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HIGHLIGHTS

o Introduces "Taguchi-CNN" method for efficient fault detection in microgrid clusters.

e Achieves 99.13 % accuracy in less than 10 ms, exhibiting adaptability to diverse fault scenarios.
e Outperforms both conventional approaches and state-of-the-art models in fault detection.

e Recommends integrating the method into PMUs/IEDs and exploring real-time fault detection..

ARTICLE INFO ABSTRACT
Keywords: The integration of microgrids into the bulk power system introduces inherent uncertainties that challenge
Fault detection and localization conventional protection systems, encompassing factors such as low fault currents, operational modes, penetra-

Taguchi method

Wavelet

Convolutional neural network
Microgrid cluster

tion levels of renewable sources, load variations, and network topology. These uncertainties significantly impact
the overall reliability of the electrical system. In the event of a fault occurrence within or external to the
microgrid, swift disconnection from the primary grid is imperative. This disconnection is facilitated through the
immediate operation of a static switch positioned proximate to the common coupling point. Such rapid action is
essential to mitigate potential damages and expedite the restoration of electrical services. To ensure the delivery
of reliable and high-quality energy to end consumers while alleviating stress on the utility grid, this paper in-
troduces a novel methodology for the efficient detection, classification, and localization of faults in a microgrid
cluster connected to the external grid. The proposed system addresses diverse irregular conditions, including
conventional faults, high-impedance faults, islanding scenarios, and adverse events, covering several zones
within the microgrid cluster and the external electrical grid. The proposed approach is based on a fusion of the
Taguchi methodology and the discrete Wavelet transform. This combination enables the optimization of con-
volutional neural network training using scalograms generated from the fault signals. The results demonstrate
the model’s high performance, achieving 99.25 % accuracy in fault localization and 99.13 % in fault detection
and classification, all within less than 10 ms. In comparison, traditional methods like support vector machine and
decision trees require over 16 ms with lower accuracy, underscoring the superior speed and precision of the
proposed approach.

are crucial for the reliable and sustainable distribution of energy [1].
The cluster includes MGs with diverse RES and varying load profiles.

1. Introduction Despite dedicated research on the protection of individual MGs, the
security and reliability of MG clusters remain critical concerns [2-4]. A

The evolution of modern electrical grids has incorporated clusters of key challenge is the detection and characterization of high-impedance
microgrids (MG) to enhance system flexibility and resilience during the faults (HIF) in systems with multiple RES, presenting as disruptive

transition to renewable energy sources (RES). These interconnected MGs
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Nomenclature

Acronyms

AB PhaseA-PhaseB

ABC PhaseA-PhaseB-PhaseC
ABCG PhaseA-PhaseB-PhaseC-Gound
AC PhaseA-PhaseB

ACG PhaseA-PhaseC-Ground

AG PhaseA-Gound

BC PhaseB-PhaseC

BCG PhaseA-PhaseC-Ground

BG PhaseB-Ground

CG PhaseC-Ground

PV Photovoltaic

BS Battery Storage

W Wind turbine

H, Hydrogen storage

HK Hydrokinetic

ANN Artificial Neural Networks
DWT Discrete Wavelet Transform
FT Fourier Transform

GTO Gorilla Troops Optimization
GPR Gaussian Process Regression
IED

Tanh Hyperbolic Tangent

IoT Internet of Things

HIF High Impedance Faults

MG MicroGrid

NNRBF Neural Network Radial Basis Function
CCP Common connection point
DL Dropout Layer

PCQ-WT Pseudo-Continuous Quadrature Wavelet Transform
PMU Phasor Measurement Units
RES Renewable energy system
ReLU Rectified Linear Unit

STFT Short-Time Fourier Transform
SMX Softmax

WT Wavelet Transform
Parameters and decisions variables

Xe, w Current sign

v Wavelet mother

a,b Scale Factor and temporal displacement
Cik Approximation coeficients

djx Approximation coeficients
bk Scaling Function

Wik Discrete Wavelet

Sowr Scalogram discrete Wavelet
myg Factorial Combinations Factors
nrg Factorial Combinations Levels
XTg Number of experiments

Yrg Factors

27g Levels

arg Load level

Prg Wind speed

1g Short circuit capacity

brg Solar irradiance

£rg River speed

Crg Hydrogen flow

re Ambient temperature

Scwr Scalogram Continous Wavelet
7scny  weighted input

Y, convolution filters

wsgcny  activation of the characteristic in the position
o Weights

Csr Biases

y One-hot prediction

y One-hot label vector

anomalies [5]. HIFs pose a threat to the stability and security of MG
clusters [6]. Detecting faults, especially in islanded mode with low fault
currents, is a challenge [7]. While sophisticated algorithms could
consider all conditions, the computational time and effort would be
critical. It is essential to develop an efficient fault detection method
capable of identifying and locating different types of faults considering
various operational conditions of RES. This is the central focus of this
research.

In the literature, conventional protection methods employ relays and
sensors to monitor electrical parameters in MG, such as short circuits
and overloads, activating automatic switches. With the incorporation of
the internet of things (IoT) and MG management systems, smart pro-
tection uses networks and sensors to monitor and collect data. Machine
learning algorithms and artificial intelligence analyze the information to
respond to faults and anticipate problems. In fault detection, especially
HIF faults, specialized devices such as phasor measurement units
(PMUs) and protection relays are required. These devices collect voltage
and current data to identify HIF through algorithms. PMUs are crucial
for real-time fault detection, allowing a quick response and disturbance
management in the electrical system. For example, in [8], a robust state
estimation approach is proposed for fault location using optimization
task modeling with voltage and current measurements obtained from
PMUs. This method considers errors in network parameters, improving
the accuracy of the process. Additionally, in [9], a method is presented
to identify the location of HIF in the electrical power distribution based
on the estimation of fault impedance using synchronized voltage and

current phasors of the third harmonic collected by uPMUs. In [10], the
authors present a fault location algorithm for observability using PMUs
in the presence or absence of zero-injection buses. Regarding specific
devices, the device [11] that detects and recognizes HIF in 12/7 kV
distribution networks uses two main real-time algorithms, monitoring
the energies of non-fundamental components and detecting wide vari-
ations in the waveform of the signal and its spectral components.
Simulations provide a controlled environment to explore and vali-
date fault detection methods without compromising the stability of real
electrical systems. For simulations, selecting an appropriate model of
HIF is crucial. In [12], the authors propose the enhanced Emanuel model
to accurately simulate HIF under different working conditions.
Furthermore, a field-tested model representing the two characteristics of
HIF current, nonlinearity, and asymmetry, is presented in [5]. Study
[13] suggests the use of two variable fault resistances to mimic the
randomness of HIF faults. The use of techniques such as the Wavelet
transform (WT), especially the discrete Wavelet transform (DWT), plays
a fundamental role in extracting and analyzing relevant parameters from
simulated fault signals [14]. The authors in [15] have explored different
fault scenarios and have shown that the Wavelet packet transform is
more robust in the presence of signal noise compared to the wavelet
transform. Studies like [16,17] have demonstrated that this hybrid
approach with DWT is reasonably accurate and presents minimal esti-
mation error in determining fault location in power systems. Specif-
ically, [18] proposes a fault detection method based on the DWT, using
decomposition to analyze traveling wave signals in details and
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approximations. The results indicate that this fault detection algorithm
is reliable in its assessments of fault presence in the electrical system.

