GPU y analizando un número mayor de topologías candidatas en menos tiempo. Sin embargo, este no fue el caso; según los resultados, el uso de la GPU lleva más tiempo al analizar más partículas.
URI: http://scielo.senescyt.gob.ec/scielo.php?script=sci_arttext&pid=S2631-26542023000100050
metadata.dc.ucuenca.urifuente: https://novasinergia.unach.edu.ec/index.php/novasinergia/article/view/379/326
ISSN: 2631-2654
Appears in Collections:Artículos

Files in This Item:
File SizeFormat 
documento.pdf860.54 kBAdobe PDFView/Open


This item is protected by original copyright



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00