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HIGHLIGHTS

¢ DG and RES integration in modern grids and MGs enhances resilience but challenges fault detection due to low fault currents.
o Novel SVM-CNN methodology proposed for fault detection, addressing challenges like HIF detection.

o Proposed SVM-CNN achieves up to 100 % accuracy in fault detection, including HIF and islanding events.

o Results highlight methodology’s effectiveness in improving fault response time and accuracy.
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The integration of distributed generation, microgrids, and renewable energy sources has significantly enhanced
the resilience of modern electrical grids. However, this transition presents challenges in control, stability, safety,
and protection due to low fault currents from renewables. This paper addresses these challenges by proposing
novel methodologies to enhance fault detection, classification, and localization in microgrids. The literature
review highlights a shift towards intelligent learning methods in microgrid protection systems, improving fault
response times and identifying electrical faults, including high impedance faults. Nonetheless, existing methods
often neglect high impedance fault detection and the integration of differential protection in clustered micro-
grids. To fill these gaps, this study presents a methodology combining support vector machines and convolutional
neural networks for fault detection in microgrids, integrating differential protection for high impedance fault
detection. The paper also proposes approaches to optimize protection in clustered microgrid systems. The
effectiveness of the methodology is validated using Opal-RT through comparative analyses of signal decompo-
sition techniques, performance and accuracy of support vector machines and convolutional neural networks, K-
Fold validation, and sensitivity analysis. Results demonstrate robustness and high performance, achieving up to
100 % accuracy in fault detection and classification.

1. Introduction to coordinated distributed control based on multi-agent systems [6].

However, these changes during the transition pose challenges in control,

The distributed generation (DG) is experiencing steady growth in
modern electrical systems and smart grids, suggesting its integration
with microgrid (MG) and renewable energy sources (RES). This transi-
tion process significantly enhances resilience in electrical grids [1,2].
The physical and coordinated integration of multiple MG groups into the
electrical system enables improvement in distribution systems in terms
of economy, resilience, and reliability [3,4]. Control strategies have
been implemented to enhance stability and active damping, along with
nonlinear control algorithms in microgrid cluster (MGC) [5], in addition
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stability, safety, and especially protection for current distribution elec-
trical systems due to the low fault current provided by RES. This phe-
nomenon poses a challenge for fault detection using conventional
protection systems, necessitating the development of new techniques
capable of identifying, locating, and classifying faults more effectively,
whether internal or external to an MGC connected to an external grid.
This paper focuses on addressing this issue.

In the literature review, there is an evolution in protection methods
observed, ranging from simple analog relays to the latest advances and
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trends in protection systems in MGs, which focus on intelligent learning
methods [7]. These latter methods have improved fault response time,
as indicated by some authors in [8]. Identification and location of
electrical faults in renewable systems have also been enhanced, as
described in [9,10], and the classification of different types of faults has
been extensively studied in [9-12]. Detecting high impedance faults
(HIF) presents a unique challenge for protecting distributed generation
systems. Conventional techniques struggle to interpret HIF due to the
low level of fault current involved [13], which can resemble other oc-
currences like line openings and closings. Therefore, accurately identi-
fying, classifying, and locating a set of faults remains a significant
challenge in MGCs, as highlighted by various researchers in this field
[14]. On the other hand, quick fault clearance times are essential to
prevent electrical system instability, with current relays aiming for times
less than 50 ms [15]. Recently, researchers have developed techniques
for detecting, classifying, and locating electrical faults involving the
integration of artificial neural networks (ANN), machine learning (ML),
or genetic algorithms (GA) applied to MG. The authors in [8], examines
the coordination of directional overcurrent relays in MGs based on
hybrid algorithms of heuristic-linear programming. On the other hand,
another study has been presented with advanced methods based on ANN
such as transfer learning technique for faults in transmission lines [16].
These have provided benefits in optimizing execution times and high
accuracy. Deep convolutional neural network (ConvNet) has also been
considered for fault detection, classification, identification, and location
for MGs integrating PV systems in island mode [17]. Authors in [18] also
propose a novel fault detection algorithm based on ANN and discrete
Wavelet transform (DWT). This has allowed for increased reliability,
improved system robustness, and detection in short time intervals in
MGs [19]. Authors, based on the results of these studies validated with
real-time simulation using RX62T with OP5600, conclude that the DWT
technique is superior to the Fourier transform and the continuous
Wavelet transform (WT) from the perspective of accuracy and
simplicity.

Other studies propose the combination of principal component
analysis of ANN and radial basis function neural network (RBFNN) for
fault detection using differential protection in power transformers [20],
where the authors manage to generate a trigger signal within 15 ms after
the occurrence of the fault. Meanwhile, the authors in [21], present a
new combination based on variational mode decomposition (VMD) and
Hilbert transform (HT) as tools for differential protection in MGs [21].
The proposed system has been validated in real-time simulator OPAL-RT
(optimized power system real-time) with the capability of detecting high
impedance faults. Similarly, authors in [22] propose a novel method
based on DWT with high performance speed and low sampling fre-
quency. The results have been discussed with other existing methods for
both grid-connected and islanded scenarios. Also, the Wavelet energy
entropy ratio criterion is utilized for fault detection in electrical systems
[23].

