Logo Repositorio Institucional

Please use this identifier to cite or link to this item: https://dspace.ucuenca.edu.ec/handle/123456789/46048
Title: Enhancing runoff forecasting through the integration of satellite precipitation data and hydrological knowledge into machine learning models
Authors: Orellana Alvear, Johanna Marlene
Muñoz Pauta, Paul Andres
Celleri Alvear, Rolando Enrique
metadata.dc.ucuenca.correspondencia: Muñoz Pauta, Paul Andres, paul.munozp@ucuenca.edu.ec
Keywords: Peak runoff
Runoff forecasting
PERSIANN
Andes
Feature engineering
Machine learning
metadata.dc.ucuenca.areaconocimientofrascatiamplio: 1. Ciencias Naturales y Exactas
metadata.dc.ucuenca.areaconocimientofrascatidetallado: 1.5.9 Meteorología y Ciencias Atmosféricas
metadata.dc.ucuenca.areaconocimientofrascatiespecifico: 1.5 Ciencias de la Tierra y el Ambiente
metadata.dc.ucuenca.areaconocimientounescoamplio: 05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas
metadata.dc.ucuenca.areaconocimientounescodetallado: 0521 - Ciencias Ambientales
metadata.dc.ucuenca.areaconocimientounescoespecifico: 052 - Medio Ambiente
Issue Date: 2024
metadata.dc.ucuenca.embargoend: 3-Dec-2090
metadata.dc.ucuenca.volumen: Volumen 0
metadata.dc.source: Natural Hazards
metadata.dc.type: ARTÍCULO
Abstract: 
In this study, we use feature engineering (FE) strategies to enhance the performance of machine learning (ML) models in forecasting runoff and peak runoff. We selected a 300-km2 tropical Andean catchment, representative of rapid response systems where hourly runoff forecasting is particularly challenging. The selected FE strategies aim to integrate ground-based and satellite precipitation (PERSIANN-CCS) and to incorporate hydrological knowledge into the Random Forest (RF) model. Although the evaluation of the satellite product (microcatchment-wide and hourly scales) was initially discouraging (correlation of R = 0.21), our approach proved to be effective. We achieved Nash–Sutcliffe efficiencies (NSE) ranging from 0.95 to 0.61 for varying lead times from 1 to 12 h. Moreover, the inclusion of satellite data improved efficiencies at all lead times, with gains of up to 0.15 in NSE compared to RF models using ground-based precipitation alone. In addition, an extreme event analysis demonstrated the utility of the developed models in capturing peak runoff 98% of the time, despite a systematic underestimation as lead time increased. We highlight the ability of the RF models to forecast lead times up to three times the concentration time of the catchment. This has direct implications for enhancing flood risk management in complex hydrological settings where conventional data acquisition methods are insufficient. This study also underscores the value of testing hydrological hypotheses and leveraging computational advances through ML models in operational hydrology
URI: https://dspace.ucuenca.edu.ec/handle/123456789/46048
https://www.scopus.com/record/display.uri?eid=2-s2.0-85206929220&doi=10.1007%2fs11069-024-06939-w&origin=inward&txGid=d63875e9447cdbd3f29d5c60ad9de24a
metadata.dc.ucuenca.urifuente: https://link.springer.com/article/10.1007/s11069-024-06939-w
ISSN: 0921030X
Appears in Collections:Artículos

Files in This Item:
File SizeFormat 
documento.pdf
  Until 2090-12-03
1.91 MBAdobe PDFView/Open Request a copy


This item is protected by original copyright



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00