In addition to WT-based techniques, there has been a growing in-
terest in leveraging the capabilities of convolutional neural networks
(CNN) for fault detection and characterization. Recognized for their
efficiency in image processing, CNNs have demonstrated notable effec-
tiveness in handling scalograms generated by DWT, scalograms are vi-
sual representations of time-frequency information generated through
WT analysis, capturing the transient characteristics of fault signals in a
2D matrix. This capability makes them instrumental for achieving ac-
curate fault detection and localization within clusters of electrical MG.
Experimental results from various studies, including [17,19], illustrate
the success of this approach, achieving ultra-fast detection with a high
accuracy rate, even in the presence of noise. In studies such as those
presented in [20], a hybrid technique is proposed that combines DWT,
artificial neural networks (ANN), and Gaussian process regression (GPR)
for HIF diagnosis. The results of these studies indicate that this hybrid
approach is reasonably accurate and presents minimal estimation error
in determining fault location. Furthermore, in another study [21], an
algorithm based on a neural network with a radial basis function
(NNRBF) is suggested for fault detection. Additionally, CNN-based
models optimized using the gorilla troop optimization (GTO) have
shown promising accuracy rates [18].

Despite extensive research on rapid fault detection, classification,
and localization in MG-based electrical systems, several critical gaps
remain unaddressed. Most conventional methods lack adaptive learning
mechanisms, relying on empirical data alone, which reduces detection
accuracy when key parameters—such as fault resistance, renewable
source power, or HIF types—fluctuate [2,4-6,9]. This dependence on
fixed data limits the flexibility of these systems, making them less
effective in dynamically adjusting to real-world variations that are
common in MG. In addition, many Al-based models, including ANNs and
Decision Trees, require large training datasets to reach acceptable ac-
curacy, which greatly increases computational requirements [8,17-19].
Such computational demands restrict these models’ feasibility for
real-time applications in rapidly changing environments like MGs,
where fast processing is critical to ensure protection and resilience.

Furthermore, a large portion of existing fault detection research is
focused on transmission systems rather than distribution systems,
creating a gap in solutions tailored for MG clusters. MG clusters present
specific challenges: fault currents are significantly lower than in the
main grid, which makes conventional protection systems less effective in
this context. Some studies [10,18,22,23] recommend deploying multi-
ple sensors to improve detection and localization accuracy across
distributed MG networks. However, the use of numerous sensors raises
issues of system vulnerability and cost; the failure of any one sensor
could reduce the effectiveness of the protection system and increase
operational expenses. Then, the variability of fault currents under
changing power levels—driven by renewable resource availability,
especially during islanded operations—presents another challenge.
Addressing this variability requires fault detection methods that can
effectively adapt to different load and generation scenarios in MG
clusters [13-15]. Failing to accommodate this variability can compro-
mise system reliability, highlighting the need for approaches like the
Taguchi-CNN that provide flexible and robust detection across diverse
operating conditions.

Given these identified limitations in conventional methods, this
article introduces the innovative Taguchi-CNN method. This approach
uniquely combines the capabilities of DWT [19,23,24], data optimiza-
tion using the Taguchi method [20,25], and pattern recognition through
CNN [13,18,19] to address the persistent challenges in MG-based fault
detection systems. Specifically, it offers an optimized, adaptable solu-
tion to enhance detection accuracy under varying operating conditions,
overcoming the drawbacks of static, data-heavy approaches.

The Taguchi method enables a reduction in the volume of input data
required without compromising accuracy by using orthogonal arrays for
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optimization. This statistical optimization approach is crucial for man-
aging data efficiently while capturing system variability through mini-
mal experimental runs. By integrating DWT, the proposed method
achieves effective multiscale decomposition, extracting key features
from fault signals to enhance detection accuracy.

The primary goal of this method is to improve detection, classifica-
tion, and localization capabilities across a wide range of fault types in
MG and distribution systems, including HIF, islanding events, and var-
iations in renewable generation. Unlike conventional methods, this
approach is resilient under diverse operational scenarios, ensuring
reliable performance in complex MG environments.

The key contributions of this article are summarized as follows:

e Development of a multiscale decomposition approach using CWT
and DWT near the static switch at the point of common coupling
(PCC), eliminating the need for complex sensors and integrating
easily into existing protection relays or intelligent electronic devices
(IEDs) with PMU-based monitoring.

e Implementation of a fault pattern recognition system combining

CNN and DWT, reducing reliance on peak maxima and providing

greater robustness in fault pattern identification compared to con-

ventional methods.

Efficient use of an orthogonal array through the Taguchi method to

create a concise, representative training dataset for the CNN. This

approach accommodates renewable source variations and load
conditions, minimizing the need for extensive random data and
significantly reducing CNN training time.

e A comprehensive approach addressing essential functions in fault
detection, classification, and localization, covering HIF anomalies,
islanding, and switching events both within and beyond the MG
cluster, ensuring full and effective protection for the interconnected
electrical system.

The remaining structure of this paper is organized as follows. Section
2 presents the proposed methodology in the study, followed by the
introduction of the innovative Taguchi-CNN in Section 3. Section 4
thoroughly addresses the case study, while in Section 5, the results are
presented and discussed. Finally, Section 6 summarizes the conclusions
derived from this paper.

2. Methodology

The proposed methodology for fault detection in a MG cluster is
illustrated in Fig. 1. Waveforms of fault currents in different zones of the
MG cluster are generated through simulations conducted in DigSILENT
Power Factory software. These waveforms are measured at the PCC,
located in proximity to the static switch. Subsequently, employing the
Taguchi method, an optimization of the quantity of simulation-derived
data is performed. This process aims to preserve the accuracy and
robustness of the data, which are crucial for generating scalograms using
the WT. The resulting scalograms serve as a training set for a CNN. The
primary function of this CNN is to recognize patterns that enable the
identification not only of the type, phase, and location of faults in the
MG cluster but has also been extended to include the detection of HIF,
line opening and closing events, and islanding situations.

2.1. HIF modeling

High Impedance Faults represent a complex phenomenon charac-
terized by nonlinear behavior and the generation of electric arcs, often
challenging traditional protection systems due to their low current
magnitude. HIF exhibits three distinctive traits—accumulation, nonlin-
earity, and asymmetry—manifesting as a gradual increase in current
over cycles, the presence of odd harmonics, and asymmetric character-
istics [11]. While modern technology enables HIF detection using
micro-PMUs and high-resolution IEDs, implementing such solutions
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Fig. 1. Schematic representation of the proposed research.

remains costly and complex [26].

