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H I G H L I G H T S

• Introduces "Taguchi-CNN" method for efficient fault detection in microgrid clusters.
• Achieves 99.13 % accuracy in less than 10 ms, exhibiting adaptability to diverse fault scenarios.
• Outperforms both conventional approaches and state-of-the-art models in fault detection.
• Recommends integrating the method into PMUs/IEDs and exploring real-time fault detection..

A R T I C L E  I N F O

Keywords:
Fault detection and localization
Taguchi method
Wavelet
Convolutional neural network
Microgrid cluster

A B S T R A C T

The integration of microgrids into the bulk power system introduces inherent uncertainties that challenge 
conventional protection systems, encompassing factors such as low fault currents, operational modes, penetra
tion levels of renewable sources, load variations, and network topology. These uncertainties significantly impact 
the overall reliability of the electrical system. In the event of a fault occurrence within or external to the 
microgrid, swift disconnection from the primary grid is imperative. This disconnection is facilitated through the 
immediate operation of a static switch positioned proximate to the common coupling point. Such rapid action is 
essential to mitigate potential damages and expedite the restoration of electrical services. To ensure the delivery 
of reliable and high-quality energy to end consumers while alleviating stress on the utility grid, this paper in
troduces a novel methodology for the efficient detection, classification, and localization of faults in a microgrid 
cluster connected to the external grid. The proposed system addresses diverse irregular conditions, including 
conventional faults, high-impedance faults, islanding scenarios, and adverse events, covering several zones 
within the microgrid cluster and the external electrical grid. The proposed approach is based on a fusion of the 
Taguchi methodology and the discrete Wavelet transform. This combination enables the optimization of con
volutional neural network training using scalograms generated from the fault signals. The results demonstrate 
the model’s high performance, achieving 99.25 % accuracy in fault localization and 99.13 % in fault detection 
and classification, all within less than 10 ms. In comparison, traditional methods like support vector machine and 
decision trees require over 16 ms with lower accuracy, underscoring the superior speed and precision of the 
proposed approach.

1. Introduction

The evolution of modern electrical grids has incorporated clusters of 
microgrids (MG) to enhance system flexibility and resilience during the 
transition to renewable energy sources (RES). These interconnected MGs 

are crucial for the reliable and sustainable distribution of energy [1]. 
The cluster includes MGs with diverse RES and varying load profiles. 
Despite dedicated research on the protection of individual MGs, the 
security and reliability of MG clusters remain critical concerns [2–4]. A 
key challenge is the detection and characterization of high-impedance 
faults (HIF) in systems with multiple RES, presenting as disruptive 
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anomalies [5]. HIFs pose a threat to the stability and security of MG 
clusters [6]. Detecting faults, especially in islanded mode with low fault 
currents, is a challenge [7]. While sophisticated algorithms could 
consider all conditions, the computational time and effort would be 
critical. It is essential to develop an efficient fault detection method 
capable of identifying and locating different types of faults considering 
various operational conditions of RES. This is the central focus of this 
research.

In the literature, conventional protection methods employ relays and 
sensors to monitor electrical parameters in MG, such as short circuits 
and overloads, activating automatic switches. With the incorporation of 
the internet of things (IoT) and MG management systems, smart pro
tection uses networks and sensors to monitor and collect data. Machine 
learning algorithms and artificial intelligence analyze the information to 
respond to faults and anticipate problems. In fault detection, especially 
HIF faults, specialized devices such as phasor measurement units 
(PMUs) and protection relays are required. These devices collect voltage 
and current data to identify HIF through algorithms. PMUs are crucial 
for real-time fault detection, allowing a quick response and disturbance 
management in the electrical system. For example, in [8], a robust state 
estimation approach is proposed for fault location using optimization 
task modeling with voltage and current measurements obtained from 
PMUs. This method considers errors in network parameters, improving 
the accuracy of the process. Additionally, in [9], a method is presented 
to identify the location of HIF in the electrical power distribution based 
on the estimation of fault impedance using synchronized voltage and 

current phasors of the third harmonic collected by µPMUs. In [10], the 
authors present a fault location algorithm for observability using PMUs 
in the presence or absence of zero-injection buses. Regarding specific 
devices, the device [11] that detects and recognizes HIF in 12/7 kV 
distribution networks uses two main real-time algorithms, monitoring 
the energies of non-fundamental components and detecting wide vari
ations in the waveform of the signal and its spectral components.

Simulations provide a controlled environment to explore and vali
date fault detection methods without compromising the stability of real 
electrical systems. For simulations, selecting an appropriate model of 
HIF is crucial. In [12], the authors propose the enhanced Emanuel model 
to accurately simulate HIF under different working conditions. 
Furthermore, a field-tested model representing the two characteristics of 
HIF current, nonlinearity, and asymmetry, is presented in [5]. Study 
[13] suggests the use of two variable fault resistances to mimic the 
randomness of HIF faults. The use of techniques such as the Wavelet 
transform (WT), especially the discrete Wavelet transform (DWT), plays 
a fundamental role in extracting and analyzing relevant parameters from 
simulated fault signals [14]. The authors in [15] have explored different 
fault scenarios and have shown that the Wavelet packet transform is 
more robust in the presence of signal noise compared to the wavelet 
transform. Studies like [16,17] have demonstrated that this hybrid 
approach with DWT is reasonably accurate and presents minimal esti
mation error in determining fault location in power systems. Specif
ically, [18] proposes a fault detection method based on the DWT, using 
decomposition to analyze traveling wave signals in details and 

Nomenclature

Acronyms
AB PhaseA-PhaseB
ABC PhaseA-PhaseB-PhaseC
ABCG PhaseA-PhaseB-PhaseC-Gound
AC PhaseA-PhaseB
ACG PhaseA-PhaseC-Ground
AG PhaseA-Gound
BC PhaseB-PhaseC
BCG PhaseA-PhaseC-Ground
BG PhaseB-Ground
CG PhaseC-Ground
PV Photovoltaic
BS Battery Storage
W Wind turbine
H2 Hydrogen storage
HK Hydrokinetic
ANN Artificial Neural Networks
DWT Discrete Wavelet Transform
FT Fourier Transform
GTO Gorilla Troops Optimization
GPR Gaussian Process Regression

IED
Tanh Hyperbolic Tangent
IoT Internet of Things
HIF High Impedance Faults
MG MicroGrid
NNRBF Neural Network Radial Basis Function
CCP Common connection point
DL Dropout Layer
PCQ-WT Pseudo-Continuous Quadrature Wavelet Transform
PMU Phasor Measurement Units
RES Renewable energy system
ReLU Rectified Linear Unit

STFT Short-Time Fourier Transform
SMX Softmax
WT Wavelet Transform

Parameters and decisions variables
xc, w Current sign
ψ Wavelet mother
a,b Scale Factor and temporal displacement
cj,k Approximation coeficients
dj,k Approximation coeficients
ϕj.k Scaling Function
ψ j.k Discrete Wavelet
SDWT Scalogram discrete Wavelet
mTg Factorial Combinations Factors
nTg Factorial Combinations Levels
xTg Number of experiments
yTg Factors
zTg Levels
αTg Load level
βTg Wind speed
γTg Short circuit capacity
δTg Solar irradiance
εTg River speed
ζTg Hydrogen flow
ξTg Ambient temperature
SCWT Scalogram Continous Wavelet
gsr,CNN weighted input
Υ,Γ convolution filters
ϖsr,CNN activation of the characteristic in the position
ωνρ Weights
ςs,r Biases
ŷ One-hot prediction
y One-hot label vector
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approximations. The results indicate that this fault detection algorithm 
is reliable in its assessments of fault presence in the electrical system.

