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Abstract: This systematic review paper examines the current integration of artificial intelligence into
energy management systems for electric vehicles. Using the preferred reporting items for systematic
reviews and meta-analyses (PRISMA) methodology, 46 highly relevant articles were systematically
identified from extensive literature research. Recent advancements in artificial intelligence, including
machine learning, deep learning, and genetic algorithms, have been analyzed for their impact on
improving electric vehicle performance, energy efficiency, and range. This study highlights significant
advancements in energy management optimization, route planning, energy demand forecasting, and
real-time adaptation to driving conditions through advanced control algorithms. Additionally, this
paper explores artificial intelligence’s role in diagnosing faults, predictive maintenance of electric
propulsion systems and batteries, and personalized driving experiences based on driver preferences
and environmental factors. Furthermore, the integration of artificial intelligence into addressing
security and cybersecurity threats in electric vehicles” energy management systems is discussed. The
findings underscore artificial intelligence’s potential to foster innovation and efficiency in sustainable
mobility, emphasizing the need for further research to overcome current challenges and optimize
practical applications.

Keywords: artificial intelligence; energy management systems; electric vehicles; optimization techniques;
battery management systems; renewable energy integration; smart grids; systematic literature review

1. Introduction

The advancement towards electric vehicles (EVs) is undeniable in the current land-
scape of human mobility. However, for this transition to be optimal, efficient and advanced
energy management systems (EMSs) are essential. EMSs play a critical role in managing the
energy flow within EVs, ensuring that energy consumption is optimized and that vehicles
operate at peak efficiency. They are responsible for monitoring and controlling various
components, such as batteries and propulsion systems, to maximize performance while
minimizing energy waste [1]. The necessity for efficient and advanced EMSs in EVs arises
from several factors. Firstly, EVs require precise energy management to optimize battery
usage, extend driving range, and enhance vehicle longevity. Effective EMSs ensure that
batteries are charged and discharged optimally, preventing premature degradation and
extending their lifespans [2]. Secondly, advanced EMSs incorporate real-time data analysis
and predictive algorithms to adjust energy use based on driving conditions and driver
behavior, thereby improving energy efficiency and autonomy [3-8].

Moreover, as EVs integrate more renewable energy sources and become key compo-
nents of smart grids, EMSs must facilitate seamless interaction between the vehicle and
the grid. This includes vehicle-to-grid (V2G) capabilities, where EVs can feed energy back
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into the grid during peak demand periods, enhancing grid stability and efficiency [9-11].
Integrating artificial intelligence (AI) into EMSs further enhances their capabilities, allowing
for advanced features such as predictive maintenance, fault diagnosis, and personalized
driving experiences. Al-driven EMSs can predict energy demand, optimize route planning,
and adapt to changing environmental conditions, thereby improving EVs’ overall efficiency
and performance [2,9-11].

The review of EMS strategies for EVs, including those powered by hydrogen fuel cells,
batteries, and hybrid energy storage systems, underscores the importance of advancing
Al-based algorithms and intelligent control systems. Studies such as [12,13] indicate that
hybrid energy storage systems, combining batteries and supercapacitors, offer promising
solutions to key challenges like autonomy, performance, and battery lifespan. Moreover,
research on energy microgrids and the integration of EVs highlights how AI advancements
can enhance demand management and optimize energy production and consumption,
as observed in [3,5]. These studies emphasize the need for adaptive and efficient EMSs
to maximize available resources and dynamically respond to changing environmental
conditions and power demand. Additionally, the application of machine learning and
reinforcement learning (RL) algorithms in optimizing EMSs, as mentioned in [7,8], presents
an exciting opportunity to improve operational efficiency and reduce energy costs in
connected EV environments and distributed energy systems.

In a context where the transition to EVs is crucial for sustainability, efficient energy
management becomes a determining factor. Although progress has been made in integrat-
ing Al into these systems, challenges persist in adapting algorithms to variable driving
conditions and real-time optimization. This research aims to address these gaps identified
in the current literature, exploring how Al can enhance the efficiency and autonomy of
EVs. An interdisciplinary and collaborative approach between academia and industry
is proposed to validate and implement practical solutions. The goal is to contribute to
developing more advanced EMSs, thereby facilitating a more effective transition to electric
and sustainable mobility.