To replicate these arcs in automatic switches, the Emanuel arc model
was selected as the primary focus of this investigation [19]. Emanuel’s
model is a representative HIF model comprising variable resistors, di-
odes, and DC voltage sources connected in antiparallel. In this study,
voltage sources and resistors simulate the stochastic nature of arc
voltage and resistance fluctuations [19]. The schematic structure of the
proposed arc model is depicted in Fig. 2. In the context of the model, Vgp
and Vgy denote the positive and negative arc voltages during HIF events,
capturing the nonlinear characteristics of HIFs. Fault resistance and
inductance parameters are assigned to the positive and negative
branches. For simplicity, Zgp and Zgy refer to the positive and negative
arc impedances, respectively.

2.2. Wavelet transform

The Fourier transform (FT) does not provide direct information
about oscillating signals and is more suitable for the analysis of problems
in a steady state. In contrast, the short-time Fourier transform (STFT)
divides the entire time interval into small equal intervals, each analyzed
individually by the FT. However, the STFT is not effective in detecting
signals of very short duration and high frequency. On the other hand, the
WT has been extensively used in the analysis of transient signals due to
its diverse window function in the time domain. The WT overcomes the
limitations of both FT and STFT [27,28]. In this work, both CWT and
DWT are employed to generate scalograms and train the CNN, and the
better option between them will be selected.

Let WT be the set of wavelet values for this experiment, and N the set
of natural numbers. The CWT of a signal x. (t) (current wave signals)
with respect to a mother wavelet y/(t) (Daubechies-20 has been heu-

Z VFN
FN
all
i |
V _F'
F&—— 1

Fig. 2. Diagram illustrating the Emanuel arc model.

ristically selected in this case), at a scale a, and a shift b is defined as
shown in Eq. (1) [29]:

CWTap[x., w(t)] = % [ ) X w®)w(®) (%) dt; VCWT € WTU N
1)

where a, b represents the scale factor and temporal displacement,
respectively.

The DWT is an extension of the WT designed for discrete-time sig-
nals. It decomposes the signal using low-pass and high-pass filters. When
applied to the signal x. (t), the result is given by Eq. (2) [29]:

DWTap[xe, w( ~7a / ( b) dt; YDWT € WTUN )

Calculation of the coefficients ¢jx  and d; involves convolution with
DWT and scaling functions, as expressed by Egs. (3) and (4). Employing
a three-level DWT for the specific signal characteristics, this process
provides three resolution levels for both approximation and detail co-
efficients. Each stage results in signal reduction by a factor of 2, [29]:

61 = (x(0. 4u0) == xim g (" E)eowr e wron

dx = (x(0), w,-_k<r>>:%anm).w(%);vvw*rewww @

where ¢ (t) and ;. denote the discrete scaling and wavelet functions,
respectively, with n representing the discrete time variable. For a more
comprehensive understanding of the signal and its wavelet coefficients,
along with an enhanced visualization of signal energy, scalograms have
been generated. This process involves mapping the 1-D signal into a 2-D
matrix. The resulting matrix, analyzed in multiresolution with a sam-
pling frequency of 200 Hz, provides valuable insights. For the signal
X¢, w(t) and its DWT decomposition up to level J, the scalogram Spwr(j, k)
is constructed using detail coefficients d;; obtained at each decompo-
sition level, as expressed in Eq. (5) [30].

Sowr(j,k) = |dix|*;V S € WTUN ®)

In the case of CWT, the scalogram Spwr(a, b) is built by squaring the
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magnitude of CWT coefficients at various scales a and positions b, as
illustrated in Eq. (6) [30].

Sewr(a,b) = |CWTo,[x(0)]]*;V S€ WTUN )
2.3. Taguchi method

The Taguchi method is an advanced experimental design strategy
used to optimize industrial systems and processes by determining the
ideal configuration of input parameters. In the context of fault detection
in a MG cluster, this method is applied to efficiently manage simulation
data acquisition, minimizing the number of experiments required
without compromising result quality.

Instead of testing all possible combinations of input variables as in
traditional full factorial designs, the Taguchi method utilizes orthogonal
arrays in a fractional factorial design. These arrays allow exploration of
a reduced set of experiments that capture the essential variability of the
system. This approach is particularly crucial in studying complex sys-
tems like MG clusters, where factors such as short-circuit capacity, solar
irradiation, wind speed, among others (detailed in Table 1), significantly
influence system response under various operating conditions and fault
events.

In this study, various fault simulations were conducted by varying
conditions of renewable sources and electrical loads within the MG
cluster, using DigSILENT Power Factory software. These simulations
generated fault current waveforms in different zones of the MG cluster,
measured at the PCC near the static switch. The resulting data were used
to create scalograms using WT, serving as training sets for a CNN. To
highlight data optimization in this study, each of the eighteen experi-
ments (L1-L18) includes four input variables and 16 noise variables,
resulting in a total of 1152 fault scenarios and 18 normal scenarios. In
contrast, opting for a full factorial design without Taguchi would have
required 16,640 scenarios to cover all possible combinations (4* x 4 x
16 + 4*). This represents a significant reduction in dataset size (CTH)
by approximately 83.44 %. This optimized methodology not only min-
imizes computational resources and time but also ensures a thorough
and efficient evaluation of system response to various conditions and
fault events in MG clusters.

In other words, employing full factorial combinations with mz, fac-
tors, each with ng, levels, would result in an impractical number of
required experiments, calculated as ngp,™s. In Taguchi notation
Ly, (y1g™), where xrq,yrg, 215 represent the number of experiments,
levels, and factors respectively, the orthogonal matrix Lig(3”) covers
eighteen orthogonal experiments (L1 - L18) to encompass all possible
combinations [25]. Specifically, the Taguchi method in this study in-
volves five essential elements:

- MG cluster at PCC. This component, connected to the main grid,
serves as the system response generator.

- Fault or even. This factor occurring in the four zones acts as the
system input. Isolation occurs if the fault is outside the MG cluster.

- System response. Represented by generated scalograms, this output
reflects the system’s reaction.

Table 1
Factors that affect system behavior.
Factors Level 1 Level 2 Level 3
arg: Load level (MVA) 6 4 8
Prg: Wind speed (m/s) 7 0 13
r1g: Short circuit capacity (MVA) 800 600 1200
6rg: Solar irradiance (W/m?) 700 0 1100
erg: River speed (m/s) 3 0 4
Crg? Hydrogen flow (ma/h) 15 10 20
&1t Ambient temperature (°C) 15 5 25

Applied Soft Computing 170 (2025) 112667

- Types of faults. Whether balanced, unbalanced, or HIF, these faults
impact the output response, resulting in a total of 16 types or noises,
as illustrated in Fig. 1.

- Other factors. Additional factors affecting system output, detailed in

Table 1 (aTgs ﬂTg= V1gs 5Tg78Tg¢§Tg7 ng )

2.4. Convolutional neural network

Convolutional neural networks are instrumental in efficiently man-
aging substantial data volumes while minimizing computational costs,
making them pivotal in addressing various classification challenges
[31-33]. In the present study, CNNs are employed to classify scalograms
Scwr(a,b). The configuration of the CNN used is outlined in Fig. 3,
illustrating how scalograms are processed as raw time series (images) of
currents by the input layer. These images have dimensions of
(656 x875) pixels and consist of three-color channels (RGB).