The combination of methods with HT has generated significant
contributions in DC-MG protection. For example, in [24], the authors
study the combination of VMD and HT for detecting the Wavelet com-
ponents of DC perturbative signals. Additionally, HT has been used
accurately in harmonic/interharmonic detection and monitoring tech-
niques, fault detection, and diagnosis in synchronous motors. Further-
more, WT has also aroused great interest in the field of electrical
protections in MGs, where methods for ground fault identification and
fault detection and localization using different Wavelet approaches have
been proposed. Likewise, the DWT has been studied for detecting faults
in MGs, offering the advantage of stable protection under typical dis-
turbances without fault. Other applications include high-frequency
component extraction using DWT and its use in differential protection
for internal faults, allowing real-time application with low computa-
tional effort. Additionally, strategies such as frequency-based current
differential protection for distribution lines have been proposed,
implementing digital signal processing to achieve fast response times.
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The comprehensive review of literature reveals convergence with the
present study in several critical aspects related to fault detection and
protection in MGs [25]. Recent research has significantly advanced the
application of techniques such as ANN, convolutional neural network
(CNN), and DWT to enhance accuracy and efficiency in fault detection in
MGs [8], [16], [18]. These approaches have proven effective in
controlled environments but show a notable lack of attention towards
HIF, which are crucial in distributed generation systems where fault
current levels are low [26]. One critical gap identified in the literature is
the insufficient integration of advanced protection techniques, such as
differential protection, in MGC. While innovative schemes combining
WT with data mining models have been proposed to enhance protection
relay accuracy [27], these methods have not been widely implemented
in MGC. This is due to the complexity of adapting these models to dy-
namic environments and the need for extensive validation under varying
operational conditions.

Furthermore, while studies like that proposed by [28] have intro-
duced deep learning models such as CNN transformers for fault detec-
tion and localization in distribution systems, there remains a continuous
need to develop more effective methodologies to optimize protection in
MGs, especially in complex clustered and interconnected environments.
These models have shown significant improvements in fault type clas-
sification and location identification but must still address challenges
such as adaptability to diverse MG topologies and robustness against
changing operational conditions. Lastly, studies [29] and [26] empha-
size the importance of integrating advanced techniques, such as CNNs
optimized with optimization algorithms, to enhance accuracy and reli-
ability in fault detection in MGs. These studies underscore the need to
address the lack of scalable and adaptive methods capable of effectively
handling fault detection in MGs with multiple distributed generation
sources and significant operational variations.

Therefore, despite advancements in deep learning techniques for
fault detection in MGs, there remains a lack of in-depth research on fully
leveraging these differential characteristics. Current studies, [27] - [26]
have explored various methodologies but have not effectively integrated
differential protection with artificial intelligence techniques to maxi-
mize sensitivity and precision in detecting HIF and other subtle fault
types. Itis crucial to explore how differential protection can complement
modern fault detection techniques. This integration could pave the way
for improving efficiency and accuracy in clustered MG protection. By
combining these methodologies, false alarms could be reduced, response
times enhanced, and overall MG operation optimized, thereby providing
more robust and adaptable protection.

In response to the gaps identified in the existing literature, this study
offers several contributions to the field of fault detection, classification,
and localization in MGC environments. It particularly focuses on chal-
lenges such as HIF, events, and the integration of differential protection.
A methodology is proposed that combines SVM (support vector
machine)-CNN for fault detection in MGs, adapting and applying this
combination to enhance the accuracy and efficiency of fault identifica-
tion in MGs, considering the variability of renewable resources and the
low fault current they entail. Although these techniques have been
previously explored in other contexts [29], [26], [30], their specific
implementation in MGC, along with differential protection, is justified
by their ability to overcome current limitations by integrating key dif-
ferential characteristics. This concept addresses the challenges of con-
ventional protections against events occurring inside or outside the MG
cluster.

The importance of the proposed methodology for HIF, which do not
produce current spikes but rather waveform deformation, is evident.
This strategy leverages the capability of differential protection to sum or
subtract current signals between different points of the network,
allowing the detection of even the weakest fault currents masked by
other events [26]. SVM is notable for its ability to effectively handle
small and imbalanced datasets, utilizing optimal separation margins
between classes for precise classifications. On the other hand, CNN is
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recognized for its capacity to automatically learn and extract complex
features from signals, such as those generated by electrical currents in
MG systems. By combining SVM and CNN, the system’s ability to detect,
classify, and locate faults that are difficult to identify is significantly
enhanced.

The study also presents real-time simulations using OPAL-RT to
validate the computational simulations of the proposed method in real
environments, including noise and time delays. In summary, the main
contributions of this study include:

o Integration of SVM-CNN with DWT for precise fault detection and
rapid classification and localization using a differential protection
relay in a clustered MG environment.

e Evaluation of DWT, WPT, and VMD combined with the HT to opti-
mize fault detection.

e Optimization of SVM-CNN hyperparameters to minimize the
response time of the differential relay.

Therefore, this article is organized as follows: Section 2 examines the
methodology of the paper, Section 3 presents the proposed method,
while Section 4 elucidates the case study where the method is tested.
Subsequently, Section 5 showcases the results, and the paper concludes
in Section 6.

