Por favor, use este identificador para citar o enlazar este ítem:
https://dspace.ucuenca.edu.ec/handle/123456789/34267Registro completo de metadatos
| Campo DC | Valor | Lengua/Idioma |
|---|---|---|
| dc.contributor.author | Rollenbeck,, Rütger T | - |
| dc.contributor.author | Orellana Alvear, Johanna Marlene | - |
| dc.contributor.author | Celleri Alvear, Rolando Enrique | - |
| dc.contributor.author | Bendix, Jorg | - |
| dc.date.accessioned | 2020-05-12T00:21:50Z | - |
| dc.date.available | 2020-05-12T00:21:50Z | - |
| dc.date.issued | 2019 | - |
| dc.identifier.issn | 2072-4292 | - |
| dc.identifier.uri | http://dspace.ucuenca.edu.ec/handle/123456789/34267 | - |
| dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85070705080&origin=inward | - |
| dc.description | Despite many efforts of the radar community, quantitative precipitation estimation (QPE) from weather radar data remains a challenging topic. The high resolution of X-band radar imagery in space and time comes with an intricate correction process of reflectivity. The steep and high mountain topography of the Andes enhances its complexity. This study aims to optimize the rainfall derivation of the highest X-band radar in the world (4450 m a.s.l.) by using a random forest (RF) model and single Plan Position Indicator (PPI) scans. The performance of the RF model was evaluated in comparison with the traditional step-wise approach by using both, the Marshall-Palmer and a site-specific Z−R relationship. Since rain gauge networks are frequently unevenly distributed and hardly available at real time in mountain regions, bias adjustment was neglected. Results showed an improvement in the step-wise approach by using the site-specific (instead of the Marshall-Palmer) Z−R relationship. However, both models highly underestimate the rainfall rate (correlation coefficient < 0.69; slope up to 12). Contrary, the RF model greatly outperformed the step-wise approach in all testing locations and on different rainfall events (correlation coefficient up to 0.83; slope = 1.04). The results are promising and unveil a different approach to overcome the high attenuation issues inherent to X-band radars. | - |
| dc.description.abstract | Despite many efforts of the radar community, quantitative precipitation estimation (QPE) from weather radar data remains a challenging topic. The high resolution of X-band radar imagery in space and time comes with an intricate correction process of reflectivity. The steep and high mountain topography of the Andes enhances its complexity. This study aims to optimize the rainfall derivation of the highest X-band radar in the world (4450 m a.s.l.) by using a random forest (RF) model and single Plan Position Indicator (PPI) scans. The performance of the RF model was evaluated in comparison with the traditional step-wise approach by using both, the Marshall-Palmer and a site-specific Z−R relationship. Since rain gauge networks are frequently unevenly distributed and hardly available at real time in mountain regions, bias adjustment was neglected. Results showed an improvement in the step-wise approach by using the site-specific (instead of the Marshall-Palmer) Z−R relationship. However, both models highly underestimate the rainfall rate (correlation coefficient < 0.69; slope up to 12). Contrary, the RF model greatly outperformed the step-wise approach in all testing locations and on different rainfall events (correlation coefficient up to 0.83; slope = 1.04). The results are promising and unveil a different approach to overcome the high attenuation issues inherent to X-band radars. | - |
| dc.language.iso | es_ES | - |
| dc.source | Remote Sensing | - |
| dc.subject | Mountain region | - |
| dc.subject | Andes | - |
| dc.subject | Machine-learning | - |
| dc.subject | Mountain region | - |
| dc.subject | Radar | - |
| dc.subject | Rainfall retrieval | - |
| dc.subject | X-band | - |
| dc.subject | Andes | - |
| dc.subject | X-band | - |
| dc.subject | Machine-learning | - |
| dc.subject | Radar | - |
| dc.subject | Rainfall retrieval | - |
| dc.subject | Andes | - |
| dc.subject | Machine-learning | - |
| dc.subject | Mountain region | - |
| dc.subject | Radar | - |
| dc.subject | Rainfall retrieval | - |
| dc.subject | X-band | - |
| dc.title | Optimization of X-Band radar rainfall retrieval in the southern Andes of Ecuador using a random forest model | - |
| dc.type | ARTÍCULO | - |
| dc.ucuenca.idautor | Sgrp-2895-3 | - |
| dc.ucuenca.idautor | 0104162268 | - |
| dc.ucuenca.idautor | Sgrp-2895-4 | - |
| dc.ucuenca.idautor | 0602794406 | - |
| dc.identifier.doi | 10.3390/rs11141632 | - |
| dc.ucuenca.version | Versión publicada | - |
| dc.ucuenca.areaconocimientounescoamplio | 05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas | - |
| dc.ucuenca.afiliacion | Rollenbeck,, R., University of Marburg, Marburg, Alemania | - |
| dc.ucuenca.afiliacion | Orellana, J., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Orellana, J., University of Marburg, Marburg, Alemania | - |
| dc.ucuenca.afiliacion | Bendix, J., University of Marburg, Marburg, Alemania | - |
| dc.ucuenca.afiliacion | Celleri, R., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador; Celleri, R., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador | - |
| dc.ucuenca.correspondencia | Orellana Alvear, Johanna Marlene, johanna.orellana@ucuenca.edu.ec | - |
| dc.ucuenca.volumen | Volumen 11, Número 14 | - |
| dc.ucuenca.indicebibliografico | SCOPUS | - |
| dc.ucuenca.factorimpacto | 1.43 | - |
| dc.ucuenca.cuartil | Q1 | - |
| dc.ucuenca.numerocitaciones | 0 | - |
| dc.ucuenca.areaconocimientofrascatiamplio | 1. Ciencias Naturales y Exactas | - |
| dc.ucuenca.areaconocimientofrascatiespecifico | 1.5 Ciencias de la Tierra y el Ambiente | - |
| dc.ucuenca.areaconocimientofrascatidetallado | 1.5.10 Recursos Hídricos | - |
| dc.ucuenca.areaconocimientounescoespecifico | 052 - Medio Ambiente | - |
| dc.ucuenca.areaconocimientounescodetallado | 0521 - Ciencias Ambientales | - |
| dc.ucuenca.urifuente | https://www.mdpi.com/journal/remotesensing | - |
| Aparece en las colecciones: | Artículos | |
Ficheros en este ítem:
| Fichero | Descripción | Tamaño | Formato | |
|---|---|---|---|---|
| documento.pdf | document | 5.98 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está protegido por copyright original |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.
Centro de Documentacion Regional "Juan Bautista Vázquez" | ||||||||||
| ||||||||||