The CNN architecture begins with basic components and evolves
through systematic sensitivity analysis, as detailed later, to optimize its
performance. Initially, 2-D filters are applied in the convolutional layers
to sample the input images, thereby transforming them into new
matrices. The selection of filter numbers and sizes, such as the imple-
mentation of three convolutional layers (32 x 3 x 3);(32x5x5)
; (32 x 5 x 5), is determined by the spatial range of neurons within the
input matrix. Following convolution, the rectified linear unit (ReLU)
activation function is applied to introduce non-linearities and enhance
the model’s training efficiency [34]. The mathematical formulations for
the convolutional layers with ReLU are precisely articulated by Egs. (7)
and (8), with CNN representing the amalgamation of all experiments
within this framework. This foundational architecture is further refined
through comprehensive sensitivity analysis, elucidated subsequently,
which rigorously examines the impact of key hyperparameters on CNN
performance. This approach aims to derive optimal values for these
parameters, ensuring robustness and efficacy in classifying scalograms
SCWT(a«, b) [34].

Y T
/:r.CNN(l) = Z Z (wl(/l/Z'SWT(a.b). s+u-1, r+p—l) + €§?ny
v=1

p=1
€ WTUCTH U CNN %)
@ on = ReLU(yy exn™”); Voo € WT U CTH U CNN €)

where 4. v is defined as the weighted input before applying the
activation function, Y and I are the dimensions of the convolution fil-

ters, wg'),CNN is the activation of the feature at position (s,r) in layer (1).

Additionally, a)E;,) represents the weights, and gﬁ'} represents the biases
associated with that activation.

In subsequent stages, maximum pooling layers are utilized to
downscale data, diminish dimensions, and attenuate redundant infor-
mation. This process is crucial for averting overfitting and fortifying
system resilience. Specifically, a (3 x 3) maximum pooling layer with a
stride of 2 is applied to condense the spatial dimensions of the output
(resulting in a 3 x 3 x 2 matrix) for each convolutional layer. To further
mitigate overfitting, a dropout layer (DL) with a 50 % dropout rate is
incorporated. The mathematical operations governing these processes
are formally delineated in Egs. (9) and (10) [22].

P = maxnn (1 cwyrim, o-1pexin )i € WTUCTHUCNNUN
)
DL = dropout(y,, oyy"); VDL € WT U CTHU CNN U N (10)

Following the convolutional layers, fully connected layers are
employed to facilitate pattern recognition. At this stage, each neuron is
connected to all neurons in the preceding layer, combining the features
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Fig. 3. Fundamental architecture of convolutional neural network.

extracted from previous stages. This configuration enables the classifi-
cation of intricate patterns, with the number of output neurons corre-
sponding to the distinct classes in the classification task [22]. In this
study, the fully connected layer comprises 64 neurons, each dedicated to
classifying specific fault types (16 different types across 4 zones) in each
Taguchi experiment. The ReLU activation function is applied in these
fully connected layers to introduce non-linearity, crucial for enhancing
the network’s discriminative capability. The mathematical expressions
that define the operations of the fully connected layer are provided in
Egs. (11) and (12) [22].

P Q
oo = > D (@) wfidw) +6¥i¥o € WIUCTHUCNNUN (1)

f=1 e=1
@ty = ReLU(6\ Ly ); Vo € WT'UCTHUCNN U N 12)

where P and Q are the dimensions of the max-pooling layer activations.
The output layer uses the softmax function (SMX) for multiclass classi-
fication, as shown in Eq. (13). For the classification task, the cross-
entropy loss function is employed, as represented in Eq. (14) [35].

SMX =2V 2z € WT'UCTHU CNNN 13)

CrossEntropyLoss(y,y) = E yelog(ye);V ¥, y

€ WITUCTHUCNNUN a14)

where ¥ is the predictions and y is the one-hot encoded label vector.

During the training setup, pivotal parameters are carefully selected.
The Adam optimizer is employed with a maximum of 1000 epochs to
optimize model weights iteratively. An initial learning rate of 0.0001 is
set to control the magnitude of weight updates during training. Addi-
tionally, L2 regularization with a coefficient of 0.001 is applied to pre-
vent overfitting by penalizing large weights in the model.

The model’s efficacy is assessed using a separate validation set,
ensuring unbiased evaluation of performance. Training progress is
visually monitored to track convergence and assess potential issues like
overfitting or underfitting. For robust training, the dataset is partitioned
into 80 % for training and 20 % for validation, adhering to standard
practices in machine learning. The Taguchi methodology is applied to
optimize data acquisition in fault simulations within MG clusters. Each
of the 18 Taguchi experiments (L1 —L18) explores unique combinations
of 4 input variables and 16 noise variables, generating 1152 fault sce-
narios and 18 normal scenarios. These simulations encompass 11
distinct fault types, totaling 12,870 training data points. Compared to a
full factorial design approach, which would require 16,640 scenarios to
cover all possible combinations, the Taguchi methodology significantly
reduces the required dataset size by 83.44 %. Without applying this
method, the total number of scenarios would have been 77,742. This

optimization conserves computational resources and ensures an efficient
evaluation of system response to various conditions and fault events in
MG clusters. On the other hand, in the study, the sampling frequency
used in DigSILENT Power Factory to simulate the power system was
50 Hz, suitable for capturing variations in system currents and voltages.
Subsequently, when processing the data in MATLAB 2021a, for CNN
application and DWT analysis, a sampling frequency of 200 fs was
employed. This facilitated a detailed representation of the time-
frequency energy distribution of current signals, aiding in the identifi-
cation of relevant patterns for event classification in the power system.

3. Proposed method

This section provides a detailed and chronological explanation of the
proposed Taguchi-CNN method, as illustrated in both Fig. 4. The focus of
this method is on fault detection, classification, and localization through
a static switch at the PCC in a MG cluster. It is noteworthy that MG
clusters are typically not owned by the main electrical company. In the
event of a fault in the main grid or the MG cluster, it is crucial to activate
the static switch on the MG cluster side, near the PCC, before conven-
tional protective relays.

3.1. Taguchi method for fault current data acquisition

At the outset, input data is extracted following multiple computa-
tional simulations using DigSILENT PowerFactory 2020 software. In
practical applications, these would be acquired through a standard PMU
or a protection relay incorporating PMU capabilities. Subsequently, the
Taguchi method, is employed to construct an orthogonal dataset spe-
cifically designed for training the CNN. This approach not only
streamlines training procedures but also maintains the accuracy of CNN
predictions.

3.2. DWT for feature extraction

Once the orthogonal is defined, a comparison is made between the
accuracy and simulation time in each case, and the best option is chosen.
In this case, DWT is selected as the optimal choice. The scalograms are
matrices containing signal signatures corresponding to events in the MG
cluster. Subsequently, the scalograms are quantized into digital images
to compress the data size.

3.3. CNN architecture design and training

The next phase involves inputting the scalograms and training the
CNN model. The CNN model is then implemented to detect, classify, and
locate faults based on features extracted by the DWT, whether they
occur inside or outside the MG cluster. Leveraging its pattern recogni-
tion capabilities, the CNN identifies fault patterns within the input data.
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Fig. 4. Flowchart for fault detection, classification, and localization in clus-
tered MG using Taguchi-CNN proposed method.