2. Methodology

The proposed methodology for fault detection in MGC is shown in
Fig. 1. Fault current waveforms in different zones of the MG group are
generated through simulations conducted in DIgSILENT PowerFactory
software. These waveforms represent the current difference between
two terminals of a transmission line, like what a differential protection
system does. Subsequently, using a combination of SVM and CNN, fault
detection, classification, and localization are performed within the
MGC. The main objective of this SVM and CNN combination is to
identify patterns enabling the detection of fault types, phases, and lo-
cations within the MGC. Additionally, it has been extended to include
the detection of HIF, line opening and closing events, and isolation
scenarios.

To evaluate the effectiveness of the proposed methodology, detailed
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comparisons are conducted between the Wavelet approximation coef-
ficient (WAC) under normal operating conditions, serving as a baseline
reference. Specifically, it is compared with decomposition using the
Wavelet packet transform (WPT) and the VMD combined with the HT,
revealing up to 20 intrinsic mode functions (IMF). This analysis is con-
ducted with the aim of identifying the most prominent coefficients in
simulated fault scenarios, specifically during a single-phase ground
fault. This analysis aims to identify the most prominent coefficients in
simulated fault scenarios, particularly during single-phase ground faults.
The objective is to improve fault detection capabilities while varying the
fault resistance. In this context, preference is given to DWT approxi-
mation coefficients due to their ability to effectively highlight and
classify faults, especially in the presence of high fault resistances.
Finally, OPAL-RT is utilized to validate the method in real-time sce-
narios, ensuring its practical applicability.

2.1. Mathematical modeling of DWT

The DWT is a highly utilized mathematical function owing to its wide
window breadth in the time domain, rendering it particularly intriguing
for the study of transient signals. The WT undertakes the process of
treating the selected wavelet and the signal x(t), where represents the
measured waveform. The calculation process of WT is expressed as
follows with Eq. (1) [15]:

X(wla,b) = % [ : x(t)y (%) dt m

where a is the scale factor and b is the temporal shift, y/(t) is the chosen
wavelet mother, y is the complex conjugate of the wavelet. For values of

a and b, y/(%) yields the daughter of y(t), where the value of a is

determined by the pseudo-frequency [31]. For discrete-time signals,
DWT decomposes the signal using wavelet functions ¢(t). This process
involves applying discrete filters ¢, (k) and dj(k) for the DWT calculation.
The signal f(t) can be expressed with Eq. (2) [31]:

fO =" col)p@t—k)+> > dk)e(2t—k) 2
k j=1

k

According to Parseval’s theorem [32], the Wavelet entropy is
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Fig. 1. Schematic representation of the proposed research.
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calculated by Eq. (3) [32]:
Jrofa=Y1 wir+ XS] i &)
k

k j=0

The DWT allows obtaining optimal features for different frequency

ranges in fault detection and localization studies in MGs. It is crucial to

select the appropriate Wavelet to acquire accurate data. For datasets

with a large number of samples, Daubechies wavelets (Db) and Symlets

(Sym) Wavelets are often used due to their robustness and sample
length.

2.2. Mathematical model and calibration of CNN

In data analysis, CNNs are employed for both multidimensional and
one-dimensional data. Furthermore, in [33] the authors examine alter-
native algorithms for clustering and classifying real-time signals. CNNs
excel in extracting features and classifying raw data, making them
highly valuable for various applications. Researchers have demonstrated
the effectiveness of CNNs in both small and large-scale data scenarios,
yielding excellent results. CNNs operate by processing images through
multiple layers, effectively isolating their distinctive features [34]. The
most frequently utilized layers include:

2.2.1. Convolutional layer

This layer determines the features of the image. The number of
convolutional layers is a crucial parameter for determining features,
which increases as the features grow. CNN relies on the convolutional
layer, and its operation is mathematically modeled by the following Eq.
(4) [34].

R(xy) =3

i

M(i,j) « A(x+1,y+]j) €]

k
—1 j

P
-1
where A is the feature matrix, and M is the mask, x and y are the row and

column of the feature matrix, jandi are the column and row of the mask,
and p and k are the column and row of the filter size, respectively.

2.2.2. Rectified linear unit layer (ReLU)

The activation layer of the system extensively utilizes non-linear
functions due to their ability to process information swiftly. This is
calculated using Eq. (5), allowing for efficient computation and
enhanced model performance. The Rectified Linear Unit (ReLU) is
particularly favored for its simplicity and effectiveness in neural net-
works, contributing to improved feature extraction and model robust-
ness [28].

Ry = {5 320 ®)

2.2.3. Pool layer

The Pooling Layer plays a crucial role in neural networks by down-
sampling feature maps, effectively reducing computational load while
retaining essential input properties. This process helps in managing
model complexity and improving computational efficiency during
training. By aggregating information from neighboring regions, the
Pooling Layer enhances the network’s ability to extract meaningful
features and improves robustness against variations in input data [26].

2.2.4. Flatten layer

The data obtained from Section 2.1.3, represented in matrix form, is
fitted to the fully connected (FC) layer. This strategic integration enables
an expansion in the number of filters within the convolutional layers
while mitigating the computational load. By effectively linking the
convolutional outputs, the FC layer facilitates comprehensive feature
extraction and enhances model capacity. The formulation for this layer’s
operation is articulated in Eq. (6), defining its pivotal role in neural
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network architecture for optimizing performance [35]:

k — max (xﬁ,:igi’<i+h,jgj’<j+q) 6)
where i,j are the elements of the ky output and input feature maps,
respectivel, ¢ and h are the width and length of the pooling window,
respectively.

