Logo Repositorio Institucional

Por favor, use este identificador para citar o enlazar este ítem: https://dspace.ucuenca.edu.ec/handle/123456789/45958
Título : Predicting Learners’ Performance in a Programming Massive Open Online Course
Autor: Abad, Karina
Zuniga Prieto, Miguel Angel
Maldonado Mahauad, Jorge Javier
Veintimilla Reyes, Jaime Eduardo
Auquilla Sangolqui, Andres Vinicio
Correspondencia: Maldonado Mahauad, Jorge Javier, jorge.maldonado@ucuenca.edu.ec
Palabras clave : Predictive Methods
Prediction
MOOCs
Learning Analytics
Área de conocimiento FRASCATI amplio: 5. Ciencias Sociales
Área de conocimiento FRASCATI detallado: 5.3.1 Educación en general
Área de conocimiento FRASCATI específico: 5.3 Ciencias de la Educación
Área de conocimiento UNESCO amplio: 01 - Educación
ÁArea de conocimiento UNESCO detallado: 0111 - Ciencias de la Educación
Área de conocimiento UNESCO específico: 011 - Educación
Fecha de publicación : 2023
Fecha de fin de embargo: 31-dic-2050
Volumen: Volume Part F261
Fuente: Lecture Notes in Educational Technology
metadata.dc.identifier.doi: 10.1007/978-981-99-7353-8_17
Editor: Springer
Ciudad: 
Cuenca
Tipo: ARTÍCULO DE CONFERENCIA
Abstract: 
In recent years, predictive models in Massive Open Online Courses (MOOs) have mostly focused on predicting student success in cohort MOOC environments which are designed with structured timing and planned content release. However, in self-taught courses, which are characterized by their flexibility in timing and release of content, predictions can be more critical because students’ success depends on their behavior during learning. Where, student behavior is defined by the combination of complex variables that describe their interactions with course resources. Therefore, existing models must be adapted in such a way as to consider heterogeneity in student behavior. To address this need, this paper studies how student interactions with self-taught MOOC resources can be included in predictive models. Twelve types of interactions with video-readings, assessments and supplements are analyzed to measure their effect on predicting success in a population of 38,838 students enrolled in a course. Additionally, this work contributes to a methodology that aims to improve predicative models of student performance in a course by identifying student profiles and their probability of success. Results of this work show that the interactions of students with a course have a high predictive power, among them the most relevant are completing video-readings, completing evaluations, and reviewing previously completed supplements.
URI : https://dspace.ucuenca.edu.ec/handle/123456789/45958
https://www.scopus.com/record/display.uri?eid=2-s2.0-85194397893&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28Predicting+Learners%E2%80%99+Performance+in+a+Programming+Massive+Open+Online+Course%29&sessionSearchId=0d489e69b5cdb8de812d1a23082f9c8c
URI Fuente: https://link.springer.com/book/10.1007/978-981-99-7353-8
ISBN : 978-981-99-7353-8
ISSN : 21964963
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
documento.pdf
  Until 2050-12-31
1.98 MBAdobe PDFVisualizar/Abrir     Solicitar una copia


Este ítem está protegido por copyright original



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00