Finally, the detected event is reported to the static switch at the PCC.

In summary, the flowchart depicted in Fig. 4 explains the method-
ology employed in this study. The process begins with data preparation,
where a set of training images is collected and labeled based on simu-
lations conducted in DigSILENT Power Factory. Using the Taguchi
method, the amount of representative data from simulations is reduced
to generate scalograms using CWT and DWT. The optimal method is
selected in terms of both temporal accuracy and precision efficiency
from these scalograms generated for all proposed fault and event com-
binations in the study. Subsequently, CNN validation is carried out in
MATLAB 2021a. Here, an extensive process of training and parameter
tuning is conducted to optimize the model. Once the network is trained,
it will be capable of detecting, locating, and classifying faults and events
within and outside a MG cluster.

4. Case study and data simulation

In this paper, a study and simulation were conducted on a MG cluster
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connected to the main grid, as depicted in Fig. 5. Zones 1-3 consist of
MG cluster, while zone 4 represents the external grid (outside the MG
cluster). The key characteristics of the sources and loads forming each
MG are outlined in Table 2. Fault locations are randomly chosen and
marked on the unified diagram, with fault current measurements taken
at the static switch at the PCC. A total of 11 fault types (AB, ABC, ABCG,
ABG, AC, ACG, AG, BC, BCG, BG, CG) were analyzed, along with sim-
ulations of line opening and closing events (event), (HIF-A, HIF-AB, HIF-
ABQ), islanding and others events. This results in a total of 16 distinct
scenarios or noise types. To gather more data and enhance accuracy,
resistances for the 11 fault types, islanding, and line events were varied
(R=0.01Q,0.05Q, 0.1 Q,0.8Q,1.5Q, and 3 Q), considering the factors
and levels from the Taguchi experiments that influence the system
output. In this study, both symmetrical and asymmetrical faults are
included to assess the robustness of the detection system. Symmetrical
faults are those in which all phases are equally affected, such as three-
phase faults (ABC). On the other hand, asymmetrical faults affect only
one or two phases and are more common in distribution systems; ex-
amples include phase-to-ground faults (AG, BG, CG), phase-to-phase
faults (AB, BC, AC), and phase-to-phase-to-ground faults (ABG, BCG,
ACG). To ensure a comprehensive system analysis, an initial fault angle
of 90° was considered in the waveform cycle, a point where the current
reaches its peak value. This choice allows the evaluation of the model’s
ability to detect and classify faults under conditions of maximum system
demand.

The proposed model was evaluated using a computational worksta-
tion with a Core i9 CPU at 3.90 GHz, 16 GB of RAM, and an NVIDIA
GeForce RTX 3070 GPU. The Taguchi-CNN code was implemented using
MATLAB 2021a.

Moreover, the detailed specifications of each component within the
microgrid system, including generation sources, transformers, con-
verters, and the static switch are presented in Table 3. This
Table provides a comprehensive overview of the capacities, voltage
ratings, and functional descriptions of each element to enhance under-
standing of the system’s operational capabilities and configuration.

5. Results and discussions

This section presents the results of the CNN simulations and their
implications. It begins with a comparative analysis between DWT and
CWT in terms of fault detection. Following this, the training and vali-
dation results of the Taguchi-CNN model are discussed, followed by a
sensitivity analysis. Finally, a comparison with other established
methods is provided.

5.1. Comparative DWT/CWT

This section provides a detailed examination of the results obtained
from our CNN simulations utilizing DWT and CWT scalograms. Table 4
presents a comprehensive comparison highlighting the superior per-
formance of DWT over CWT across various metrics including training
time and accuracy for fault detection, event identification, HIF, and MG
cluster isolation. Notably, DWT consistently outperforms CWT in fault
localization, exhibiting higher accuracy and efficiency, thereby vali-
dating its selection as the preferred method in our proposed approach.
These findings underscore the effectiveness of DWT in enhancing the
performance of fault detection and localization tasks within our pro-
posed methodology. The superior accuracy and efficiency offered by
DWT over CWT can significantly contribute to improving the reliability
and stability of power systems. By accurately identifying and localizing
faults, such as HIF and MG cluster isolation, DWT empowers utility
companies and system operators to promptly respond to electrical dis-
turbances, thereby minimizing downtime and enhancing overall system
resilience. Additionally, the reduced training time associated with DWT
further emphasizes its practical utility, enabling faster deployment and
implementation of fault detection systems in real-world scenarios. This
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Fig. 5. One-line diagram of proposed cluster MG system.

Table 2
Details of RES and loads in the studied MG cluster.
MG Source Power (MW) Power (MVA) Load (MVA)
1 Wind 2.50 2.78 1.50
2 Wind, Hydrokinetic 9.10 12.78 8.34
3 Wind, Battery, PV 3.21 3.78 3.00
4 Wind 2.50 2.78 1.50
5 Wind, Hydrogen 2.62 3.08 2.00

reduction in detection time is particularly beneficial for HIF scenarios,
where quick, precise responses are essential for maintaining stability in
MG clusters.

Fig. 6 exhibits DWT-generated scalograms representing various
faults and events within an MG cluster, to be utilized for training and
validation of the CNN model. These scalograms enable accurate classi-
fication and localization by capturing signal characteristics. Each sub-
plot illustrates distinct operational conditions, thereby contributing to
the effective analysis and diagnosis of faults and events.

5.2. Taguchi-CNN training and validation

Fig. 7 provides a detailed insight into the accuracy and loss during
the training and validation of the Taguchi-CNN method in four distinct
zones of the MG cluster (zone A, zone B, zone C, and zone D). The
training accuracy reflects the proportion of examples correctly classified
by the model in the training set. It is observed that the training accuracy
for all four zones increases over time, reaching the maximum value of
100 %. However, it is important to note that zone A requires 60 epochs
to reach 100 %, in contrast to the other zones. This variation could be
attributed to factors such as the size and complexity of the dataset in
zone A, where there are several RES and energy storage, as seen in Fig. 5.
Regarding the loss, both training and validation losses represent the
average error of the model’s predictions. In Fig. 7, a consistent decrease
in both training and validation losses is observed across all zones over
time.

Below, Fig. 8 presents the monitoring of training and validation of
the Taguchi-CNN across three types of faults and a transmission line
opening and closing event. Regarding fault location, it is observed that
the training accuracy reaches an optimal level of 100 % after 32 epochs,

accompanied by a training loss converging to zero. Subsequently, under
a transmission line opening and closing event, it is highlighted that ac-
curacy reaches 100 % after merely 6 epochs, with a corresponding
decrease in training loss to zero. This suggests that the CNN is capable of
accurately classifying different types of events after a short training
period while maintaining minimal loss. In the third case of islanding, it
is recorded that accuracy reaches 100 % after 17 epochs, showcasing the
model’s ability to identify islanding situations within the power system
with moderate precision after a moderate number of training epochs,
while maintaining minimal loss. Lastly, in the case of HIF, it is empha-
sized that the CNN achieves a perfect accuracy of 100 % after only 3
epochs, with a rapid convergence of training loss to zero. This result is
significant as this type of fault detection often poses a challenge for
conventional relays.