In addition to WT-based techniques, there has been a growing in
terest in leveraging the capabilities of convolutional neural networks 
(CNN) for fault detection and characterization. Recognized for their 
efficiency in image processing, CNNs have demonstrated notable effec
tiveness in handling scalograms generated by DWT, scalograms are vi
sual representations of time-frequency information generated through 
WT analysis, capturing the transient characteristics of fault signals in a 
2D matrix. This capability makes them instrumental for achieving ac
curate fault detection and localization within clusters of electrical MG. 
Experimental results from various studies, including [17,19], illustrate 
the success of this approach, achieving ultra-fast detection with a high 
accuracy rate, even in the presence of noise. In studies such as those 
presented in [20], a hybrid technique is proposed that combines DWT, 
artificial neural networks (ANN), and Gaussian process regression (GPR) 
for HIF diagnosis. The results of these studies indicate that this hybrid 
approach is reasonably accurate and presents minimal estimation error 
in determining fault location. Furthermore, in another study [21], an 
algorithm based on a neural network with a radial basis function 
(NNRBF) is suggested for fault detection. Additionally, CNN-based 
models optimized using the gorilla troop optimization (GTO) have 
shown promising accuracy rates [18].

Despite extensive research on rapid fault detection, classification, 
and localization in MG-based electrical systems, several critical gaps 
remain unaddressed. Most conventional methods lack adaptive learning 
mechanisms, relying on empirical data alone, which reduces detection 
accuracy when key parameters—such as fault resistance, renewable 
source power, or HIF types—fluctuate [2,4–6,9]. This dependence on 
fixed data limits the flexibility of these systems, making them less 
effective in dynamically adjusting to real-world variations that are 
common in MG. In addition, many AI-based models, including ANNs and 
Decision Trees, require large training datasets to reach acceptable ac
curacy, which greatly increases computational requirements [8,17–19]. 
Such computational demands restrict these models’ feasibility for 
real-time applications in rapidly changing environments like MGs, 
where fast processing is critical to ensure protection and resilience.

Furthermore, a large portion of existing fault detection research is 
focused on transmission systems rather than distribution systems, 
creating a gap in solutions tailored for MG clusters. MG clusters present 
specific challenges: fault currents are significantly lower than in the 
main grid, which makes conventional protection systems less effective in 
this context. Some studies [10,18,22,23] recommend deploying multi
ple sensors to improve detection and localization accuracy across 
distributed MG networks. However, the use of numerous sensors raises 
issues of system vulnerability and cost; the failure of any one sensor 
could reduce the effectiveness of the protection system and increase 
operational expenses. Then, the variability of fault currents under 
changing power levels—driven by renewable resource availability, 
especially during islanded operations—presents another challenge. 
Addressing this variability requires fault detection methods that can 
effectively adapt to different load and generation scenarios in MG 
clusters [13–15]. Failing to accommodate this variability can compro
mise system reliability, highlighting the need for approaches like the 
Taguchi-CNN that provide flexible and robust detection across diverse 
operating conditions.

Given these identified limitations in conventional methods, this 
article introduces the innovative Taguchi-CNN method. This approach 
uniquely combines the capabilities of DWT [19,23,24], data optimiza
tion using the Taguchi method [20,25], and pattern recognition through 
CNN [13,18,19] to address the persistent challenges in MG-based fault 
detection systems. Specifically, it offers an optimized, adaptable solu
tion to enhance detection accuracy under varying operating conditions, 
overcoming the drawbacks of static, data-heavy approaches.

The Taguchi method enables a reduction in the volume of input data 
required without compromising accuracy by using orthogonal arrays for 

optimization. This statistical optimization approach is crucial for man
aging data efficiently while capturing system variability through mini
mal experimental runs. By integrating DWT, the proposed method 
achieves effective multiscale decomposition, extracting key features 
from fault signals to enhance detection accuracy.

The primary goal of this method is to improve detection, classifica
tion, and localization capabilities across a wide range of fault types in 
MG and distribution systems, including HIF, islanding events, and var
iations in renewable generation. Unlike conventional methods, this 
approach is resilient under diverse operational scenarios, ensuring 
reliable performance in complex MG environments.

The key contributions of this article are summarized as follows: 

• Development of a multiscale decomposition approach using CWT 
and DWT near the static switch at the point of common coupling 
(PCC), eliminating the need for complex sensors and integrating 
easily into existing protection relays or intelligent electronic devices 
(IEDs) with PMU-based monitoring.

• Implementation of a fault pattern recognition system combining 
CNN and DWT, reducing reliance on peak maxima and providing 
greater robustness in fault pattern identification compared to con
ventional methods.

• Efficient use of an orthogonal array through the Taguchi method to 
create a concise, representative training dataset for the CNN. This 
approach accommodates renewable source variations and load 
conditions, minimizing the need for extensive random data and 
significantly reducing CNN training time.

• A comprehensive approach addressing essential functions in fault 
detection, classification, and localization, covering HIF anomalies, 
islanding, and switching events both within and beyond the MG 
cluster, ensuring full and effective protection for the interconnected 
electrical system.

The remaining structure of this paper is organized as follows. Section 
2 presents the proposed methodology in the study, followed by the 
introduction of the innovative Taguchi-CNN in Section 3. Section 4
thoroughly addresses the case study, while in Section 5, the results are 
presented and discussed. Finally, Section 6 summarizes the conclusions 
derived from this paper.

2. Methodology

The proposed methodology for fault detection in a MG cluster is 
illustrated in Fig. 1. Waveforms of fault currents in different zones of the 
MG cluster are generated through simulations conducted in DigSILENT 
Power Factory software. These waveforms are measured at the PCC, 
located in proximity to the static switch. Subsequently, employing the 
Taguchi method, an optimization of the quantity of simulation-derived 
data is performed. This process aims to preserve the accuracy and 
robustness of the data, which are crucial for generating scalograms using 
the WT. The resulting scalograms serve as a training set for a CNN. The 
primary function of this CNN is to recognize patterns that enable the 
identification not only of the type, phase, and location of faults in the 
MG cluster but has also been extended to include the detection of HIF, 
line opening and closing events, and islanding situations.

2.1. HIF modeling

High Impedance Faults represent a complex phenomenon charac
terized by nonlinear behavior and the generation of electric arcs, often 
challenging traditional protection systems due to their low current 
magnitude. HIF exhibits three distinctive traits—accumulation, nonlin
earity, and asymmetry—manifesting as a gradual increase in current 
over cycles, the presence of odd harmonics, and asymmetric character
istics [11]. While modern technology enables HIF detection using 
micro-PMUs and high-resolution IEDs, implementing such solutions 
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remains costly and complex [26].
To replicate these arcs in automatic switches, the Emanuel arc model 

was selected as the primary focus of this investigation [19]. Emanuel’s 
model is a representative HIF model comprising variable resistors, di
odes, and DC voltage sources connected in antiparallel. In this study, 
voltage sources and resistors simulate the stochastic nature of arc 
voltage and resistance fluctuations [19]. The schematic structure of the 
proposed arc model is depicted in Fig. 2. In the context of the model, VFP 
and VFN denote the positive and negative arc voltages during HIF events, 
capturing the nonlinear characteristics of HIFs. Fault resistance and 
inductance parameters are assigned to the positive and negative 
branches. For simplicity, ZFP and ZFN refer to the positive and negative 
arc impedances, respectively.

