Logo Repositorio Institucional

Please use this identifier to cite or link to this item: https://dspace.ucuenca.edu.ec/handle/123456789/45921
Title: A data-driven approach to microgrid fault detection and classification using Taguchi-optimized CNNs and wavelet transform
Authors: Arevalo Cordero, Paúl
Keywords: Fault detection and localization
Convolutional neural network
Microgrid cluster
Taguchi method
Wavelet
metadata.dc.ucuenca.areaconocimientofrascatiamplio: 2. Ingeniería y Tecnología
metadata.dc.ucuenca.areaconocimientofrascatidetallado: 2.2.1 Ingeniería Eléctrica y Electrónica
metadata.dc.ucuenca.areaconocimientofrascatiespecifico: 2.2 Ingenierias Eléctrica, Electrónica e Información
metadata.dc.ucuenca.areaconocimientounescoamplio: 07 - Ingeniería, Industria y Construcción
metadata.dc.ucuenca.areaconocimientounescodetallado: 0714 - Electrónica y Automatización
metadata.dc.ucuenca.areaconocimientounescoespecifico: 071 - Ingeniería y Profesiones Afines
Issue Date: 2025
metadata.dc.ucuenca.volumen: Volumen 170
metadata.dc.source: Applied Soft Computing
metadata.dc.identifier.doi: 10.1016/j.asoc.2024.112667
metadata.dc.type: ARTÍCULO
Abstract: 
The integration of microgrids into the bulk power system introduces inherent uncertainties that challenge conventional protection systems, encompassing factors such as low fault currents, operational modes, penetration levels of renewable sources, load variations, and network topology. These uncertainties significantly impact the overall reliability of the electrical system. In the event of a fault occurrence within or external to the microgrid, swift disconnection from the primary grid is imperative. This disconnection is facilitated through the immediate operation of a static switch positioned proximate to the common coupling point. Such rapid action is essential to mitigate potential damages and expedite the restoration of electrical services. To ensure the delivery of reliable and high-quality energy to end consumers while alleviating stress on the utility grid, this paper introduces a novel methodology for the efficient detection, classification, and localization of faults in a microgrid cluster connected to the external grid. The proposed system addresses diverse irregular conditions, including conventional faults, high-impedance faults, islanding scenarios, and adverse events, covering several zones within the microgrid cluster and the external electrical grid. The proposed approach is based on a fusion of the Taguchi methodology and the discrete Wavelet transform. This combination enables the optimization of convolutional neural network training using scalograms generated from the fault signals. The results demonstrate the model's high performance, achieving 99.25 % accuracy in fault localization and 99.13 % in fault detection and classification, all within less than 10 ms. In comparison, traditional methods like support vector machine and decision trees require over 16 ms with lower accuracy, underscoring the superior speed and precision of the proposed approach
URI: https://dspace.ucuenca.edu.ec/handle/123456789/45921
https://www.sciencedirect.com/science/article/pii/S1568494624014418
metadata.dc.ucuenca.urifuente: https://www.sciencedirect.com/science/article/pii/S1568494624014418?pes=vor&utm_source=scopus&getft_integrator=scopus
ISSN: 15684946
Appears in Collections:Artículos

Files in This Item:
File SizeFormat 
documento.pdf9.06 MBAdobe PDFView/Open


This item is protected by original copyright



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00