5.3. K-fold validation

The observed variations in accuracy within the confusion matrix
(Fig. 9) stem from inherent similarities among fault classes, particularly
notable in cases like (ACG) and (AC), as well as (BG) and (BCG) faults.
These resemblances in electrical characteristics may lead to overlaps in
signal features, influenced by factors such as sampling resolution, elec-
trical noise, and variations in power grid conditions. Despite these subtle
distinctions, accuracy rates of approximately 96.2 %, 95.6 %, and
94.2 % highlight the model’s proficiency in accurately classifying fault
types in electrical transmission systems, even when faced with inherent
challenges.

Moreover, as depicted in Fig. 10, the CNN demonstrates adept fault
localization across four distinct zones, achieving 100 % precision in
most cases. Notably, in zone A, the accuracy is commendably high at
96.98 %. Despite this slight variability, the overall average accuracy of
99.25 % in fault localization across diverse areas reaffirms the model’s
robustness and effectiveness.

In the context of validating a CNN for global fault detection and
localization, the results obtained from a systematic evaluation involving
multiple folds of the dataset are presented in Fig. 11. These results
showcase the model’s performance across various metrics, reflecting its
effectiveness in accurately detecting and localizing faults. The analysis
involves a total of 15 folds, each representing a distinct evaluation
scenario. The key performance metrics assessed include accuracy, F1-
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Table 4
Comparative results between DWT and CWT.

Table 3
Technical specifications of microgrid components and system configuration.
Element Description Capacity / Limit ~ Rated Comments
Voltage
MG1 - Wind Wind 2.5 MW, 2.78 380V Operating
Turbine generation with  MVA under IEC IIA/
adjustable IIIB wind class,
power factor. power factor
adjustable

between 0.95
capacitive and

inductive.
MG2 - Wind Wind and 9.1 MW, 12.78 380V Turbines with
and hydrokinetic MVA converters
Hydrokinetic energy sources. allowing
Turbine reactive power
adjustment.
MG3 - Wind, Combination of 3.21 MW, 3.78 380V Battery and PV
Battery, Solar wind energy, MVA include DC/
PV battery storage, DC and DC/AC
and solar PV. converters for
integration
with AC
systems.
MG4 - Wind Additional 2.5 MW, 2.78 380V High-
Turbine wind MVA efficiency
generation. wind
generator
designed for
low wind
speeds.
MGS5 - Wind Wind energy 2.62 MW, 3.08 380V Hydrogen

and Hydrogen  and hydrogen MVA storage with

Storage storage. converters for
continuous
integration in
the microgrid.

Main Voltage Approximately 69kV/  ONAN

Transformer reduction from 25 MVA 11 kv transformer

69 kV to 11 kV with on-load

at PCC. tap changer
(OLTC) for
voltage
adjustment
based on load.

Microgrid Transformersin ~ 15.56 MVA 11kv/  Distribution

Transformers each zone to (Zone A), 3.78 380V transformers

step down from MVA (Zone B), to stabilize and
11 kV to 380 V. 5.86 MVA (Zone distribute
C) voltage at each
microgrid
level.

Static Switch Switch at PCC N/A 11 kV Supports

(SS) enabling isolated

microgrid operation of

disconnection MG in

from main grid emergencies,

in case of faults. enhanced by
PMUs for real-
time
monitoring
and control
under IEC
61850
standard.

DC/DC and Used in Bidirectional, N/A Flexible and

DC/AC batteries, PV, automatic efficient

Converters and hydrogen active and converters

storage to reactive power facilitating
adapt adjustment renewable
generated integration,
energy to AC optimizing
current. power
conversion
and system
stability.

Fault Modules Training time (s) Accuracy (%) Epoch (unit)

DWT CWT DWT CWT DWT CWT
Fault detection 48 51 99.13 98.36 30 23
Event 13 15 100 99.5 6 5
HIF 2.3 1.5 100 99.45 3 4
Islanding 10.5 16.8 100 98.43 17 15
Fault location 53 56.5 99.25 98.36 33 30

score, recall, and Matthews correlation coefficient, all of which are
pivotal in gauging the model’s robustness. Across these 15 folds, the
CNN consistently demonstrates high levels of accuracy, with an overall
mean accuracy of approximately 99.13 %.

This underscores the model’s capability to correctly identify faults
within the dataset. Furthermore, the F1-score, a metric that balances
precision and recall, averages at around 98.99 %. This reflects the CNN’s
ability to effectively strike a balance between precise fault localization
and comprehensive fault detection. The recall metric, which assesses the
model’s ability to accurately identify true positives among all actual
positive instances, averages at approximately 98.70 %. This signifies the
model’s proficiency in capturing most of the actual fault instances pre-
sent in the dataset. Lastly, the Matthews correlation coefficient, a
measure of the quality of binary classifications, demonstrates an overall
average of about 98.53 %. This metric reaffirms the model’s competence
in producing reliable classification outcomes, particularly in the context
of fault detection and localization.

5.4. Sensibility analysis

5.4.1. With respect to CNN hyperparameters

The sensitivity analysis presented in Fig. 12 explores how key CNN
hyperparameters impact the model’s performance regarding accuracy
and detection time. Starting with the number of convolutional layers
(Fig. 12a), an optimal balance is achieved with three layers, resulting in
99.13 % accuracy and a detection time of 7.6 ms. When increasing
beyond seven layers, the model’s accuracy declines while detection time
increases, indicating that additional layers add computational
complexity without improving performance.

Examining the number of filters (Fig. 12b) reveals that using 32 fil-
ters achieves a stable performance, with an accuracy of 99.13 % and a
detection time of 7.6 ms. Higher filter counts maintain accuracy levels
but result in slightly extended detection times. In terms of filter size
(Fig. 12¢), a 3x3 configuration yields the highest accuracy at 99.13 %
with a detection time of 7.8 ms. Smaller sizes, such as 1x1, show
consistently strong performance, while larger sizes like 7x7 reduce ac-
curacy to 95.77 % with similar detection times. The analysis of the fully
connected layer (Fig. 12d) suggests that 56 neurons provide optimal
accuracy (99.13 %) with a detection time of 7.6 ms. Increasing the
neuron count in this layer leads to slower detection times, for instance,
using 100 neurons reduces accuracy to 91.25 % and extends detection
time to 29.36 ms.

Following the analysis of CNN hyperparameters, Fig. 13 further in-
vestigates how other configuration elements—such as optimization al-
gorithms, activation functions, pooling layer sizes, and stride
values—influence classification accuracy and detection time. Among the
optimization algorithms tested (Adam, RMSprop, and SGD), Adam
performed best, achieving an accuracy of 99.13 % with a detection time
of 0.79 ms. RMSprop and SGD had slightly lower accuracies (95.09 %
and 89.18 %) and marginally longer detection times (0.93 ms and
0.87 ms, respectively). The activation functions ReLU and Sigmoid both
achieved 99.13 % accuracy with detection times of 0.79 ms and
0.75 ms, respectively, while Tanh algorithm reached 99.07 % accuracy
with a detection time of 0.81 ms. Pooling layer sizes were also explored,
with 3x3 providing the highest accuracy at 99.13 %, while 2x2 and
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Fig. 6. Scalograms and amplitude waveforms for different conditions: (a, e) No fault, (b, f) Single-phase fault, (c, g) Line opening/closing event, (d, h) High
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Fig. 7. Training and validation accuracy and loss of the Taguchi-CNN model across MG Cluster zones (A, B, C, D).