2.2. Wavelet transform

The Fourier transform (FT) does not provide direct information 
about oscillating signals and is more suitable for the analysis of problems 
in a steady state. In contrast, the short-time Fourier transform (STFT) 
divides the entire time interval into small equal intervals, each analyzed 
individually by the FT. However, the STFT is not effective in detecting 
signals of very short duration and high frequency. On the other hand, the 
WT has been extensively used in the analysis of transient signals due to 
its diverse window function in the time domain. The WT overcomes the 
limitations of both FT and STFT [27,28]. In this work, both CWT and 
DWT are employed to generate scalograms and train the CNN, and the 
better option between them will be selected.

Let WT be the set of wavelet values for this experiment, and N the set 
of natural numbers. The CWT of a signal xc, w(t) (current wave signals) 
with respect to a mother wavelet ψ(t) (Daubechies-20 has been heu

ristically selected in this case), at a scale a, and a shift b is defined as 
shown in Eq. (1) [29]: 

CWTa,b[xc, w(t)] =
1̅
̅̅
a

√

∫ ∞

− ∞
xc, w(t).ψ(t)∗

(
t − b

a

)

dt; ∀CWT ∈ WT ∪ N

(1) 

where a, b represents the scale factor and temporal displacement, 
respectively.

The DWT is an extension of the WT designed for discrete-time sig
nals. It decomposes the signal using low-pass and high-pass filters. When 
applied to the signal xc, w(t), the result is given by Eq. (2) [29]: 

DWTa,b[xc, w(t)] =
1̅
̅̅
a

√

∫ ∞

− ∞
x(t).ψ(t)

(
t − b

a

)

dt;∀DWT ∈ WT ∪ N (2) 

Calculation of the coefficients cj,k and dj,k involves convolution with 
DWT and scaling functions, as expressed by Eqs. (3) and (4). Employing 
a three-level DWT for the specific signal characteristics, this process 
provides three resolution levels for both approximation and detail co
efficients. Each stage results in signal reduction by a factor of 2, [29]: 

cj,k =
〈
x(t), ϕj.k(t)

〉
=

1
̅̅̅̅aj

√
∑

n
x(n).ϕ

(
n − k

aj

)

;∀DWT ∈ WT ∪ N (3) 

dj,k =
〈
x(t), ψ j.k(t)

〉
=

1
̅̅̅̅aj

√
∑

n
x(n).ψ

(
n − k

aj

)

;∀DWT ∈ WT ∪ N (4) 

where ϕj.k(t) and ψ j.k denote the discrete scaling and wavelet functions, 
respectively, with n representing the discrete time variable. For a more 
comprehensive understanding of the signal and its wavelet coefficients, 
along with an enhanced visualization of signal energy, scalograms have 
been generated. This process involves mapping the 1-D signal into a 2-D 
matrix. The resulting matrix, analyzed in multiresolution with a sam
pling frequency of 200 Hz, provides valuable insights. For the signal 
xc, w(t) and its DWT decomposition up to level J, the scalogram SDWT(j, k)
is constructed using detail coefficients dj,k obtained at each decompo
sition level, as expressed in Eq. (5) [30]. 

SDWT(j, k) =
⃒
⃒dj,k

⃒
⃒2; ∀ S ∈ WT ∪ N (5) 

In the case of CWT, the scalogram SDWT(a, b) is built by squaring the 

Fig. 1. Schematic representation of the proposed research.

Fig. 2. Diagram illustrating the Emanuel arc model.
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magnitude of CWT coefficients at various scales a and positions b, as 
illustrated in Eq. (6) [30]. 

SCWT(a, b) =
⃒
⃒CWTa,b[x(t)]

⃒
⃒2;∀ S ∈ WT ∪ N (6) 

2.3. Taguchi method

The Taguchi method is an advanced experimental design strategy 
used to optimize industrial systems and processes by determining the 
ideal configuration of input parameters. In the context of fault detection 
in a MG cluster, this method is applied to efficiently manage simulation 
data acquisition, minimizing the number of experiments required 
without compromising result quality.

Instead of testing all possible combinations of input variables as in 
traditional full factorial designs, the Taguchi method utilizes orthogonal 
arrays in a fractional factorial design. These arrays allow exploration of 
a reduced set of experiments that capture the essential variability of the 
system. This approach is particularly crucial in studying complex sys
tems like MG clusters, where factors such as short-circuit capacity, solar 
irradiation, wind speed, among others (detailed in Table 1), significantly 
influence system response under various operating conditions and fault 
events.

In this study, various fault simulations were conducted by varying 
conditions of renewable sources and electrical loads within the MG 
cluster, using DigSILENT Power Factory software. These simulations 
generated fault current waveforms in different zones of the MG cluster, 
measured at the PCC near the static switch. The resulting data were used 
to create scalograms using WT, serving as training sets for a CNN. To 
highlight data optimization in this study, each of the eighteen experi
ments (L1-L18) includes four input variables and 16 noise variables, 
resulting in a total of 1152 fault scenarios and 18 normal scenarios. In 
contrast, opting for a full factorial design without Taguchi would have 
required 16,640 scenarios to cover all possible combinations (44 × 4×

16 + 44). This represents a significant reduction in dataset size (CTH) 
by approximately 83.44 %. This optimized methodology not only min
imizes computational resources and time but also ensures a thorough 
and efficient evaluation of system response to various conditions and 
fault events in MG clusters.

In other words, employing full factorial combinations with mTg fac
tors, each with nTg levels, would result in an impractical number of 
required experiments, calculated as nTg

mTg . In Taguchi notation 
LxTg (yTg

zTg ), where xTg, yTg, zTg represent the number of experiments, 
levels, and factors respectively, the orthogonal matrix L18(37) covers 
eighteen orthogonal experiments (L1 - L18) to encompass all possible 
combinations [25]. Specifically, the Taguchi method in this study in
volves five essential elements: 

- MG cluster at PCC. This component, connected to the main grid, 
serves as the system response generator.

- Fault or even. This factor occurring in the four zones acts as the 
system input. Isolation occurs if the fault is outside the MG cluster.

- System response. Represented by generated scalograms, this output 
reflects the system’s reaction.

- Types of faults. Whether balanced, unbalanced, or HIF, these faults 
impact the output response, resulting in a total of 16 types or noises, 
as illustrated in Fig. 1.

- Other factors. Additional factors affecting system output, detailed in 

Table 1
(

αTg, βTg, γTg, δTg, εTg, ζTg, ξTg

)
.

2.4. Convolutional neural network

Convolutional neural networks are instrumental in efficiently man
aging substantial data volumes while minimizing computational costs, 
making them pivotal in addressing various classification challenges 
[31–33]. In the present study, CNNs are employed to classify scalograms 
SCWT(a, b). The configuration of the CNN used is outlined in Fig. 3, 
illustrating how scalograms are processed as raw time series (images) of 
currents by the input layer. These images have dimensions of 
(656 ×875) pixels and consist of three-color channels (RGB).

