Please use this identifier to cite or link to this item:
https://dspace.ucuenca.edu.ec/handle/123456789/45171Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Arevalo Cordero, Wilian Paul | |
| dc.contributor.author | Villa Avila, Edisson Andres | |
| dc.contributor.author | Ochoa Correa, Danny Vinicio | |
| dc.date.accessioned | 2024-09-06T17:16:10Z | - |
| dc.date.available | 2024-09-06T17:16:10Z | - |
| dc.date.issued | 2024 | |
| dc.identifier.issn | 2032-6653 | |
| dc.identifier.uri | https://dspace.ucuenca.edu.ec/handle/123456789/45171 | - |
| dc.identifier.uri | https://www.scopus.com/record/display.uri?eid=2-s2.0-85202342397&origin=resultslist&sort=plf-f&src=s&sid=36a98de0a70aba9919417ca4f322a4a1&sot=b&sdt=b&s=TITLE-ABS-KEY%28A+Systematic+Review+on+the+Integration+of+Artificial+Intelligence+into+Energy+Management+Systems+for+Electric+Vehicles%3A+Recent+Advances+and+Future+Perspectives%29&sl=174&sessionSearchId=36a98de0a70aba9919417ca4f322a4a1&relpos=0 | |
| dc.description.abstract | This systematic review paper examines the current integration of artificial intelligence into energy management systems for electric vehicles. Using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) methodology, 46 highly relevant articles were systematically identified from extensive literature research. Recent advancements in artificial intelligence, including machine learning, deep learning, and genetic algorithms, have been analyzed for their impact on improving electric vehicle performance, energy efficiency, and range. This study highlights significant advancements in energy management optimization, route planning, energy demand forecasting, and real-time adaptation to driving conditions through advanced control algorithms. Additionally, this paper explores artificial intelligence’s role in diagnosing faults, predictive maintenance of electric propulsion systems and batteries, and personalized driving experiences based on driver preferences and environmental factors. Furthermore, the integration of artificial intelligence into addressing security and cybersecurity threats in electric vehicles’ energy management systems is discussed. The findings underscore artificial intelligence’s potential to foster innovation and efficiency in sustainable mobility, emphasizing the need for further research to overcome current challenges and optimize practical applications. | |
| dc.language.iso | es_ES | |
| dc.source | World Electric Vehicle Journal | |
| dc.subject | Systematic literature review | |
| dc.subject | Energy management systems | |
| dc.subject | Artificial intelligence | |
| dc.subject | Battery management systems | |
| dc.subject | Optimization techniques | |
| dc.subject | Renewable energy integration | |
| dc.subject | Electric vehicles | |
| dc.subject | Smart grids | |
| dc.title | A Systematic Review on the Integration of Artificial Intelligence into Energy Management Systems for Electric Vehicles: Recent Advances and Future Perspectives | |
| dc.type | ARTÍCULO | |
| dc.ucuenca.idautor | 0302495726 | |
| dc.ucuenca.idautor | 0105208128 | |
| dc.ucuenca.idautor | 0107151698 | |
| dc.identifier.doi | 10.3390/wevj15080364 | |
| dc.ucuenca.version | Versión publicada | |
| dc.ucuenca.areaconocimientounescoamplio | 07 - Ingeniería, Industria y Construcción | |
| dc.ucuenca.afiliacion | Arevalo, W., Universidad de Cuenca, Departamento de Ingeniería Eléctrica, Electrónica y Telecomunicaciones(DEET), Cuenca, Ecuador | |
| dc.ucuenca.afiliacion | Villa, E., Universidad de Cuenca, Departamento de Ingeniería Eléctrica, Electrónica y Telecomunicaciones(DEET), Cuenca, Ecuador | |
| dc.ucuenca.afiliacion | Ochoa, D., Universidad de Cuenca, Departamento de Ingeniería Eléctrica, Electrónica y Telecomunicaciones(DEET), Cuenca, Ecuador | |
| dc.ucuenca.correspondencia | Arevalo Cordero, Wilian Paul, warevalo@ujaen.es | |
| dc.ucuenca.volumen | Volumen 15, número 8 | |
| dc.ucuenca.indicebibliografico | SCOPUS | |
| dc.ucuenca.factorimpacto | 0 | |
| dc.ucuenca.numerocitaciones | 0 | |
| dc.ucuenca.areaconocimientofrascatiamplio | 2. Ingeniería y Tecnología | |
| dc.ucuenca.areaconocimientofrascatiespecifico | 2.2 Ingenierias Eléctrica, Electrónica e Información | |
| dc.ucuenca.areaconocimientofrascatidetallado | 2.2.1 Ingeniería Eléctrica y Electrónica | |
| dc.ucuenca.areaconocimientounescoespecifico | 071 - Ingeniería y Profesiones Afines | |
| dc.ucuenca.areaconocimientounescodetallado | 0713 - Electricidad y Energia | |
| dc.ucuenca.urifuente | https://www.mdpi.com/2032-6653/15/8/364 | |
| Appears in Collections: | Artículos | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| documento.pdf | 3.44 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Centro de Documentacion Regional "Juan Bautista Vázquez" | ||||||||||
| ||||||||||
