Logo Repositorio Institucional

Por favor, use este identificador para citar o enlazar este ítem: https://dspace.ucuenca.edu.ec/handle/123456789/34267
Título : Optimization of X-Band radar rainfall retrieval in the southern Andes of Ecuador using a random forest model
Autor: Rollenbeck,, Rütger T
Orellana Alvear, Johanna Marlene
Celleri Alvear, Rolando Enrique
Bendix, Jorg
Correspondencia: Orellana Alvear, Johanna Marlene, johanna.orellana@ucuenca.edu.ec
Palabras clave : Mountain region
Andes
Machine-learning
Mountain region
Radar
Rainfall retrieval
X-band
Andes
X-band
Machine-learning
Radar
Rainfall retrieval
Andes
Machine-learning
Mountain region
Radar
Rainfall retrieval
X-band
Área de conocimiento FRASCATI amplio: 1. Ciencias Naturales y Exactas
Área de conocimiento FRASCATI detallado: 1.5.10 Recursos Hídricos
Área de conocimiento FRASCATI específico: 1.5 Ciencias de la Tierra y el Ambiente
Área de conocimiento UNESCO amplio: 05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas
ÁArea de conocimiento UNESCO detallado: 0521 - Ciencias Ambientales
Área de conocimiento UNESCO específico: 052 - Medio Ambiente
Fecha de publicación : 2019
Volumen: Volumen 11, Número 14
Fuente: Remote Sensing
metadata.dc.identifier.doi: 10.3390/rs11141632
Tipo: ARTÍCULO
Abstract: 
Despite many efforts of the radar community, quantitative precipitation estimation (QPE) from weather radar data remains a challenging topic. The high resolution of X-band radar imagery in space and time comes with an intricate correction process of reflectivity. The steep and high mountain topography of the Andes enhances its complexity. This study aims to optimize the rainfall derivation of the highest X-band radar in the world (4450 m a.s.l.) by using a random forest (RF) model and single Plan Position Indicator (PPI) scans. The performance of the RF model was evaluated in comparison with the traditional step-wise approach by using both, the Marshall-Palmer and a site-specific Z−R relationship. Since rain gauge networks are frequently unevenly distributed and hardly available at real time in mountain regions, bias adjustment was neglected. Results showed an improvement in the step-wise approach by using the site-specific (instead of the Marshall-Palmer) Z−R relationship. However, both models highly underestimate the rainfall rate (correlation coefficient < 0.69; slope up to 12). Contrary, the RF model greatly outperformed the step-wise approach in all testing locations and on different rainfall events (correlation coefficient up to 0.83; slope = 1.04). The results are promising and unveil a different approach to overcome the high attenuation issues inherent to X-band radars.
Resumen : 
Despite many efforts of the radar community, quantitative precipitation estimation (QPE) from weather radar data remains a challenging topic. The high resolution of X-band radar imagery in space and time comes with an intricate correction process of reflectivity. The steep and high mountain topography of the Andes enhances its complexity. This study aims to optimize the rainfall derivation of the highest X-band radar in the world (4450 m a.s.l.) by using a random forest (RF) model and single Plan Position Indicator (PPI) scans. The performance of the RF model was evaluated in comparison with the traditional step-wise approach by using both, the Marshall-Palmer and a site-specific Z−R relationship. Since rain gauge networks are frequently unevenly distributed and hardly available at real time in mountain regions, bias adjustment was neglected. Results showed an improvement in the step-wise approach by using the site-specific (instead of the Marshall-Palmer) Z−R relationship. However, both models highly underestimate the rainfall rate (correlation coefficient < 0.69; slope up to 12). Contrary, the RF model greatly outperformed the step-wise approach in all testing locations and on different rainfall events (correlation coefficient up to 0.83; slope = 1.04). The results are promising and unveil a different approach to overcome the high attenuation issues inherent to X-band radars.
URI : http://dspace.ucuenca.edu.ec/handle/123456789/34267
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85070705080&origin=inward
URI Fuente: https://www.mdpi.com/journal/remotesensing
ISSN : 2072-4292
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
documento.pdfdocument5.98 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00