2.2.5. Fully connected layer

The flattening layer is at the core of the neural network [36]. It ex-
tracts data, facilitating the learning process during neural network
training. CNNs rely on hyperparameters that require optimization for
configuring the network and enhancing learning parameters, enabling
adaptation to large datasets. The three primary layers of CNNs—con-
volutional, pooling, and fully connected (FC)—are instrumental in
optimizing these hyperparameters to achieve lower error rates and
improved performance. Specifically, the convolutional operation opti-
mizes six key hyperparameters: the number of feature maps and con-
volutional layers, their respective sizes, padding size, and stride. These
parameters dictate how data is processed, facilitating feature extraction
and the creation of feature maps [26], [32].

2.3. SVM mathematic modeling

Support vector machine is a supervised learning algorithm that di-
vides two sets of data using a hyperplane, identifying the one that pro-
vides the largest margin between them. This approach enhances the
classification confidence by maximizing the distance between the data
points of different classes. SVM is widely used in signal processing
problems, including the detection of electrical faults. It utilizes a Kernel
function to classify and sample the data [33], a method further refined
by [37]. The algorithm is versatile, allowing for application to multiclass
and nonlinear datasets. Typically, among the many possible hyper-
planes, the one with the greatest margin is selected to optimize classi-
fication accuracy. The SVM function is mathematically represented in
Eq. (7) [38]:

) =w'a(x)+b %)

where w € R" and @(x) is a feature map.

2.4. Proposed method

This study presents a method that combines CNN with a SVM algo-
rithm to enhance classification performance. The approach involves
initially training the CNN and then integrating the SVM for further
refinement. Initially, the CNN is fully trained, after which the fully
connected layer (FC-8) is removed. This process extracts features with
dimensions of 4096 by the number of images in the dataset. These
extracted features are then split, with 30 % allocated for training and
70 % for testing. The training features are then used to train an SVM
classifier using a Gaussian kernel function and a one-vs-all classification
method. The trained SVM classifier is subsequently employed to classify
the testing features.

The process is repeated, this time by removing the maximum pooling
layer (MaxPooling 7) from the CNN architecture. Despite potential
concerns regarding overfitting due to the reduced number of parameters
in the convolutional layers, the removal of the layer does not signifi-
cantly impact the model’s performance. Fig. 2 illustrates the modified
scheme that incorporates the SVM algorithm into the CNN architecture,
showecasing the integration and workflow of the combined approach. It
is important to mention that before training the SVM-CNN model, the
dataset underwent preprocessing steps to improve data quality and
reduce noise. Specifically, we applied a smoothing technique using
“smoothdata” in MATLAB to mitigate high-frequency noise while pre-
serving underlying trends. Additionally, “medfiltl1” was employed to
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Fig. 2. Combination and adjustment of SVM-CNN architecture.

further smooth the dataset, ensuring robustness against outliers and
spikes. These preprocessing steps were essential to ensure the reliability
and accuracy of our results by minimizing potential errors during model
training.

3. Case of study

In this article, a study and simulation were conducted on a MGC
connected to the main grid, as illustrated in Fig. 3. Zones 1-3 comprise
the MGC, while Zone 4 represents the external grid (outside the MGC).
The main characteristics of the sources and loads forming each MG are
detailed in Table 1A (Annexes). Lines L1 to L5 are analyzed using both
differential protection and the proposed SVM-CNN method, with Zone D
representing an external fault to the MGC. A total of 11 types of faults
(AB, ABC, ABCG, ABG, AC, ACG, AG, BC, BCG, BG, CG) were analyzed,
along with simulations of line opening and closing events, high-

impedance faults (HIF A, HIF AB, HIF ABC), and islanding mode. To
collect more data and improve accuracy, resistances were varied for the
11 types of faults, islanding events, and line events (R=0.001 Ohm to 20
Ohm with variable steps; Table 2 A (Annexes) details the input data for
SVM-CNN by varying fault type and fault resistance).

To evaluate the proposed model, a computational workstation
equipped with an Intel Core i9 CPU running at 3.90 GHz and 16 GB of
RAM, along with an NVIDIA GeForce RTX 3070 GPU, was used. The
implementation of the SVM-CNN code was performed using MATLAB®,
and real-time tests were conducted on Opal RT.

3.1. Calculation of the differential current

Fig. 4 illustrates the calculation of the differential current (ID) for the
differential relay under various fault and event conditions in one of the
lines of the MG cluster. The results encompass the characterization of

- : Hydrogen
' Main Grid | @ Solar PV . Sroragge
- 69kv |
: Zone D : Battery Hydrokinetic
PR\ S .. storage turbine generator
11 kV . .
Wind turbine
generator
PCC | ss 380V
% L1 % L2 L3
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- I% ®

MG2

Fig. 3. Schematic representation of the studied MG cluster.
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Fig. 4. Calculation of the differential current in phase A. (a), (b), and (c) depict nominal operating conditions. (d), (e), and (f) represent a ground fault. (g), (h), and
(i) illustrate HIF. (j), (k), and (1) represent a transmission line opening and closing event.

the ID, crucial for fault detection and localization, with ID = IA; — IA;,
where IA; and IA; represent the currents at the ends of the transmission
line. This analysis was conducted across a range of operational scenarios
to capture the complexity of electrical systems under both normal and
contingency conditions. Initially, the system’s normal operating condi-
tion was examined, providing a baseline reference for comparing ID
variations in abnormal situations. Subsequently, a single-phase ground
fault was simulated, a common event in distribution networks that can
lead to significant current imbalances. Furthermore, the impact of a HIF
was analyzed, which poses additional challenges for detection due to its
transient and low-current nature. Then, the effects of transmission line
opening and closing events were evaluated, considering abrupt changes
in the system’s topology. The results obtained provide input variables
for the SVM-CNN algorithm tasked with recognizing the fault type based
on the differential current ID.