The CNN architecture begins with basic components and evolves 
through systematic sensitivity analysis, as detailed later, to optimize its 
performance. Initially, 2-D filters are applied in the convolutional layers 
to sample the input images, thereby transforming them into new 
matrices. The selection of filter numbers and sizes, such as the imple
mentation of three convolutional layers (32 × 3 × 3); (32 × 5 × 5)
; (32 × 5 × 5), is determined by the spatial range of neurons within the 
input matrix. Following convolution, the rectified linear unit (ReLU) 
activation function is applied to introduce non-linearities and enhance 
the model’s training efficiency [34]. The mathematical formulations for 
the convolutional layers with ReLU are precisely articulated by Eqs. (7) 
and (8), with CNN representing the amalgamation of all experiments 
within this framework. This foundational architecture is further refined 
through comprehensive sensitivity analysis, elucidated subsequently, 
which rigorously examines the impact of key hyperparameters on CNN 
performance. This approach aims to derive optimal values for these 
parameters, ensuring robustness and efficacy in classifying scalograms 
SCWT(a, b) [34]. 

gsr,CNN
(ι) =

∑Υ

ν=1

∑Γ

ρ=1

(
ω(ι)

νρ .SWT(a,b), s+ν− 1, r+ρ− 1
)
+ ς(ι)sr ∀g

∈ WT ∪ CTH ∪ CNN (7) 

ϖ(ι)
sr,CNN = ReLU(gsr,CNN

(ι)); ∀ϖ ∈ WT ∪ CTH ∪ CNN (8) 

where gsr,CNN
(ι) is defined as the weighted input before applying the 

activation function, Υ and Γ are the dimensions of the convolution fil
ters, ϖ(ι)

sr,CNN is the activation of the feature at position (s, r) in layer (ι). 

Additionally, ω(ι)
νρ represents the weights, and ς(ι)s,r represents the biases 

associated with that activation.
In subsequent stages, maximum pooling layers are utilized to 

downscale data, diminish dimensions, and attenuate redundant infor
mation. This process is crucial for averting overfitting and fortifying 
system resilience. Specifically, a (3 × 3) maximum pooling layer with a 
stride of 2 is applied to condense the spatial dimensions of the output 
(resulting in a 3 × 3 × 2 matrix) for each convolutional layer. To further 
mitigate overfitting, a dropout layer (DL) with a 50 % dropout rate is 
incorporated. The mathematical operations governing these processes 
are formally delineated in Eqs. (9) and (10) [22]. 

ρ(ι)
sr = maxm,n

(
ϖ(ι)

(s− 1,CNN)×Γ+m, (r− 1)×Υ+n

)
; ∀ρ ∈ WT ∪ CTH ∪ CNN ∪ N

(9) 

DL = dropout(gsr,CNN
(ι)); ∀DL ∈ WT ∪ CTH ∪ CNN ∪ N (10) 

Following the convolutional layers, fully connected layers are 
employed to facilitate pattern recognition. At this stage, each neuron is 
connected to all neurons in the preceding layer, combining the features 

Table 1 
Factors that affect system behavior.

Factors Level 1 Level 2 Level 3

αTg: Load level (MVA) 6 4 8
βTg: Wind speed (m/s) 7 0 13

γTg: Short circuit capacity (MVA) 800 600 1200
δTg: Solar irradiance (W/m2) 700 0 1100
εTg: River speed (m/s) 3 0 4
ζTg: Hydrogen flow (m3/h) 15 10 20
ξTg: Ambient temperature (◦C) 15 5 25
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extracted from previous stages. This configuration enables the classifi
cation of intricate patterns, with the number of output neurons corre
sponding to the distinct classes in the classification task [22]. In this 
study, the fully connected layer comprises 64 neurons, each dedicated to 
classifying specific fault types (16 different types across 4 zones) in each 
Taguchi experiment. The ReLU activation function is applied in these 
fully connected layers to introduce non-linearity, crucial for enhancing 
the network’s discriminative capability. The mathematical expressions 
that define the operations of the fully connected layer are provided in 
Eqs. (11) and (12) [22]. 

σ(ι)
κ,CNN =

∑P

f=1

∑Q

e=1

(
ω(ι)

fe .ϖ
(ι− 1)
fe,CNN

)
+ ς(ι)κ ; ∀σ ∈ WT ∪ CTH ∪ CNN ∪ N (11) 

ϖ(ι)
κ,CNN = ReLU(σ(ι)

κ,CNN);∀ϖ ∈ WT ∪ CTH ∪ CNN ∪ N (12) 

where P and Q are the dimensions of the max-pooling layer activations. 
The output layer uses the softmax function (SMX) for multiclass classi
fication, as shown in Eq. (13). For the classification task, the cross- 
entropy loss function is employed, as represented in Eq. (14) [35]. 

SMX = zL
c ;∀ z ∈ WT ∪ CTH ∪ CNNN (13) 

CrossEntropyLoss(ŷ, y) =
∑

c
yc.log(ŷc); ∀ ŷ, y

∈ WT ∪ CTH ∪ CNN ∪ N (14) 

where ŷ is the predictions and y is the one-hot encoded label vector.
During the training setup, pivotal parameters are carefully selected. 

The Adam optimizer is employed with a maximum of 1000 epochs to 
optimize model weights iteratively. An initial learning rate of 0.0001 is 
set to control the magnitude of weight updates during training. Addi
tionally, L2 regularization with a coefficient of 0.001 is applied to pre
vent overfitting by penalizing large weights in the model.

The model’s efficacy is assessed using a separate validation set, 
ensuring unbiased evaluation of performance. Training progress is 
visually monitored to track convergence and assess potential issues like 
overfitting or underfitting. For robust training, the dataset is partitioned 
into 80 % for training and 20 % for validation, adhering to standard 
practices in machine learning. The Taguchi methodology is applied to 
optimize data acquisition in fault simulations within MG clusters. Each 
of the 18 Taguchi experiments (L1 − L18) explores unique combinations 
of 4 input variables and 16 noise variables, generating 1152 fault sce
narios and 18 normal scenarios. These simulations encompass 11 
distinct fault types, totaling 12,870 training data points. Compared to a 
full factorial design approach, which would require 16,640 scenarios to 
cover all possible combinations, the Taguchi methodology significantly 
reduces the required dataset size by 83.44 %. Without applying this 
method, the total number of scenarios would have been 77,742. This 

optimization conserves computational resources and ensures an efficient 
evaluation of system response to various conditions and fault events in 
MG clusters. On the other hand, in the study, the sampling frequency 
used in DigSILENT Power Factory to simulate the power system was 
50 Hz, suitable for capturing variations in system currents and voltages. 
Subsequently, when processing the data in MATLAB 2021a, for CNN 
application and DWT analysis, a sampling frequency of 200 fs was 
employed. This facilitated a detailed representation of the time- 
frequency energy distribution of current signals, aiding in the identifi
cation of relevant patterns for event classification in the power system.

3. Proposed method

This section provides a detailed and chronological explanation of the 
proposed Taguchi-CNN method, as illustrated in both Fig. 4. The focus of 
this method is on fault detection, classification, and localization through 
a static switch at the PCC in a MG cluster. It is noteworthy that MG 
clusters are typically not owned by the main electrical company. In the 
event of a fault in the main grid or the MG cluster, it is crucial to activate 
the static switch on the MG cluster side, near the PCC, before conven
tional protective relays.

3.1. Taguchi method for fault current data acquisition

At the outset, input data is extracted following multiple computa
tional simulations using DigSILENT PowerFactory 2020 software. In 
practical applications, these would be acquired through a standard PMU 
or a protection relay incorporating PMU capabilities. Subsequently, the 
Taguchi method, is employed to construct an orthogonal dataset spe
cifically designed for training the CNN. This approach not only 
streamlines training procedures but also maintains the accuracy of CNN 
predictions.

3.2. DWT for feature extraction

Once the orthogonal is defined, a comparison is made between the 
accuracy and simulation time in each case, and the best option is chosen. 
In this case, DWT is selected as the optimal choice. The scalograms are 
matrices containing signal signatures corresponding to events in the MG 
cluster. Subsequently, the scalograms are quantized into digital images 
to compress the data size.