The integration of Al into EMSs for EVs is a rapidly developing field, as evidenced by
numerous recent studies. A comprehensive literature review reveals a series of studies that
address this topic from different perspectives. Firstly, there has been extensive research on
using Al-based algorithms and control systems to optimize the performance of specific
vehicles, such as hydrogen fuel cell electric vehicles [1]. Additionally, Al techniques applied
to battery management systems (BMSs) in EVs have been explored, addressing monitoring,
battery state estimation, and cell balancing [14]. Another relevant aspect is edge computing,
which allows vehicles to make intelligent decisions quickly [15].

EMSs have also been studied in microgrids, where the goal is to optimize energy pro-
duction and consumption, including integrating EVs and Al techniques [16]. Furthermore,
the role of Al in thermal management and the performance of lithium-ion batteries in
EVs has been investigated [17]. The transformation towards connected, autonomous, and
shared vehicles also drives the use of Al in the automotive sector [9]. Energy management
strategies for fuel cell vehicles have also been reviewed [2]. Mechanical energy harvesting
in traffic environments and its application in intelligent transportation systems have also
been studied [18]. The management of braking energy in EVs has been examined [10].
These studies highlight the importance of developing practical algorithms, addressing
research gaps, overcoming technical challenges, and leveraging the opportunities offered
by Al to improve the efficiency and sustainability of electric mobility [13].

Research in the field of EMSs for EVs covers a wide range of topics, from developing
integrated electronic control units (ECUs) to integrating emerging technologies such as
blockchain and machine learning in smart grids. A recurring theme is the importance of
optimizing EMSs to improve the efficiency and sustainability of EVs. A crucial aspect in this
context is the development of integrated ECUs for Internet of Things (IoT)-enabled EVs [19].
The combination of blockchain and machine learning techniques in smart grids offers
solutions for P2P energy trading and distributed energy management. However, challenges
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such as scalability and energy consumption of blockchain persist [20]. Supercapacitors (5Cs)
have also gained attention because of their high power density and durability, which are
promising energy storage technologies [21]. Integrating EVs into smart grids also requires
the development of appropriate communication technologies to ensure network reliability
and consistency [22]. Optimizing EMS schemes for EV applications is crucial to improving
battery efficiency, lifespan, and safety [11]. Smart charging is key to integrating plug-in
electric vehicles into distribution grids, improving the system’s technical and economic
efficiency [23]. Hybrid architectures with advanced control strategies are being developed
in the maritime sector to reduce fuel consumption and emissions [24].

Additionally, the use of RL in the energy management of multi-energy source vehicles
and hybrid energy management strategies for EVs has been investigated [12,13]. Research
continues to advance with proposals such as EMSs based on adaptive neuro-fuzzy inference
systems (ANFISs) and multi-set learning algorithms for dual EVs, as well as EMSs based
on deep reinforcement learning (DRL) and Markov Action Learning to optimize the energy
management of hybrid EVs [3-8]. Collectively, these studies represent an ongoing effort to
improve the efficiency and sustainability of electric mobility by applying advanced energy
management technologies.

A comprehensive literature review on the integration of Al into EMSs for EVs re-
veals a wide variety of studies similar to those presented in this paper. However, upon
closer examination, several areas still clearly need additional research [1,2]. One signifi-
cant gap is the adaptation of EMS algorithms to dynamic driving conditions. Although
advanced algorithms have been developed, significant challenges remain in optimizing
energy management in real time, which could affect the performance and efficiency of
EVs [25]. Studies [1,2,17] partially address this topic. Another important gap lies in the
practical validation of proposed solutions. Closer collaboration between academia and
industry is essential to implement and validate these solutions in real-world environments,
ensuring their effectiveness and long-term viability.

With the transition to electric mobility, it is crucial to adapt EMSs to specifically address
EVs’ unique challenges and needs, including optimizing autonomy, efficiency, and charging
processes. Studies [2,9,10] address this topic but do not compare the different deficiencies
of each technology and do not analyze autonomy with actual values. By addressing
these identified gaps, the proposed research will significantly contribute to advancing and
developing more advanced and effective EMSs for EVs, thereby facilitating a more effective
transition to electric and sustainable mobility.