3.2. DWT signal processing analysis

The results displayed in Fig. 5 present the transformation of the ID
into the frequency domain through the DWT. Specifically, the WAC has
been employed for this analysis. WAC demonstrates a notable diver-
gence particularly during faults or anomalies, enhancing the differential
protection system’s ability to discern such occurrences more effectively.

Fig. 5 showcases various scenarios: Panels (a) and (e) exhibit the dif-
ferential current and its corresponding WAC coefficient under normal
operating conditions. Panels (b) and (f) depict a ground fault, while (c)
and (g) demonstrate a HIF. Finally, panels (d) and (h) illustrate a
transmission line opening and closing event.

Furthermore, Fig. 6 presents temporal and frequency domain rep-
resentations of various fault types. Under normal conditions, panels (a)
and (e) serve as baseline references, displaying temporal waveforms and
scalograms respectively. During ground faults, panels (b) and (f) show
characteristic variations in temporal and frequency domains. High
impedance faults are depicted in panels (c) and (g), highlighting their
unique temporal and frequency signatures. Panels (d) and (h) illustrate
the effects of transmission line opening and closing events on signal
characteristics. These insights are crucial for training CNN models to
develop robust fault detection algorithms that utilize both temporal and
frequency data.

Moreover, Fig. 7 illustrates the WAC for various single-phase ground
fault resistances. It highlights that even for a ground fault resistance (Rg)
as low as 20 Ohms, the WAC value surpasses that of a transmission line
opening and closing event, as shown in Fig. 7(d) and Fig. 7(h). This
comparison underscores the critical role of WAC in fault detection by
revealing substantial differences in signal characteristics across different
fault types. As fault resistance increases, traditional fault detection
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Fig. 5. Signal Processing on Line 2 for Phase A. (a) and (e) depict the differential current and its corresponding WAC under normal conditions. (b) and (f) represent a
ground fault, while (c) and (g) illustrate a HIF. (d) and (h) demonstrate a transmission line opening and closing event.

methods encounter increasing challenges. Therefore, the integration of
SVM-CNN becomes crucial for ensuring accurate fault detection in such
scenarios.

3.3. Real-time testing configuration using OPAL-RT

The fault simulation tests were performed using the OPAL-RT real-
time simulator, where various types of faults were simulated using
models developed in Simulink/MATLAB® and validated on the RT-LAB
platform. This configuration allowed for fine-tuning the method pa-
rameters to validate the results. Fig. 8 depicts the equipment utilized in
this setup, which integrates the OPAL-RT real-time simulator connected
via LAN to the Local Host. The simulation program operates under a
Fixed-Step discretized method with an operating system utilizing Ts 50
ps and a switching frequency of 20 kHz. These specifications ensure
reliable operation within a real-time environment, facilitating accurate
and precise fault analysis and validation.

4. Results

4.1. Comparative analysis of signal decomposition techniques for fault
detection

In Fig. 9, comparisons between the detail and approximation co-
efficients obtained through DWT are illustrated. Fig. 9(a) showcases
DWT with detail coefficients, while Fig. 9(b) presents DWT with
approximation coefficients. Additionally, Fig. 9(c) demonstrates the
decomposition using WPT, and Fig. 9(d) exposes the VMD technique
combined with the HT, revealing up to 20 IMF. This analysis is con-
ducted with the aim of identifying the most prominent coefficients in
simulated fault scenarios, specifically during a single-phase ground
fault. The pursuit of the highest coefficient aims to facilitate fault
detection while varying the fault resistance. In this context, preference is
given to DWT approximation coefficients, owing to their ability to
effectively highlight and classify faults, particularly in the presence of
high fault resistances.
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Fig. 6. Representation in time and frequency of different types of faults. (a) and (e) display the temporal representation and scalogram, respectively, during normal
operation. (b) and (f) depict a ground fault, while (c) and (g) represent a HIF and (d) and (h) illustrate a transmission line opening and closing event.

The choice of using approximation coefficients from DWT at level 8
with the db6 base function, which reaches a maximum value of 163.18,
is justified by their higher magnitude in fault scenarios. Similarly, the
maximum detail coefficient obtained at level 9 with the db2 base
function, reaching 106.30, reinforces this selection. Furthermore, the
consideration of detail coefficients with a ground resistance of 0.001
Ohms adds to the robustness of the classification approach. These co-
efficients are selected for their effectiveness in fault detection, particu-
larly in scenarios with high fault resistances, where they provide
superior classification capabilities.