4x4 sizes reached accuracies of 97.31 % and 99.14 %. Detection times
were slightly different, with 0.79 ms for both 2x2 and 3x3, and 0.93 ms
for 4x4. Then, stride values of 1, 2, and 3 were tested. A stride of 1
achieved an accuracy of 99.09 % with a detection time of 0.88 ms, while
strides of 2 and 3 reached accuracies of 99.13 % and 98.03 % with
detection times of 0.79 ms and 0.78 ms, respectively.

This section further examines CNN hyperparameters, offering in-
sights into optimizing performance in data classification. Fig. 14 ex-
plores four key categories: dropout rate, initial learning rate, L2
regularization, and the number of training epochs. In dropout rate
analysis (Fig. 14a), values from 0.1 to 0.9 were tested, with an optimal
rate of 0.5 achieving the highest accuracy of 99.13 %. Higher dropout
rates reduce accuracy but improve computational efficiency. For initial
learning rate (Fig. 14b), a rate of 0.00001 produces peak accuracy
(99.13 %), while slightly higher rates, such as 0.0001 and 0.0002,
maintain strong performance, suggesting the importance of precise

10

tuning.

Regarding L2 regularization (Fig. 14c), an optimal value of 0.00002
achieves 99.13 % accuracy, whereas higher regularization levels reduce
accuracy, illustrating the balance between regularization strength and
model performance. Lastly, examining the number of training epochs
(Fig. 14d), accuracy stabilizes at 99.13 % after 35 epochs, indicating
convergence. Increasing epochs beyond this point extends training time
without significant accuracy gains, highlighting the trade-off between
computational efficiency and model precision.

5.4.2. Sensibility analysis considering Taguchi parameters

Fig. 15 presents the results of experiments evaluating system accu-
racy and detection time across various configurations of factors and
levels within the Taguchi framework. In Fig. 15(a), we observe that the
system’s accuracy, displayed as a percentage, remains consistently high
(around 99.13 %) even as the number of factors increases from 2 to 13
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Fig. 9. Taguchi-CNN fault detection confusion matrix.

11



P. Arévalo et al.

True Class

2794 | 87 0 0 2794
Zone Al g6 08% | 3.02% | 0.0% | 0.0% |96.98%
sone Bl O 2880 0 0 2880
0.0% | 100% | 0.0% | 0.0% | 100%
sone G| 9 0 2880 0 2880
0.0% | 0.0% | 100% | 0.0% | 100%
sone Dl © 0 0 2880 | 2880
0.0% | 0.0% | 0.0% | 100% | 100%
2880 | 2794 | 2880 | 2880 | 99.25%
100% |96.98% | 100% | 100% | 0.75%

Zone A Zone B

m
E 1
[}

E

= 10
C

S

E 8
D 1
T 100

Accuracy (%)

-
o

Detection Time (ms)
(&)}

100

Accuracy (%) 95

Zone C Zone D

Predicted Class

Fig. 10. Taguchi-CNN fault localization confusion matrix.

Metric

Applied Soft Computing 170 (2025) 112667

while keeping the levels constant. This stability suggests that additional
factors do not significantly impact accuracy, demonstrating the model’s
robustness in maintaining performance despite increasing complexity.
In Fig. 15(b), detection time, measured in ms, is displayed alongside
accuracy. The results show that increasing both factors and levels leads
to longer detection times, indicating a trade-off between complexity and
response speed. For example, as the number of factors increases from 2
to 14, detection time rises from 6.55 ms to 11.5 ms, illustrating the
added computational demands associated with a higher factor count.
Continuing with Fig. 15(c), the analysis shifts focus to levels alone,
isolating their effect on system accuracy and detection time. While ac-
curacy remains consistently high as the number of levels rises, detection
time increases noticeably. This result indicates that the model can sus-
tain its accuracy across a wider range of levels, but each additional level
contributes to increased processing time, impacting overall response
efficiency. Then, Fig. 15(d) examines the impact of varying factors
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Fig. 11. K-Fold validation of the global CNN.
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independently, showing how each factor level affects accuracy and 5.4.3. Sensitivity analysis with respect to system events
detection time. Similar to the trends observed in Fig. 15(b), an increase This section provides an in-depth analysis of critical events that
in the number of factors correlates with an increase in detection time, commonly occur in electrical power systems, including generator
further underscoring the relationship between model complexity and switching, capacitor switching, transformer energization, and load
computational load. switching within the main grid. This analysis was conducted outside the

MG cluster environment, as events within the MG cluster—defined by
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the SS—are less relevant due to the unique composition of MG, which
predominantly rely on RES and storage systems.

To conduct this analysis, the events described in Section 5.3 were
simulated using DIgSILENT software to generate the necessary temporal
data, which were then input into the Taguchi-CNN model. The model
effectively classified, located, and detected faults associated with
generator switching, capacitor switching, transformer energization, and
load switching. These events were also compared with HIF, single-phase
faults, other transient events, and islanding scenarios. Fig. 16 shows the
temporal waveforms of each new event, with separate plots for gener-
ator switching, capacitor switching, transformer energization, and load
switching.

Fig. 17 presents the DWT scalograms generated from these wave-
forms, which were used to train the CNN and enable accurate classifi-
cation and detection.

The Taguchi method was applied to streamline the data by adjusting
renewable loads to three levels per source, as outlined in Table 2. The
resulting data generated a confusion matrix shown in Fig. 18, which
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Fig. 16. Temporal waveforms of events. (a) Generator switching. (b) Capacitor switching. (c) Transformer energization.
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demonstrates the model’s classification accuracy across different events.
The model achieves an overall accuracy of 99.72 %, with a margin of
error of 0.28 %.

The high classification accuracy is slightly affected by similarities
between specific events. For example, generator switching and load
switching show an accuracy of 94.5 % due to similar variations in cur-
rent and voltage, which complicate differentiation. Likewise, capacitor
switching and transformer energization yield an accuracy of 96.77 %, as
both events generate transients that impact system signals in similar
ways. Despite these minor challenges, the Taguchi-CNN model remains
robust and effective in detecting and classifying these critical events,
confirming its value in monitoring and analyzing complex electrical
systems, including MG.

5.5. Comparison with other methods

In the comparison of fault detection and classification methods,
Table 5 provides a summary. The Taguchi-CNN method stands out for its
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Table 5
Comparative analysis of fault detection, classification and location methods in
MG systems.

