Logo Repositorio Institucional

Por favor, use este identificador para citar o enlazar este ítem: https://dspace.ucuenca.edu.ec/handle/123456789/45906
Título : Gross primary productivity estimation through remote sensing and machine learning techniques in the high Andean Region of Ecuador
Autor: Urgiles Avila, Cindy Carolina
Orellana Alvear, Johanna Marlene
Crespo Sanchez, Patricio Xavier
Carrillo Rojas, Galo Jose
Correspondencia: Urgiles Avila, Cindy Carolina, cindyurgiles1996@gmail.com
Palabras clave : Gross primary productivity (GPP)
Páramo
Random Forest
Support vector regression
Tropical Andes
Área de conocimiento FRASCATI amplio: 1. Ciencias Naturales y Exactas
Área de conocimiento FRASCATI detallado: 1.5.8 Ciencias del Medioambiente
Área de conocimiento FRASCATI específico: 1.5 Ciencias de la Tierra y el Ambiente
Área de conocimiento UNESCO amplio: 05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas
ÁArea de conocimiento UNESCO detallado: 0522 - Medio Ambiente y Vida Silvestre
Área de conocimiento UNESCO específico: 052 - Medio Ambiente
Fecha de publicación : 2024
Fecha de fin de embargo: 31-dic-2090
Volumen: Volumen 69, número 3
Fuente: International Journal of Biometeorology
metadata.dc.identifier.doi: 10.1007/s00484-024-02832-0
Tipo: ARTÍCULO
Abstract: 
Accurately estimating gross primary productivity (GPP) is crucial for simulating the carbon cycle and addressing the challenges of climate change. However, estimating GPP is challenging due to the absence of direct measurements at scales larger than the leaf level. To overcome this challenge, researchers have developed indirect methods such as remote sensing and modeling approaches. This study estimated GPP in a humid páramo ecosystem in the Andean Mountains using machine learning models (ML), specifically Random Forest (RF) and Support Vector Regression (SVR), and compared them with traditional models. The study's objective was to analyze the strength and complex nonlinear relationships that govern GPP and to perform an uncertainty analysis for future climate projections. The methodology used to estimate GPP showed that ML-based models outperformed traditional models. The performance of ML models varied significantly among seasons, with the correlation coefficient (R) ranging from 0.24 to 0.86. The RF model performed better in capturing the temporal changes and magnitude of GPP in the less humid season, displaying the highest R (0.86), lowest root mean squared error (0.37 g C*m−2), and percentage bias (-3%). Additionally, the analysis indicates that solar radiation is the primary predictor of GPP in the páramo biome, rather than water. The study presents a method for deriving daily GPP fluxes and evaluates the impact of various variables on GPP estimates. This information can be employed in the development of vegetation prediction models
URI : https://www.scopus.com/record/display.uri?eid=2-s2.0-85210488876&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28Gross+primary+productivity+estimation+through+remote+sensing+and+machine+learning+techniques+in+the+high+Andean+Region+of+Ecuador%29&sessionSearchId=c665a656d375177602470d21d9a1c0ec
URI Fuente: https://link.springer.com/journal/484
ISSN : 0020-7128
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
documento.pdf
  Until 2090-12-31
2.03 MBAdobe PDFVisualizar/Abrir     Solicitar una copia


Este ítem está protegido por copyright original



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00