Logo Repositorio Institucional

Por favor, use este identificador para citar o enlazar este ítem: https://dspace.ucuenca.edu.ec/handle/123456789/46048
Título : Enhancing runoff forecasting through the integration of satellite precipitation data and hydrological knowledge into machine learning models
Autor: Orellana Alvear, Johanna Marlene
Muñoz Pauta, Paul Andres
Celleri Alvear, Rolando Enrique
Correspondencia: Muñoz Pauta, Paul Andres, paul.munozp@ucuenca.edu.ec
Palabras clave : Peak runoff
Runoff forecasting
PERSIANN
Andes
Feature engineering
Machine learning
Área de conocimiento FRASCATI amplio: 1. Ciencias Naturales y Exactas
Área de conocimiento FRASCATI detallado: 1.5.9 Meteorología y Ciencias Atmosféricas
Área de conocimiento FRASCATI específico: 1.5 Ciencias de la Tierra y el Ambiente
Área de conocimiento UNESCO amplio: 05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas
ÁArea de conocimiento UNESCO detallado: 0521 - Ciencias Ambientales
Área de conocimiento UNESCO específico: 052 - Medio Ambiente
Fecha de publicación : 2024
Fecha de fin de embargo: 3-dic-2090
Volumen: Volumen 0
Fuente: Natural Hazards
Tipo: ARTÍCULO
Abstract: 
In this study, we use feature engineering (FE) strategies to enhance the performance of machine learning (ML) models in forecasting runoff and peak runoff. We selected a 300-km2 tropical Andean catchment, representative of rapid response systems where hourly runoff forecasting is particularly challenging. The selected FE strategies aim to integrate ground-based and satellite precipitation (PERSIANN-CCS) and to incorporate hydrological knowledge into the Random Forest (RF) model. Although the evaluation of the satellite product (microcatchment-wide and hourly scales) was initially discouraging (correlation of R = 0.21), our approach proved to be effective. We achieved Nash–Sutcliffe efficiencies (NSE) ranging from 0.95 to 0.61 for varying lead times from 1 to 12 h. Moreover, the inclusion of satellite data improved efficiencies at all lead times, with gains of up to 0.15 in NSE compared to RF models using ground-based precipitation alone. In addition, an extreme event analysis demonstrated the utility of the developed models in capturing peak runoff 98% of the time, despite a systematic underestimation as lead time increased. We highlight the ability of the RF models to forecast lead times up to three times the concentration time of the catchment. This has direct implications for enhancing flood risk management in complex hydrological settings where conventional data acquisition methods are insufficient. This study also underscores the value of testing hydrological hypotheses and leveraging computational advances through ML models in operational hydrology
URI : https://dspace.ucuenca.edu.ec/handle/123456789/46048
https://www.scopus.com/record/display.uri?eid=2-s2.0-85206929220&doi=10.1007%2fs11069-024-06939-w&origin=inward&txGid=d63875e9447cdbd3f29d5c60ad9de24a
URI Fuente: https://link.springer.com/article/10.1007/s11069-024-06939-w
ISSN : 0921030X
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
documento.pdf
  Until 2090-12-03
1.91 MBAdobe PDFVisualizar/Abrir     Solicitar una copia


Este ítem está protegido por copyright original



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00