3.3. CNN architecture design and training

The next phase involves inputting the scalograms and training the 
CNN model. The CNN model is then implemented to detect, classify, and 
locate faults based on features extracted by the DWT, whether they 
occur inside or outside the MG cluster. Leveraging its pattern recogni
tion capabilities, the CNN identifies fault patterns within the input data. 

Fig. 3. Fundamental architecture of convolutional neural network.
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Finally, the detected event is reported to the static switch at the PCC.
In summary, the flowchart depicted in Fig. 4 explains the method

ology employed in this study. The process begins with data preparation, 
where a set of training images is collected and labeled based on simu
lations conducted in DigSILENT Power Factory. Using the Taguchi 
method, the amount of representative data from simulations is reduced 
to generate scalograms using CWT and DWT. The optimal method is 
selected in terms of both temporal accuracy and precision efficiency 
from these scalograms generated for all proposed fault and event com
binations in the study. Subsequently, CNN validation is carried out in 
MATLAB 2021a. Here, an extensive process of training and parameter 
tuning is conducted to optimize the model. Once the network is trained, 
it will be capable of detecting, locating, and classifying faults and events 
within and outside a MG cluster.

4. Case study and data simulation

In this paper, a study and simulation were conducted on a MG cluster 

connected to the main grid, as depicted in Fig. 5. Zones 1–3 consist of 
MG cluster, while zone 4 represents the external grid (outside the MG 
cluster). The key characteristics of the sources and loads forming each 
MG are outlined in Table 2. Fault locations are randomly chosen and 
marked on the unified diagram, with fault current measurements taken 
at the static switch at the PCC. A total of 11 fault types (AB, ABC, ABCG, 
ABG, AC, ACG, AG, BC, BCG, BG, CG) were analyzed, along with sim
ulations of line opening and closing events (event), (HIF-A, HIF-AB, HIF- 
ABC), islanding and others events. This results in a total of 16 distinct 
scenarios or noise types. To gather more data and enhance accuracy, 
resistances for the 11 fault types, islanding, and line events were varied 
(R=0.01 Ω, 0.05 Ω, 0.1 Ω, 0.8 Ω, 1.5 Ω, and 3 Ω), considering the factors 
and levels from the Taguchi experiments that influence the system 
output. In this study, both symmetrical and asymmetrical faults are 
included to assess the robustness of the detection system. Symmetrical 
faults are those in which all phases are equally affected, such as three- 
phase faults (ABC). On the other hand, asymmetrical faults affect only 
one or two phases and are more common in distribution systems; ex
amples include phase-to-ground faults (AG, BG, CG), phase-to-phase 
faults (AB, BC, AC), and phase-to-phase-to-ground faults (ABG, BCG, 
ACG). To ensure a comprehensive system analysis, an initial fault angle 
of 90◦ was considered in the waveform cycle, a point where the current 
reaches its peak value. This choice allows the evaluation of the model’s 
ability to detect and classify faults under conditions of maximum system 
demand.

The proposed model was evaluated using a computational worksta
tion with a Core i9 CPU at 3.90 GHz, 16 GB of RAM, and an NVIDIA 
GeForce RTX 3070 GPU. The Taguchi-CNN code was implemented using 
MATLAB 2021a.

Moreover, the detailed specifications of each component within the 
microgrid system, including generation sources, transformers, con
verters, and the static switch are presented in Table 3. This 
Table provides a comprehensive overview of the capacities, voltage 
ratings, and functional descriptions of each element to enhance under
standing of the system’s operational capabilities and configuration.

5. Results and discussions

This section presents the results of the CNN simulations and their 
implications. It begins with a comparative analysis between DWT and 
CWT in terms of fault detection. Following this, the training and vali
dation results of the Taguchi-CNN model are discussed, followed by a 
sensitivity analysis. Finally, a comparison with other established 
methods is provided.

5.1. Comparative DWT/CWT

This section provides a detailed examination of the results obtained 
from our CNN simulations utilizing DWT and CWT scalograms. Table 4
presents a comprehensive comparison highlighting the superior per
formance of DWT over CWT across various metrics including training 
time and accuracy for fault detection, event identification, HIF, and MG 
cluster isolation. Notably, DWT consistently outperforms CWT in fault 
localization, exhibiting higher accuracy and efficiency, thereby vali
dating its selection as the preferred method in our proposed approach. 
These findings underscore the effectiveness of DWT in enhancing the 
performance of fault detection and localization tasks within our pro
posed methodology. The superior accuracy and efficiency offered by 
DWT over CWT can significantly contribute to improving the reliability 
and stability of power systems. By accurately identifying and localizing 
faults, such as HIF and MG cluster isolation, DWT empowers utility 
companies and system operators to promptly respond to electrical dis
turbances, thereby minimizing downtime and enhancing overall system 
resilience. Additionally, the reduced training time associated with DWT 
further emphasizes its practical utility, enabling faster deployment and 
implementation of fault detection systems in real-world scenarios. This 

Fig. 4. Flowchart for fault detection, classification, and localization in clus
tered MG using Taguchi-CNN proposed method.
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reduction in detection time is particularly beneficial for HIF scenarios, 
where quick, precise responses are essential for maintaining stability in 
MG clusters.

Fig. 6 exhibits DWT-generated scalograms representing various 
faults and events within an MG cluster, to be utilized for training and 
validation of the CNN model. These scalograms enable accurate classi
fication and localization by capturing signal characteristics. Each sub
plot illustrates distinct operational conditions, thereby contributing to 
the effective analysis and diagnosis of faults and events.

5.2. Taguchi-CNN training and validation

Fig. 7 provides a detailed insight into the accuracy and loss during 
the training and validation of the Taguchi-CNN method in four distinct 
zones of the MG cluster (zone A, zone B, zone C, and zone D). The 
training accuracy reflects the proportion of examples correctly classified 
by the model in the training set. It is observed that the training accuracy 
for all four zones increases over time, reaching the maximum value of 
100 %. However, it is important to note that zone A requires 60 epochs 
to reach 100 %, in contrast to the other zones. This variation could be 
attributed to factors such as the size and complexity of the dataset in 
zone A, where there are several RES and energy storage, as seen in Fig. 5. 
Regarding the loss, both training and validation losses represent the 
average error of the model’s predictions. In Fig. 7, a consistent decrease 
in both training and validation losses is observed across all zones over 
time.

Below, Fig. 8 presents the monitoring of training and validation of 
the Taguchi-CNN across three types of faults and a transmission line 
opening and closing event. Regarding fault location, it is observed that 
the training accuracy reaches an optimal level of 100 % after 32 epochs, 

accompanied by a training loss converging to zero. Subsequently, under 
a transmission line opening and closing event, it is highlighted that ac
curacy reaches 100 % after merely 6 epochs, with a corresponding 
decrease in training loss to zero. This suggests that the CNN is capable of 
accurately classifying different types of events after a short training 
period while maintaining minimal loss. In the third case of islanding, it 
is recorded that accuracy reaches 100 % after 17 epochs, showcasing the 
model’s ability to identify islanding situations within the power system 
with moderate precision after a moderate number of training epochs, 
while maintaining minimal loss. Lastly, in the case of HIF, it is empha
sized that the CNN achieves a perfect accuracy of 100 % after only 3 
epochs, with a rapid convergence of training loss to zero. This result is 
significant as this type of fault detection often poses a challenge for 
conventional relays.