Method Accuracy (%) Parameter

classification
Fault Fault Fault
detection classification location

Over-current 56.00 - - -

relay [24]

Differential 96.00 - - -

relay [24]

Decision Tree 97.00 85.00 -

[24]

Random Forest 99.00 94.00 -

[24]

SVM [18] 99.03 - - -

1-D CNN 94.53 94.19 93.08 Phases

BiLSTM-

Attention model

Xception 98.60 98.60 98.60 Phases, HIF

transformer

[19]

WT-CNN [23] 99.31 97.60 94.10 Phases, swith
event

CNN-GTO [18] 99.36 99.00 98.20 Phases

AI-CNN [13] 99.95 99.95 - HIF, load change

RFBNN [13] 99.99 99.99 - Phases

ANFIS [36] 99.09 - - Phases

NARX [37] 99.03 - - Phases, swith
event

FFNN [38] 98.96 98.89 - Phases

FDI-MPPT [39] 95 95 - unsymmetrical
faults

DTE-ANN [40] 99.3 97.6 - Voltage Signature
Signal

WPT-Node 99.32 99.5 - Phases, swith

power index event

[41]

Transient 99.39 99.5 - Phases, swith

monitoring event

function [42]

Taguchi-CNN 99.13 99.13 99.25 Phases, HIF, switch

proposed event, islanding

effectiveness. When compared with traditional methods like over-
current relay and decision tree, as well as modern techniques like 1-D
CNN BiLSTM-Attention and Xception transformer, Taguchi-CNN shows
competitive accuracy across various parameters.

Notably, Taguchi-CNN achieves an accuracy of 99.13 % in fault
detection, 99.13 % in fault classification, and 99.25 % in fault location.
Moreover, it excels in classifying parameters such as phases, HIF, switch
events, and islanding scenarios. Compared to other models, Taguchi-
CNN consistently delivers strong performance, positioning it as a
promising solution for fault detection in power systems. Among the
methods not listed in Table 5, Taguchi-CNN outperforms recent ap-
proaches such as AI-CNN, RFBNN, ANFIS, NARX, FFNN, FDI-MPPT,
DTE-ANN, WPT-Node power index, and transient monitoring function.
These methods focus on various aspects like phases, HIF, switch events,
voltage signature signals, and unsymmetrical faults. The Taguchi-CNN
consistently demonstrates strong capabilities across these parameters,
establishing its prominence as a robust solution for enhancing fault
detection and classification in MG systems.

Beyond the highlighted accuracy figures, the Taguchi-CNN method
demonstrates significant advantages in critical scenarios of fault detec-
tion and classification compared to traditional methods. The following
sections describe three key areas where the proposed system signifi-
cantly outperforms conventional methodologies:

5.5.1. Real-time detection and response in complex conditions

The Taguchi-CNN system enables fault detection and classification in
under 10 ms, a critical speed for MG protection involving high levels of
renewable energy penetration and variable load conditions. In contrast,
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traditional methods, such as those based on overcurrent or differential
relays, require longer processing times due to inefficiencies in handling
multiple data sources or HIF scenarios. This rapid response capability is
essential to improve system stability and continuity, preventing dis-
connections or damage under complex fault conditions.

The Taguchi-CNN system enables fault detection and classification in
under 10 ms, a critical speed for MG protection involving high levels of
renewable energy penetration and variable load conditions. In contrast,
traditional methods, such as those based on overcurrent or differential
relays, require longer processing times due to inefficiencies in handling
multiple data sources or HIF scenarios. This rapid response capability is
essential to improve system stability and continuity, preventing dis-
connections or damage under complex fault conditions.

According to [24], machine learning techniques like decision tree
and random forest require more than 24 ms to detect faults, limiting
their effectiveness in real-time applications for MG environments.
Additionally, Ref. [18] reports that SVM methods require over 16 ms for
fault detection, highlighting the significant speed advantage of the
Taguchi-CNN model, which achieves detection in less than 10 ms. In
terms of accuracy and robustness, the Taguchi-CNN method demon-
strates superior performance by incorporating a wide range of fault
scenarios and renewable variability conditions. Unlike simpler machine
learning models, such as SVM or Random Forest, which may struggle to
adapt to diverse operational conditions, the Taguchi-CNN model lever-
ages Taguchi optimization to efficiently train on a broad set of scenarios.
This results in a highly adaptive and robust model capable of main-
taining high accuracy across variable conditions, including HIF faults
and renewable generation fluctuations. The combination of rapid
detection times and high precision positions the Taguchi-CNN system as
a comprehensive and efficient solution for fault detection and classifi-
cation in MG.

5.5.2. Efficiency in identifying high-impedance faults

The proposed system excels in identifying HIF, a common limitation
of conventional methods, which are insufficiently sensitive to detect
these faults due to the low fault currents involved. Leveraging Wavelet-
optimized CNN, the model can identify complex patterns of HIF,
maintaining high accuracy under conditions where traditional methods
might fail. This capability allows the proposed system to offer effective
protection even in low-magnitude fault situations, substantially
enhancing system safety.

5.5.3. Robustness against changes in renewable power generation

Another advantage of the Taguchi-CNN approach is its robustness in
maintaining high performance under varying levels of generation and
load in the MG cluster. This is a critical challenge for traditional
methods, which often rely on fixed operational scenarios and lack
adaptability. By optimizing input data with the Taguchi method, the
proposed system minimizes the amount of data required for training
without sacrificing accuracy. This enables adaptability to variations in
operating conditions, ensuring reliable protection in a variable renew-
able generation environment and thus improving response to discon-
nection events, load changes, and HIF. While the Taguchi-CNN
methodology demonstrates high accuracy and efficiency in fault detec-
tion, classification, and localization within MG clusters, its design also
shows promising adaptability for larger power networks. The method’s
optimization capabilities and computational efficiency suggest it could
be effectively scaled to handle the increased data volume and
complexity in larger systems, with potential for further refinement as
required in broader applications

6. Conclusions
This paper presents the Taguchi-CNN methodology based on DWT

for fault detection, classification, and localization in MG cluster systems,
utilizing existing PMUs at the static switch located at the PCC. This
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approach effectively addresses diverse fault types, transient events, and
islanding scenarios, achieving a high detection accuracy of 99.25 %
within less than 10 ms. The DWT-based multiscale decomposition is
shown to be a critical component in maintaining accuracy levels of
around 99.13 %, even as the number of factors and levels increases,
demonstrating the robustness and stability of the system. The Taguchi-
CNN model’s speed and adaptability stand out compared to traditional
methods, such as overcurrent and differential relays, as well as advanced
machine learning models like SVM, Xception transformer, and WT-CNN,
achieving over 99 % accuracy across configurations and improving
response time efficiency by approximately 60 % over these traditional
techniques. While the Taguchi-CNN model demonstrates strong fault
detection and classification capabilities, the potential impact of high
noise levels in measurements on performance remains an area for
further exploration. Future work could incorporate advanced filtering
techniques to enhance noise resilience and robustness in diverse oper-
ational environments. Additionally, exploring the integration of
advanced methods, such as reinforcement learning or attention mech-
anisms, could further improve the model’s adaptability and computa-
tional efficiency. Testing this approach in larger, more complex network
architectures beyond the MG setting would also help validate its
robustness across diverse scenarios. Expanding the performance analysis
across various environmental conditions would provide deeper insights
into the methodology’s reliability and applicability.
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