Logo Repositorio Institucional

Please use this identifier to cite or link to this item: https://dspace.ucuenca.edu.ec/handle/123456789/45920
Title: Fault analysis in clustered microgrids utilizing SVM-CNN and differential protection
Authors: Arevalo Cordero, Wilian Paul
Keywords: Renewable energy sources
Differential protection
Fault detection
Microgrids
metadata.dc.ucuenca.areaconocimientofrascatiamplio: 2. Ingeniería y Tecnología
metadata.dc.ucuenca.areaconocimientofrascatidetallado: 2.7.1 Ingeniería Ambiental y Geológica
metadata.dc.ucuenca.areaconocimientofrascatiespecifico: 2.7 Ingeniería del Medio Ambiente
metadata.dc.ucuenca.areaconocimientounescoamplio: 05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas
metadata.dc.ucuenca.areaconocimientounescodetallado: 0521 - Ciencias Ambientales
metadata.dc.ucuenca.areaconocimientounescoespecifico: 052 - Medio Ambiente
Issue Date: 2024
metadata.dc.ucuenca.volumen: Volumen 164
metadata.dc.source: Applied Soft Computing
metadata.dc.identifier.doi: 10.1016/j.asoc.2024.112031
metadata.dc.type: ARTÍCULO
Abstract: 
The integration of distributed generation, microgrids, and renewable energy sources has significantly enhanced the resilience of modern electrical grids. However, this transition presents challenges in control, stability, safety, and protection due to low fault currents from renewables. This paper addresses these challenges by proposing novel methodologies to enhance fault detection, classification, and localization in microgrids. The literature review highlights a shift towards intelligent learning methods in microgrid protection systems, improving fault response times and identifying electrical faults, including high impedance faults. Nonetheless, existing methods often neglect high impedance fault detection and the integration of differential protection in clustered microgrids. To fill these gaps, this study presents a methodology combining support vector machines and convolutional neural networks for fault detection in microgrids, integrating differential protection for high impedance fault detection. The paper also proposes approaches to optimize protection in clustered microgrid systems. The effectiveness of the methodology is validated using Opal-RT through comparative analyses of signal decomposition techniques, performance and accuracy of support vector machines and convolutional neural networks, K-Fold validation, and sensitivity analysis. Results demonstrate robustness and high performance, achieving up to 100 % accuracy in fault detection and classification
URI: https://dspace.ucuenca.edu.ec/handle/123456789/45920
https://www.scopus.com/record/display.uri?eid=2-s2.0-85199779623&doi=10.1016%2fj.asoc.2024.112031&origin=inward&txGid=0247ddb01454638d20747ace319786b7
metadata.dc.ucuenca.urifuente: https://www.sciencedirect.com/science/article/pii/S1568494624008056
ISSN: 15684946
Appears in Collections:Artículos

Files in This Item:
File SizeFormat 
documento.pdf4.93 MBAdobe PDFView/Open


This item is protected by original copyright



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00