4.2. Performance and accuracy analysis of SVM-CNN

Fig. 10 depicts the result of the loss function value during the training
of the proposed SVM-CNN model. The horizontal axis displays the
number of epochs, while the vertical axis represents the value of the loss
function. The curve begins at a high value and gradually decreases as the
training progresses. The curve’s shape suggests successful learning of the
model. Initially, the curve starts at a high value because the model lacks
knowledge of the data at the beginning of the training. As the training
proceeds, the model learns from the data, leading to a decrease in the
loss function. The curve is not perfectly smooth, indicating some noise in
the data. However, the overall trend of the curve is downward,
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Fig. 7. Variation of WAC for various ground fault resistance values.

indicating successful learning of the model.

The value of the loss function on the training set, with the green line
representing the value of the loss function on the validation set. The loss
function value on the training set is always lower than that on the
validation set because the model is trained to minimize the loss function
on the training set. The difference between the loss function value on the
training set and the loss function value on the validation set is called
overfitting. Overfitting occurs when a model learns too much from the
training data and does not generalize well to new data. In this case, the
difference between the loss function value on the training set and the
loss function value on the validation set is not significant, suggesting
that the model is not overfitting. Overall, the proposed SVM-CNN model
is successfully learning and is not overfitting.

4.3. K-Fold validation

In the evaluation of a model designed for detecting and localizing
electrical faults in MGC lines using differential protection application,
Fig. 11 presents the obtained results. It shows various metrics and per-
formance indicators crucial for assessing the model’s effectiveness. In
the study, the number of folds was varied to explore various training and
testing configurations. The number of folds, representing the number of
divisions made in the dataset for model training and evaluation, has
been explored in values from 1 to 15. This variability in the number of
folds allows examining the model’s robustness in different dataset par-
titioning scenarios. Evaluation metrics include Accuracy, F1-Score,
Recall, and Matthews Correlation. Accuracy provides an overview of
the model’s precision, while the F1-Score offers a balanced measure
between precision and the ability to correctly recover faults. Recall
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measures the model’s ability to identify all instances of faults, while
Matthews Correlation provides a robust evaluation, considering all four
quadrants of the confusion matrix.

The results show generally high performance in all evaluated metrics
as the number of folds increases. Accuracy, F1-Score, Recall, and Mat-
thews Correlation tend to converge towards values close to unity, sug-
gesting consistent effectiveness in detecting and localizing electrical
faults. These results support the differential protection model’s ability to
provide a reliable solution in MGC environments, enhancing electrical
fault detection and localization accurately.

4.4. Sensitivity analysis

Expanding on the preceding examination of CNN hyperparameters,
the sensitivity analysis (Fig. 12) investigates the influence of key
configuration elements on the CNN’s performance in data classification.
This exploration covers optimization algorithms, activation functions,
pooling layer sizes, and stride values, providing insights into how these
factors affect both accuracy and detection time. In terms of optimization
algorithms, three widely used options were evaluated: Adam, RMSprop,
and SGD. Adam demonstrated superior performance by achieving the
highest accuracy of 99.99 %, while maintaining an efficient detection
time of 5.5 ms. In comparison, RMSprop and SGD achieved slightly
lower accuracies of 97.36 % and 95.03 %, respectively, with detection
times of 7.8 ms and 9.5 ms.

Building on the analysis of CNN hyperparameters, this section delves
into key factors that influence the model’s performance in data classi-
fication tasks as shown in Fig. 13. Initially, three common activation
functions were evaluated: ReLU, Sigmoid, and Hyperbolic Tangent
(Tanh). ReLU and Sigmoid achieved high accuracies of 99.99 % and
99.7 %, respectively, with detection times of 5.5 ms and 5.3 ms. Tanh
also performed well, achieving 99.8 % accuracy with a detection time of
7.4 ms. Furthermore, various sizes of pooling layers (2x2, 3x3, and
4x4) were tested. The 3x3 pooling layer achieved the highest accuracy
at 99.99 %, while the 2x2 and 4 x4 sizes achieved accuracies of 99.75 %
and 99.999 %, respectively. Detection times varied slightly: 4.9 ms for
2x2, 5.5 ms for 3x3, and 8.8 ms for 4x4.

Additionally, different stride values (1, 2, and 3) in the pooling layers
were analyzed. A stride of 1 achieved 99.87 % accuracy with a detection
time of 7.6 ms, while strides of 2 and 3 achieved accuracies of 99.99 %
and 98.56 %, with detection times of 5.5 ms and 6.9 ms, respectively.
Moving to Fig. 13 (a), the analysis extended to four critical categories:
dropout rate, initial learning rate, L2 regularization, and number of
training epochs. Dropout rate analysis ranging from 0.1 to 0.9, identified

Original Image Synthesized Image  Vertical detail
i} ) - coef. of level 8
Fault
enable
Switch

Approximations Horizontal Details Diagonal Details Vertical Detailg

Fig. 8. Fault Simulation Case Study with RT-LAB Real-Time MATLAB®/Simulink.
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Fig. 10. Training and validation of the SVM-CNN Model.

an optimal balance at 0.5, achieving the highest accuracy of 99.999 %.
Higher rates improved computational efficiency but reduced accuracy.
In Fig. 13 (b), initial learning rates (ranging from 0.00001 to 0.1)
showed optimal accuracy (99.99 %) at 0.00001, with higher rates
maintaining high accuracy but requiring careful adjustment. L2 regu-
larization shown in Fig. 13 (c), ranging from 0.00001 to 0.1, demon-
strated optimal accuracy (99.99 %) at 0.00002, while higher values
compromised accuracy due to increased regularization. Lastly, Fig. 13
(d) explored the impact of training epochs (10-5000), stabilizing accu-
racy at 99.99 % after 35 epochs, indicating convergence. Extended
epochs increased training time, highlighting the balance needed be-
tween accuracy and computational efficiency.
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4.5. Comparison with other methods