5.3. K-fold validation

The observed variations in accuracy within the confusion matrix 
(Fig. 9) stem from inherent similarities among fault classes, particularly 
notable in cases like (ACG) and (AC), as well as (BG) and (BCG) faults. 
These resemblances in electrical characteristics may lead to overlaps in 
signal features, influenced by factors such as sampling resolution, elec
trical noise, and variations in power grid conditions. Despite these subtle 
distinctions, accuracy rates of approximately 96.2 %, 95.6 %, and 
94.2 % highlight the model’s proficiency in accurately classifying fault 
types in electrical transmission systems, even when faced with inherent 
challenges.

Moreover, as depicted in Fig. 10, the CNN demonstrates adept fault 
localization across four distinct zones, achieving 100 % precision in 
most cases. Notably, in zone A, the accuracy is commendably high at 
96.98 %. Despite this slight variability, the overall average accuracy of 
99.25 % in fault localization across diverse areas reaffirms the model’s 
robustness and effectiveness.

In the context of validating a CNN for global fault detection and 
localization, the results obtained from a systematic evaluation involving 
multiple folds of the dataset are presented in Fig. 11. These results 
showcase the model’s performance across various metrics, reflecting its 
effectiveness in accurately detecting and localizing faults. The analysis 
involves a total of 15 folds, each representing a distinct evaluation 
scenario. The key performance metrics assessed include accuracy, F1- 

Fig. 5. One-line diagram of proposed cluster MG system.

Table 2 
Details of RES and loads in the studied MG cluster.

MG Source Power (MW) Power (MVA) Load (MVA)

1 Wind 2.50 2.78 1.50
2 Wind, Hydrokinetic 9.10 12.78 8.34
3 Wind, Battery, PV 3.21 3.78 3.00
4 Wind 2.50 2.78 1.50
5 Wind, Hydrogen 2.62 3.08 2.00
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score, recall, and Matthews correlation coefficient, all of which are 
pivotal in gauging the model’s robustness. Across these 15 folds, the 
CNN consistently demonstrates high levels of accuracy, with an overall 
mean accuracy of approximately 99.13 %.

This underscores the model’s capability to correctly identify faults 
within the dataset. Furthermore, the F1-score, a metric that balances 
precision and recall, averages at around 98.99 %. This reflects the CNN’s 
ability to effectively strike a balance between precise fault localization 
and comprehensive fault detection. The recall metric, which assesses the 
model’s ability to accurately identify true positives among all actual 
positive instances, averages at approximately 98.70 %. This signifies the 
model’s proficiency in capturing most of the actual fault instances pre
sent in the dataset. Lastly, the Matthews correlation coefficient, a 
measure of the quality of binary classifications, demonstrates an overall 
average of about 98.53 %. This metric reaffirms the model’s competence 
in producing reliable classification outcomes, particularly in the context 
of fault detection and localization.

5.4. Sensibility analysis

5.4.1. With respect to CNN hyperparameters
The sensitivity analysis presented in Fig. 12 explores how key CNN 

hyperparameters impact the model’s performance regarding accuracy 
and detection time. Starting with the number of convolutional layers 
(Fig. 12a), an optimal balance is achieved with three layers, resulting in 
99.13 % accuracy and a detection time of 7.6 ms. When increasing 
beyond seven layers, the model’s accuracy declines while detection time 
increases, indicating that additional layers add computational 
complexity without improving performance.

Examining the number of filters (Fig. 12b) reveals that using 32 fil
ters achieves a stable performance, with an accuracy of 99.13 % and a 
detection time of 7.6 ms. Higher filter counts maintain accuracy levels 
but result in slightly extended detection times. In terms of filter size 
(Fig. 12c), a 3x3 configuration yields the highest accuracy at 99.13 % 
with a detection time of 7.8 ms. Smaller sizes, such as 1x1, show 
consistently strong performance, while larger sizes like 7x7 reduce ac
curacy to 95.77 % with similar detection times. The analysis of the fully 
connected layer (Fig. 12d) suggests that 56 neurons provide optimal 
accuracy (99.13 %) with a detection time of 7.6 ms. Increasing the 
neuron count in this layer leads to slower detection times, for instance, 
using 100 neurons reduces accuracy to 91.25 % and extends detection 
time to 29.36 ms.

Following the analysis of CNN hyperparameters, Fig. 13 further in
vestigates how other configuration elements—such as optimization al
gorithms, activation functions, pooling layer sizes, and stride 
values—influence classification accuracy and detection time. Among the 
optimization algorithms tested (Adam, RMSprop, and SGD), Adam 
performed best, achieving an accuracy of 99.13 % with a detection time 
of 0.79 ms. RMSprop and SGD had slightly lower accuracies (95.09 % 
and 89.18 %) and marginally longer detection times (0.93 ms and 
0.87 ms, respectively). The activation functions ReLU and Sigmoid both 
achieved 99.13 % accuracy with detection times of 0.79 ms and 
0.75 ms, respectively, while Tanh algorithm reached 99.07 % accuracy 
with a detection time of 0.81 ms. Pooling layer sizes were also explored, 
with 3x3 providing the highest accuracy at 99.13 %, while 2x2 and 

Table 3 
Technical specifications of microgrid components and system configuration.

Element Description Capacity / Limit Rated 
Voltage

Comments

MG1 - Wind 
Turbine

Wind 
generation with 
adjustable 
power factor.

2.5 MW, 2.78 
MVA

380 V Operating 
under IEC IIA/ 
IIIB wind class, 
power factor 
adjustable 
between 0.95 
capacitive and 
inductive.

MG2 - Wind 
and 
Hydrokinetic 
Turbine

Wind and 
hydrokinetic 
energy sources.

9.1 MW, 12.78 
MVA

380 V Turbines with 
converters 
allowing 
reactive power 
adjustment.

MG3 - Wind, 
Battery, Solar 
PV

Combination of 
wind energy, 
battery storage, 
and solar PV.

3.21 MW, 3.78 
MVA

380 V Battery and PV 
include DC/ 
DC and DC/AC 
converters for 
integration 
with AC 
systems.

MG4 - Wind 
Turbine

Additional 
wind 
generation.

2.5 MW, 2.78 
MVA

380 V High- 
efficiency 
wind 
generator 
designed for 
low wind 
speeds.

MG5 - Wind 
and Hydrogen 
Storage

Wind energy 
and hydrogen 
storage.

2.62 MW, 3.08 
MVA

380 V Hydrogen 
storage with 
converters for 
continuous 
integration in 
the microgrid.

Main 
Transformer

Voltage 
reduction from 
69 kV to 11 kV 
at PCC.

Approximately 
25 MVA

69 kV / 
11 kV

ONAN 
transformer 
with on-load 
tap changer 
(OLTC) for 
voltage 
adjustment 
based on load.

Microgrid 
Transformers

Transformers in 
each zone to 
step down from 
11 kV to 380 V.

15.56 MVA 
(Zone A), 3.78 
MVA (Zone B), 
5.86 MVA (Zone 
C)

11 kV / 
380 V

Distribution 
transformers 
to stabilize and 
distribute 
voltage at each 
microgrid 
level.

Static Switch 
(SS)

Switch at PCC 
enabling 
microgrid 
disconnection 
from main grid 
in case of faults.

N/A 11 kV Supports 
isolated 
operation of 
MG in 
emergencies, 
enhanced by 
PMUs for real- 
time 
monitoring 
and control 
under IEC 
61850 
standard.

DC/DC and 
DC/AC 
Converters

Used in 
batteries, PV, 
and hydrogen 
storage to 
adapt 
generated 
energy to AC 
current.

