Logo Repositorio Institucional

Please use this identifier to cite or link to this item: https://dspace.ucuenca.edu.ec/handle/123456789/45958
Title: Predicting Learners’ Performance in a Programming Massive Open Online Course
Authors: Abad, Karina
Zuniga Prieto, Miguel Angel
Maldonado Mahauad, Jorge Javier
Veintimilla Reyes, Jaime Eduardo
Auquilla Sangolqui, Andres Vinicio
metadata.dc.ucuenca.correspondencia: Maldonado Mahauad, Jorge Javier, jorge.maldonado@ucuenca.edu.ec
Keywords: Predictive Methods
Prediction
MOOCs
Learning Analytics
metadata.dc.ucuenca.areaconocimientofrascatiamplio: 5. Ciencias Sociales
metadata.dc.ucuenca.areaconocimientofrascatidetallado: 5.3.1 Educación en general
metadata.dc.ucuenca.areaconocimientofrascatiespecifico: 5.3 Ciencias de la Educación
metadata.dc.ucuenca.areaconocimientounescoamplio: 01 - Educación
metadata.dc.ucuenca.areaconocimientounescodetallado: 0111 - Ciencias de la Educación
metadata.dc.ucuenca.areaconocimientounescoespecifico: 011 - Educación
Issue Date: 2023
metadata.dc.ucuenca.embargoend: 31-Dec-2050
metadata.dc.ucuenca.volumen: Volume Part F261
metadata.dc.source: Lecture Notes in Educational Technology
metadata.dc.identifier.doi: 10.1007/978-981-99-7353-8_17
Publisher: Springer
metadata.dc.description.city: 
Cuenca
metadata.dc.type: ARTÍCULO DE CONFERENCIA
Abstract: 
In recent years, predictive models in Massive Open Online Courses (MOOs) have mostly focused on predicting student success in cohort MOOC environments which are designed with structured timing and planned content release. However, in self-taught courses, which are characterized by their flexibility in timing and release of content, predictions can be more critical because students’ success depends on their behavior during learning. Where, student behavior is defined by the combination of complex variables that describe their interactions with course resources. Therefore, existing models must be adapted in such a way as to consider heterogeneity in student behavior. To address this need, this paper studies how student interactions with self-taught MOOC resources can be included in predictive models. Twelve types of interactions with video-readings, assessments and supplements are analyzed to measure their effect on predicting success in a population of 38,838 students enrolled in a course. Additionally, this work contributes to a methodology that aims to improve predicative models of student performance in a course by identifying student profiles and their probability of success. Results of this work show that the interactions of students with a course have a high predictive power, among them the most relevant are completing video-readings, completing evaluations, and reviewing previously completed supplements.
URI: https://dspace.ucuenca.edu.ec/handle/123456789/45958
https://www.scopus.com/record/display.uri?eid=2-s2.0-85194397893&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28Predicting+Learners%E2%80%99+Performance+in+a+Programming+Massive+Open+Online+Course%29&sessionSearchId=0d489e69b5cdb8de812d1a23082f9c8c
metadata.dc.ucuenca.urifuente: https://link.springer.com/book/10.1007/978-981-99-7353-8
ISBN: 978-981-99-7353-8
ISSN: 21964963
Appears in Collections:Artículos

Files in This Item:
File SizeFormat 
documento.pdf
  Until 2050-12-31
1.98 MBAdobe PDFView/Open Request a copy


This item is protected by original copyright



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00