Table 1 presents a comprehensive comparison of various methods for
detecting, classifying, and localizing electrical faults in a power system.
Among traditional methods, the overcurrent relay exhibits an accuracy
of 56 %, while the differential relay significantly improves with a 96 %
accuracy. More advanced methods such as decision tree and random
forest achieve accuracies of 97 % and 99 %, respectively, with specific
classification capabilities. Neural network architectures, such as the 1-D
CNN BiLSTM-Attention model and the Xception transformer, demon-
strate accuracies of 94.53 % and 98.60 %, respectively, excelling in fault
classification and localization across different phases and HIF. Other
specialized approaches, such as WT-CNN, CNN-GTO, AI-CNN, and
RFBNN, also offer high levels of accuracy in fault detection and classi-
fication, addressing specific parameters such as phases, switching
events, and load changes. The proposed SVM-CNN method stands out as
the most accurate with an accuracy of 100 %, achieving nearly perfect
detection and classification of electrical faults. This comprehensive
approach addresses specific parameters such as phases, HIF, switching
events, and islanding.

4.6. Real-time simulation results with OPAL-RT

Fig. 14 presents the results obtained through the configuration on the
RT-LAB platform, where the input step profile is analyzed in Fig. 14 (a),
considering a phase-to-ground fault. In Fig. 14 (b) and 14 (c), distur-
bances in the voltage and current waveforms can be observed, respec-
tively. A rapid system response is highlighted, with a recovery time of
less than 10 ms after the fault occurrence. The three-phase voltage
waveform in Fig. 14 (b) depicts sinusoidal curves for phases R, S, and T,
each with identical frequency and amplitude but differing by 120 de-
grees in phase. The maximum amplitude of the sinusoidal curves is 1 per
unit (pu), indicating a balanced three-phase system operating at a fre-
quency of 50 Hz.
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Similarly, Fig. 14 (c) illustrates the sinusoidal current intensities of analyzing critical events such as phase faults in three-phase systems,
phases R, S, and T over time, also at a frequency of 50 Hz with a corroborating computer simulations conducted using DIGSILENT Pow-
maximum amplitude of 10 pu. This graph demonstrates the dynamic erFactory and MATLAB® in this study. The results provide a detailed
response of the electrical system, showing swift recovery of currents evaluation of the stability and dynamic response of the electrical system,
post-fault within a period of less than 10 ms. These findings underscore crucial for enhancing operational safety in industrial and power distri-

the effective performance of the RT-LAB platform for simulating and bution environments.
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Fig. 13. Hyperparameter comparison for SVM-CNN model performance.

Table 1
Comparative results with other methods.

Method Accuracy (%) Parameter
Fault Fault Fault classification
detection classification location

Over-current 56.00 - - -

relay [27]
Differencial 96.00 - - -
relay [27]
Decision Tree 97.00 85.00 -
[27]
Random Forest 99.00 94.00 -
[27]

SVM 92.05 91.03 90.85 Phases, HIF,
switch event,
islanding

1-D CNN 94.53 94.19 93.08 Phases

BiLSTM-
Attention
model

Xception 98.60 98.60 98.60 Phases, HIF

transformer
[28]

WT-CNN [26] 99.31 97.60 94.10 Phases, swith
event

CNN-GTO [29] 99.36 99.00 98.20 Phases

AI-CNN [30] 99.95 99.95 - HIF, load change

RFBNN [30] 99.99 99.99 - Phases

SVM-CNN 100 99.99 99.99 Phases, HIF,

proposed switch event,
islanding

5. Conclusions

The importance of improving fault detection, classification, and
localization in MGs due to the low fault current provided by renewable
sources is highlighted. Through the proposal of a novel methodology
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combining Support Vector Machine (SVM) and Convolutional Neural
Network (CNN), these difficulties are addressed. The research reveals
significant findings in electrical fault detection and classification. It was
found that the maximum approximation coefficients of the DWT were
reached at level 8 using the db6 base function, with a value of 163.18,
while the maximum detail coefficients were recorded at level 9 with the
db2 base function, reaching a value of 106.30. This supports the pref-
erence for DWT approximation coefficients due to their effective ability
to highlight faults, even in high fault resistance scenarios.

The SVM-CNN model demonstrated successful learning with a
gradual decrease in the loss function value during training, and the loss
function on the training set was always lower than on the validation set,
indicating effective learning without significant overfitting. Addition-
ally, K-Fold analysis showed high performance in metrics such as ac-
curacy, F1-Score, Recall, and Matthews Correlation, which converged to
values close to unity as the number of folds increased.

Regarding sensitivity analysis, it was found that the Adam optimi-
zation algorithm achieved the highest accuracy of 99.99 %, with an
efficient detection time of 5.5 ms. ReLU and Sigmoid activation func-
tions also showed high accuracies with minimal detection times. Com-
parison with other methods highlighted that the proposed SVM-CNN
method achieved the highest 100 % accuracy in fault detection and
classification, surpassing others in precision and classification scope.
Finally, in real-time simulation results using OPAL-RT, a controller
response time of less than 10 ms after the occurrence of the fault was
observed, underscoring the efficiency of the proposed methodology in
fault detection and management.