Bidirectional, 
automatic 
active and 
reactive power 
adjustment

N/A Flexible and 
efficient 
converters 
facilitating 
renewable 
integration, 
optimizing 
power 
conversion 
and system 
stability.

Table 4 
Comparative results between DWT and CWT.

Fault Modules Training time (s) Accuracy (%) Epoch (unit)

DWT CWT DWT CWT DWT CWT

Fault detection 48 51 99.13 98.36 30 23
Event 13 15 100 99.5 6 5
HIF 2.3 1.5 100 99.45 3 4
Islanding 10.5 16.8 100 98.43 17 15
Fault location 53 56.5 99.25 98.36 33 30
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4x4 sizes reached accuracies of 97.31 % and 99.14 %. Detection times 
were slightly different, with 0.79 ms for both 2x2 and 3x3, and 0.93 ms 
for 4x4. Then, stride values of 1, 2, and 3 were tested. A stride of 1 
achieved an accuracy of 99.09 % with a detection time of 0.88 ms, while 
strides of 2 and 3 reached accuracies of 99.13 % and 98.03 % with 
detection times of 0.79 ms and 0.78 ms, respectively.

This section further examines CNN hyperparameters, offering in
sights into optimizing performance in data classification. Fig. 14 ex
plores four key categories: dropout rate, initial learning rate, L2 
regularization, and the number of training epochs. In dropout rate 
analysis (Fig. 14a), values from 0.1 to 0.9 were tested, with an optimal 
rate of 0.5 achieving the highest accuracy of 99.13 %. Higher dropout 
rates reduce accuracy but improve computational efficiency. For initial 
learning rate (Fig. 14b), a rate of 0.00001 produces peak accuracy 
(99.13 %), while slightly higher rates, such as 0.0001 and 0.0002, 
maintain strong performance, suggesting the importance of precise 

tuning.
Regarding L2 regularization (Fig. 14c), an optimal value of 0.00002 

achieves 99.13 % accuracy, whereas higher regularization levels reduce 
accuracy, illustrating the balance between regularization strength and 
model performance. Lastly, examining the number of training epochs 
(Fig. 14d), accuracy stabilizes at 99.13 % after 35 epochs, indicating 
convergence. Increasing epochs beyond this point extends training time 
without significant accuracy gains, highlighting the trade-off between 
computational efficiency and model precision.

5.4.2. Sensibility analysis considering Taguchi parameters
Fig. 15 presents the results of experiments evaluating system accu

racy and detection time across various configurations of factors and 
levels within the Taguchi framework. In Fig. 15(a), we observe that the 
system’s accuracy, displayed as a percentage, remains consistently high 
(around 99.13 %) even as the number of factors increases from 2 to 13 

Fig. 6. Scalograms and amplitude waveforms for different conditions: (a, e) No fault, (b, f) Single-phase fault, (c, g) Line opening/closing event, (d, h) High 
Impedance Fault (HIF).

Fig. 7. Training and validation accuracy and loss of the Taguchi-CNN model across MG Cluster zones (A, B, C, D).
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Fig. 8. Training and validation of the Taguchi-CNN across four zones under various event types.

Fig. 9. Taguchi-CNN fault detection confusion matrix.
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while keeping the levels constant. This stability suggests that additional 
factors do not significantly impact accuracy, demonstrating the model’s 
robustness in maintaining performance despite increasing complexity.

In Fig. 15(b), detection time, measured in ms, is displayed alongside 
accuracy. The results show that increasing both factors and levels leads 
to longer detection times, indicating a trade-off between complexity and 
response speed. For example, as the number of factors increases from 2 
to 14, detection time rises from 6.55 ms to 11.5 ms, illustrating the 
added computational demands associated with a higher factor count. 
Continuing with Fig. 15(c), the analysis shifts focus to levels alone, 
isolating their effect on system accuracy and detection time. While ac
curacy remains consistently high as the number of levels rises, detection 
time increases noticeably. This result indicates that the model can sus
tain its accuracy across a wider range of levels, but each additional level 
contributes to increased processing time, impacting overall response 
efficiency. Then, Fig. 15(d) examines the impact of varying factors 

Fig. 10. Taguchi-CNN fault localization confusion matrix.

Fig. 11. K-Fold validation of the global CNN.

Fig. 12. Sensitivity result: (a) Convolutional layers. (b) Filters. (c) Filter size and (d) Neurons in the FC layer.
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independently, showing how each factor level affects accuracy and 
detection time. Similar to the trends observed in Fig. 15(b), an increase 
in the number of factors correlates with an increase in detection time, 
further underscoring the relationship between model complexity and 
computational load.

5.4.3. Sensitivity analysis with respect to system events
This section provides an in-depth analysis of critical events that 

commonly occur in electrical power systems, including generator 
switching, capacitor switching, transformer energization, and load 
switching within the main grid. This analysis was conducted outside the 
MG cluster environment, as events within the MG cluster—defined by 

Fig. 13. Sensitivity analysis with respect to CNN parameters.

Fig. 14. Hyperparameter comparison for Taguchi-CNN model performance.
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the SS—are less relevant due to the unique composition of MG, which 
predominantly rely on RES and storage systems.

To conduct this analysis, the events described in Section 5.3 were 
simulated using DIgSILENT software to generate the necessary temporal 
data, which were then input into the Taguchi-CNN model. The model 
effectively classified, located, and detected faults associated with 
generator switching, capacitor switching, transformer energization, and 
load switching. These events were also compared with HIF, single-phase 
faults, other transient events, and islanding scenarios. Fig. 16 shows the 
temporal waveforms of each new event, with separate plots for gener
ator switching, capacitor switching, transformer energization, and load 
switching.

Fig. 17 presents the DWT scalograms generated from these wave
forms, which were used to train the CNN and enable accurate classifi
cation and detection.

The Taguchi method was applied to streamline the data by adjusting 
renewable loads to three levels per source, as outlined in Table 2. The 
resulting data generated a confusion matrix shown in Fig. 18, which 

demonstrates the model’s classification accuracy across different events. 
The model achieves an overall accuracy of 99.72 %, with a margin of 
error of 0.28 %.

The high classification accuracy is slightly affected by similarities 
between specific events. For example, generator switching and load 
switching show an accuracy of 94.5 % due to similar variations in cur
rent and voltage, which complicate differentiation. Likewise, capacitor 
switching and transformer energization yield an accuracy of 96.77 %, as 
both events generate transients that impact system signals in similar 
ways. Despite these minor challenges, the Taguchi-CNN model remains 
robust and effective in detecting and classifying these critical events, 
confirming its value in monitoring and analyzing complex electrical 
systems, including MG.

5.5. Comparison with other methods

In the comparison of fault detection and classification methods, 
Table 5 provides a summary. The Taguchi-CNN method stands out for its 

Fig. 15. Trends in system performance, accuracy stability amidst increasing factors and levels.

Fig. 16. Temporal waveforms of events. (a) Generator switching. (b) Capacitor switching. (c) Transformer energization. (d) Load switching.
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Fig. 17. DWT scalograms generated for CNN training from events. (a) Generator switching. (b) Capacitor switching. (c) Transformer energization. (d) 
Load switching.

Fig. 18. Confusion matrix of the Taguchi-CNN model for event classification and additional faults in the system with respect to the MG cluster.
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effectiveness. When compared with traditional methods like over- 
current relay and decision tree, as well as modern techniques like 1-D 
CNN BiLSTM-Attention and Xception transformer, Taguchi-CNN shows 
competitive accuracy across various parameters.

