Logo Repositorio Institucional

Please use this identifier to cite or link to this item: https://dspace.ucuenca.edu.ec/handle/123456789/46120
Title: Machine learning for the adsorptive removal of ciprofloxacin using sugarcane bagasse as a low-cost biosorbent: comparison of analytic, mechanistic, and neural network modeling
Authors: Vanegas Pena, Maria Eulalia
Vera Cabezas, Luisa Mayra
Aguilar Pacheco, Jonnathan Andres
Coronel Romero, Stalin Mauricio
Juela Quintuna, Diego Marcelo
Cruzat Contreras, Christian Americo
Keywords: Adsorption
Artificial intelligence
Biomass
Emerging pollutants
Fixed-bed column
Neural network
Sugarcane bagasse
metadata.dc.ucuenca.areaconocimientofrascatiamplio: 1. Ciencias Naturales y Exactas
metadata.dc.ucuenca.areaconocimientofrascatidetallado: 1.4.1 Química Orgánica
metadata.dc.ucuenca.areaconocimientofrascatiespecifico: 1.4 Ciencias Químicas
metadata.dc.ucuenca.areaconocimientounescoamplio: 05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas
metadata.dc.ucuenca.areaconocimientounescodetallado: 0521 - Ciencias Ambientales
metadata.dc.ucuenca.areaconocimientounescoespecifico: 052 - Medio Ambiente
Issue Date: 2024
metadata.dc.ucuenca.embargoend: 31-Dec-2090
metadata.dc.ucuenca.volumen: Volumen 31, número 35
metadata.dc.source: Environmental Science and Pollution Research
metadata.dc.identifier.doi: 10.1007/s11356-024-34345-z
metadata.dc.type: ARTÍCULO
Abstract: 
Contamination with traces of pharmaceutical compounds, such as ciprofloxacin, has prompted interest in their removal via low-cost, efficient biomass-based adsorption. In this study, classical models, a mechanistic model, and a neural network model were evaluated for predicting ciprofloxacin breakthrough curves in both laboratory- and pilot scales. For the laboratory-scale (d = 2.2 cm, Co = 5 mg/L, Q = 7 mL/min, T = 18 °C) and pilot-scale (D = 4.4 cm, Co = 5 mg/L, Q = 28 mL/min, T = 18 °C) setups, the experimental adsorption capacities were 2.19 and 2.53 mg/g, respectively. The mechanistic model reproduced the breakthrough data with high accuracy on both scales (R2 > 0.4 and X2 < 0.15), and its fit was higher than conventional analytical models, namely the Clark, Modified Dose–Response, and Bohart-Adams models. The neural network model showed the highest level of agreement between predicted and experimental data with values of R2 = 0.993, X2 = 0.0032 (pilot-scale) and R2 = 0.986, X2 = 0.0022 (laboratory-scale). This study demonstrates that machine learning algorithms exhibit great potential for predicting the liquid adsorption of emerging pollutants in fixed bed
URI: https://dspace.ucuenca.edu.ec/handle/123456789/46120
https://www.scopus.com/record/display.uri?eid=2-s2.0-85199286596&doi=10.1007%2fs11356-024-34345-z&origin=inward&txGid=29cc11cb2cfd9564000f726eb8fa6ee7
metadata.dc.ucuenca.urifuente: https://link.springer.com/article/10.1007/s11356-024-34345-z
ISSN: 09441344
Appears in Collections:Artículos

Files in This Item:
File SizeFormat 
documento.pdf
  Until 2090-12-31
605.74 kBAdobe PDFView/Open Request a copy


This item is protected by original copyright



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00