Logo Repositorio Institucional

Please use this identifier to cite or link to this item: https://dspace.ucuenca.edu.ec/handle/123456789/45977
Title: Classification Of Gait Anomalies By Using Space-Time Parameters Obtained With Pose Estimation
Authors: Trelles Peralta, Milton Damian
Minchala Avila, Luis Ismael
Benenaula Armijos, Stalin Javier
metadata.dc.ucuenca.correspondencia: Minchala Avila, Luis Ismael, ismael.minchala@ucuenca.edu.ec
Keywords: Gait anomalies
Artifiial intelligene
Classifiation
Image proessing
metadata.dc.ucuenca.areaconocimientofrascatiamplio: 2. Ingeniería y Tecnología
metadata.dc.ucuenca.areaconocimientofrascatidetallado: 2.2.3 Sistemas de Automatización y Control
metadata.dc.ucuenca.areaconocimientofrascatiespecifico: 2.2 Ingenierias Eléctrica, Electrónica e Información
metadata.dc.ucuenca.areaconocimientounescoamplio: 06 - Información y Comunicación (TIC)
metadata.dc.ucuenca.areaconocimientounescodetallado: 0612 - Base de Datos, Diseno y Administración de Redes
metadata.dc.ucuenca.areaconocimientounescoespecifico: 061 - Información y Comunicación (TIC)
Issue Date: 2022
metadata.dc.ucuenca.volumen: Volumen 18, número 6
metadata.dc.source: International Journal of Innovative Computing, Information & Control: IJICIC
metadata.dc.identifier.doi: 10.24507/ijicic.18.06.1913
metadata.dc.type: ARTÍCULO
Abstract: 
Identifying anomalies in people suffering from gait disorders is typically per-formed by invasive methods, which implies attaching equipment to the human body. For instance, electromyography, as well as the use of body markers, are tools used to evaluate pathological gaits. This work presents a non-invasive system for analyzing and classifying normal, hemiparetic, and paraparetic gaits. To this end, we combine computer vision algorithms and artificial intelligence to generate space-time parameters related to the lower limbs’ movement. The proposed methodology consists of capturing RGB images of volun-teers that perform several cycles of the normal, hemiparetic, and paraparetic gaits. Pose estimation models process these images, and intelligent classifiers, based on convolution-al neural networks (CNN) and support vector machine (SVM), and process skeleton gait energy image (SGEI) to achieve characterization and classification of gait, respectively. From the three gait patterns, it is obtained of stride length, cadence, stride width, stride time, gait speed, and angles of the body’s lower extremities. Experimental results show high efficiency in the gait pattern classification, with efficiencies up to 98.57%.
URI: https://dspace.ucuenca.edu.ec/handle/123456789/45977
https://www.scopus.com/record/display.uri?eid=2-s2.0-85140617947&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28CLASSIFICATION+OF+GAIT+ANOMALIES+BY+USING+SPACE-TIME+PARAMETERS+OBTAINED+WITH+POSE+ESTIMATION%29
metadata.dc.ucuenca.urifuente: http://www.ijicic.org/contents-(2022).htm
ISSN: 1349-4198
Appears in Collections:Artículos

Files in This Item:
File SizeFormat 
documento.pdf2.76 MBAdobe PDFView/Open


This item is protected by original copyright



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00