Notably, Taguchi-CNN achieves an accuracy of 99.13 % in fault 
detection, 99.13 % in fault classification, and 99.25 % in fault location. 
Moreover, it excels in classifying parameters such as phases, HIF, switch 
events, and islanding scenarios. Compared to other models, Taguchi- 
CNN consistently delivers strong performance, positioning it as a 
promising solution for fault detection in power systems. Among the 
methods not listed in Table 5, Taguchi-CNN outperforms recent ap
proaches such as AI-CNN, RFBNN, ANFIS, NARX, FFNN, FDI-MPPT, 
DTE-ANN, WPT-Node power index, and transient monitoring function. 
These methods focus on various aspects like phases, HIF, switch events, 
voltage signature signals, and unsymmetrical faults. The Taguchi-CNN 
consistently demonstrates strong capabilities across these parameters, 
establishing its prominence as a robust solution for enhancing fault 
detection and classification in MG systems.

Beyond the highlighted accuracy figures, the Taguchi-CNN method 
demonstrates significant advantages in critical scenarios of fault detec
tion and classification compared to traditional methods. The following 
sections describe three key areas where the proposed system signifi
cantly outperforms conventional methodologies:

5.5.1. Real-time detection and response in complex conditions
The Taguchi-CNN system enables fault detection and classification in 

under 10 ms, a critical speed for MG protection involving high levels of 
renewable energy penetration and variable load conditions. In contrast, 

traditional methods, such as those based on overcurrent or differential 
relays, require longer processing times due to inefficiencies in handling 
multiple data sources or HIF scenarios. This rapid response capability is 
essential to improve system stability and continuity, preventing dis
connections or damage under complex fault conditions.

The Taguchi-CNN system enables fault detection and classification in 
under 10 ms, a critical speed for MG protection involving high levels of 
renewable energy penetration and variable load conditions. In contrast, 
traditional methods, such as those based on overcurrent or differential 
relays, require longer processing times due to inefficiencies in handling 
multiple data sources or HIF scenarios. This rapid response capability is 
essential to improve system stability and continuity, preventing dis
connections or damage under complex fault conditions.

According to [24], machine learning techniques like decision tree 
and random forest require more than 24 ms to detect faults, limiting 
their effectiveness in real-time applications for MG environments. 
Additionally, Ref. [18] reports that SVM methods require over 16 ms for 
fault detection, highlighting the significant speed advantage of the 
Taguchi-CNN model, which achieves detection in less than 10 ms. In 
terms of accuracy and robustness, the Taguchi-CNN method demon
strates superior performance by incorporating a wide range of fault 
scenarios and renewable variability conditions. Unlike simpler machine 
learning models, such as SVM or Random Forest, which may struggle to 
adapt to diverse operational conditions, the Taguchi-CNN model lever
ages Taguchi optimization to efficiently train on a broad set of scenarios. 
This results in a highly adaptive and robust model capable of main
taining high accuracy across variable conditions, including HIF faults 
and renewable generation fluctuations. The combination of rapid 
detection times and high precision positions the Taguchi-CNN system as 
a comprehensive and efficient solution for fault detection and classifi
cation in MG.

5.5.2. Efficiency in identifying high-impedance faults
The proposed system excels in identifying HIF, a common limitation 

of conventional methods, which are insufficiently sensitive to detect 
these faults due to the low fault currents involved. Leveraging Wavelet- 
optimized CNN, the model can identify complex patterns of HIF, 
maintaining high accuracy under conditions where traditional methods 
might fail. This capability allows the proposed system to offer effective 
protection even in low-magnitude fault situations, substantially 
enhancing system safety.

5.5.3. Robustness against changes in renewable power generation
Another advantage of the Taguchi-CNN approach is its robustness in 

maintaining high performance under varying levels of generation and 
load in the MG cluster. This is a critical challenge for traditional 
methods, which often rely on fixed operational scenarios and lack 
adaptability. By optimizing input data with the Taguchi method, the 
proposed system minimizes the amount of data required for training 
without sacrificing accuracy. This enables adaptability to variations in 
operating conditions, ensuring reliable protection in a variable renew
able generation environment and thus improving response to discon
nection events, load changes, and HIF. While the Taguchi-CNN 
methodology demonstrates high accuracy and efficiency in fault detec
tion, classification, and localization within MG clusters, its design also 
shows promising adaptability for larger power networks. The method’s 
optimization capabilities and computational efficiency suggest it could 
be effectively scaled to handle the increased data volume and 
complexity in larger systems, with potential for further refinement as 
required in broader applications

6. Conclusions

This paper presents the Taguchi-CNN methodology based on DWT 
for fault detection, classification, and localization in MG cluster systems, 
utilizing existing PMUs at the static switch located at the PCC. This 

Table 5 
Comparative analysis of fault detection, classification and location methods in 
MG systems.

Method Accuracy (%) Parameter 
classification

Fault 
detection

Fault 
classification

Fault 
location

Over-current 
relay [24]

56.00 – – –

Differential 
relay [24]

96.00 – – –

Decision Tree 
[24]

97.00 85.00 – ​

Random Forest 
[24]

99.00 94.00 – ​

SVM [18] 99.03 – – –
1-D CNN 
BiLSTM- 
Attention model

94.53 94.19 93.08 Phases

Xception 
transformer 
[19]

98.60 98.60 98.60 Phases, HIF

WT-CNN [23] 99.31 97.60 94.10 Phases, swith 
event

CNN-GTO [18] 99.36 99.00 98.20 Phases
AI-CNN [13] 99.95 99.95 – HIF, load change
RFBNN [13] 99.99 99.99 – Phases
ANFIS [36] 99.09 – – Phases
NARX [37] 99.03 – – Phases, swith 

event
FFNN [38] 98.96 98.89 – Phases
FDI-MPPT [39] 95 95 – unsymmetrical 

faults
DTE-ANN [40] 99.3 97.6 – Voltage Signature 

Signal
WPT-Node 
power index 
[41]

99.32 99.5 – Phases, swith 
event

Transient 
monitoring 
function [42]

99.39 99.5 – Phases, swith 
event

Taguchi-CNN 
proposed

99.13 99.13 99.25 Phases, HIF, switch 
event, islanding
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approach effectively addresses diverse fault types, transient events, and 
islanding scenarios, achieving a high detection accuracy of 99.25 % 
within less than 10 ms. The DWT-based multiscale decomposition is 
shown to be a critical component in maintaining accuracy levels of 
around 99.13 %, even as the number of factors and levels increases, 
demonstrating the robustness and stability of the system. The Taguchi- 
CNN model’s speed and adaptability stand out compared to traditional 
methods, such as overcurrent and differential relays, as well as advanced 
machine learning models like SVM, Xception transformer, and WT-CNN, 
achieving over 99 % accuracy across configurations and improving 
response time efficiency by approximately 60 % over these traditional 
techniques. While the Taguchi-CNN model demonstrates strong fault 
detection and classification capabilities, the potential impact of high 
noise levels in measurements on performance remains an area for 
further exploration. Future work could incorporate advanced filtering 
techniques to enhance noise resilience and robustness in diverse oper
ational environments. Additionally, exploring the integration of 
advanced methods, such as reinforcement learning or attention mech
anisms, could further improve the model’s adaptability and computa
tional efficiency. Testing this approach in larger, more complex network 
architectures beyond the MG setting would also help validate its 
robustness across diverse scenarios. Expanding the performance analysis 
across various environmental conditions would provide deeper insights 
into the methodology’s reliability and applicability.
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