To advance research in fault detection and classification in MG
electrical systems, exploring new deep learning architectures such as
recurrent neural networks or attention mechanisms could enhance the
model’s adaptability to dynamic data. Additionally, evaluating the
scalability of the SVM-CNN model in larger and more complex electrical
networks, and integrating additional data sources such as weather in-
formation, will strengthen predictive capabilities. Optimizing the model
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for real-time implementation and conducting extensive experimental
validations are also crucial steps to validate and refine its performance
under real operating conditions of MGC.
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Annexes.
Table 1A
Details of MG cluster under study
MG Source Power (MW) Power (MVA) Load (MVA)
1 Wind 2.50 2.78 1.50
2 Wind, Hydrokinetic 9.10 12.78 8.34
3 Wind, Battery, PV 3.21 3.78 3.00
4 Wind 2.50 2.78 1.50
5 Wind, Hydrogen 2.62 3.08 2.00
Table 2A
Input and output parameters to the SVM-CNN model after data acquisition.
Fault Gr. R. Type of Fault A B C G A B C G
No. Input Output
1 R=0.001 ABC-G Fault 157.3769 163.0469 151.0852 8.1249 1 1 1 1
2 R=0.001 ABC Fault 158.3600 164.6300 152.6300 0.0000 1 1 1 0
3 R=0.001 AB-G Fault 163.5263 135.5837 0.2504 8.7753 1 1 0 1
4 R=0.001 AC-G Fault 131.9294 0.1003 152.2872 21.9378 1 0 1 1
5 R=0.001 BC-G Fault 0.1368 166.3500 129.2300 11.0429 0 1 1 1
6 R=0.001 A-B Fault 130.6827 132.0560 0.0740 0.0000 1 1 0 0
7 R=0.001 A-C Fault 135.1755 0.0977 134.0501 0.0000 1 0 1 0
8 R=0.001 B-C Fault 0.0612 131.2361 132.1972 0.0000 0 1 1 0
9 R=0.001 A-G Fault 142.5636 0.0977 0.0740 18.1980 1 0 0 1
10 R=0.001 B-G Fault 0.0577 140.0013 0.0740 12.7296 0 1 0 1
11 R=0.001 C-G Fault 0.0586 0.0977 131.3944 41.8812 0 0 1 1
12 R=0.001 No Fault 0.0447 0.0977 0.0838 0.0000 0 0 0 0
13 R=0.005 ABC-G Fault 156.9552 162.2815 150.7116 1.7856 1 1 1 1
14 R=0.005 ABC Fault 157.3700 163.0469 151.0862 0.0000 1 1 1 0
15 R=0.005 AB-G Fault 164.5163 135.3594 0.1900 1.8631 1 1 0 1
16 R=0.005 AC-G Fault 132.1304 0.1194 152.3109 4.5613 1 0 1 1
17 R=0.005 BC-G Fault 0.1668 166.9633 130.1749 2.2561 0 1 1 1
18 R=0.005 A-B Fault 130.6119 131.9554 0.0740 0.0000 1 1 0 0
19 R=0.005 A-C Fault 134.9908 0.0977 133.8721 0.0000 1 0 1 0
20 R=0.005 B-C Fault 0.0611 131.0771 132.0508 0.0000 0 1 1 0
21 R=0.005 A-G Fault 142.3151 0.0977 0.0740 3.8270 1 0 0 1
22 R=0.005 B-G Fault 0.0576 139.6938 0.0740 2.8880 0 1 0 1
23 R=0.005 C-G Fault 0.0587 0.0977 131.0947 9.0333 0 0 1 1
24 R=0.005 No Fault 0.0447 0.0977 0.0838 0.0000 0 0 0 0
25 R=0.01 ABC-G Fault 156.6826 161.8326 150.2581 0.0044 1 1 1 1
26 R=0.01 ABC Fault 156.9552 162.2815 150.7116 0.0000 1 1 1 0
129 R=20 A-G Fault 0.7997 0.0977 0.0761 0.0072 1 0 0 1
130 R=20 B-G Fault 0.0447 0.7549 0.0799 0.0101 0 1 0 1
131 R=20 C-G Fault 0.0447 0.0977 0.8055 0.0093 0 0 1 1
132 R=20 No Fault 0.0447 0.0977 0.0838 0.0000 0 0 0 0
132 Events ABC 0.0447 0.0997 0.1230 0.0000 1 1 1 0
132 Events A 0.0876 0.0977 0.0882 0.0000 1 0 0 0
132 Events B 0.0664 0.2439 0.0818 0.0000 0 1 0 0
132 Events C 0.0600 0.0977 0.0907 0.0000 0 0 1 0
Type of Fault HIF A B C G A B C G
No. Input Output
1 Phase ABC 3.4824 3.4759 3.7459 0 1 1 1 0
2 AB 3.4824 3.4759 0.0838 0 1 1 0 0
3 AC 3.4824 0.0977 3.7459 0 1 0 1 0
4 BC 0.0447 3.4759 3.7459 0 0 1 1 0
5 A 3.4824 0.0977 0.0838 0 1 0 0 0
6 B 0.0447 3.4759 0.0838 0 0 1 0 0
7 C 0.0447 0.0977 3.7459 0 0 0 1 0
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