Based on the points above and to fill the remaining gaps, this article comprehensively
reviews the integration of Al into EMSs for EVs with the specific objectives of (1) analyzing
the latest advancements in Al techniques, such as machine learning, deep learning, and
optimization based on genetic algorithms, and their application in improving EVs’ per-
formance, energy efficiency, and range; (2) discussing how advanced control algorithms
optimize energy management, from route optimization to energy demand prediction and
real-time adaptation to driving conditions; (3) addressing the role of Al in fault diagnosis
and predictive maintenance of electric propulsion systems and batteries; (4) examining how
Al can personalize the driving experience and contribute to the detection and prevention
of security and cybersecurity threats in EV EMSs. The literature review process detailed in
this article employs the preferred reporting items for systematic reviews and meta-analyses
(PRISMA) method to guarantee a transparent, reproducible, and methodologically robust
approach. This method is essential for systematically identifying, selecting, and critically
appraising relevant research, thereby enhancing the reliability and validity of this review’s
findings.

2. Literature Review Methodology
2.1. Study Selection Criteria

The bibliographic resources for this literature review were sourced from the following
prestigious databases: Scopus, IEEE Xplore, and MDPI. These databases were selected
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because of their extensive coverage of high-quality research articles, ensuring a comprehen-
sive, transparent, and objective review.

Scopus is renowned for its rigorous content selection policies and broad coverage
across various disciplines, providing high-quality, peer-reviewed material. Its advanced
analysis tools and bibliometric indicators further enhanced the credibility and depth of our
review. IEEE Xplore is a leading source for electrical engineering and related fields, offering
access to high-impact and frequently cited publications, thus ensuring the inclusion of the
latest advancements and most relevant studies. MDP], as a fully open-access platform,
ensured that our review incorporated peer-reviewed research accessible to a wide audience,
promoting inclusivity and broad dissemination of knowledge.

These databases offer a robust and diverse collection of relevant literature, capturing
a broad spectrum of high-quality studies. By focusing on these well-regarded sources,
we ensured that our review provided a comprehensive and reliable overview of the field,
aligned with the highest standards of academic research.

To capture the relevant literature effectively, the search terms used across the Scopus,
IEEE Xplore, and MDPI databases were derived from the preliminary literature analysis
presented in the Introduction of this article. The specific search terms employed were the
following: “artificial intelligence” AND “energy management systems” AND “electric vehi-
cles”. The inclusion and exclusion criteria designed for this research are summarized below.

2.1.1. Inclusion Criteria
The inclusion criteria for this review encompassed the following:

e Peer-reviewed articles: Only articles that underwent rigorous peer review were
included to ensure the credibility and reliability of the findings.

e  Publications from the last 10 years (2014-2024): This period was selected as the most
appropriate for mapping knowledge in this study’s thematic area. The justification
for choosing this timeframe stems from the significant advancements and increasing
interest in integrating Al into EMSs for EVs during this period. As highlighted in the
preliminary research and Introduction, the past decade saw rapid developments in Al
techniques, such as machine learning, deep learning, and genetic algorithms, which
have significantly impacted EV performance, energy efficiency, and range. This period
allowed for capturing both the evolution of these technologies and the most recent
advancements.

e  Studies focusing on the application of Al in EMSs specifically for EVs: This criterion
ensured the relevance of the articles to the core research question.

o  Research that includes experimental results, case studies, simulations, or real-world
implementations: This criterion ensured that the studies provided practical insights
and evidence of the effectiveness of Al techniques in EMSs for EVs.

e  Articles written in English: This criterion maintained consistency and accessibility in
the analysis.

2.1.2. Exclusion Criteria
The exclusion criteria included:

e Conference and review papers: These were excluded to focus on original research
articles that provide detailed methodologies and experimental results.

e Non-peer-reviewed articles, editorials, commentaries, and opinion pieces: These
types of publications were excluded to maintain a preference for primary sources and
to ensure the rigor and credibility of the works included in this review.

e  Publications older than 10 years: Older publications were excluded to keep this
review focused on recent advancements.

e  Studies not directly related to EMSs or EVs: This criterion maintained the relevance
of this literature review.

e  Articles not available in full text: This criterion ensured that all reviewed articles
could be thoroughly analyzed.
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o  Duplicate studies or those with insufficient methodological details: This criterion
avoided redundancy and ensured methodological rigor.

These inclusion and exclusion criteria were established to ensure that this literature
review comprehensively addressed the most relevant and high-quality research on Al
integration into EMSs for EVs. This study aims to capture the latest advancements and
practical applications in this rapidly evolving area by focusing on recent, peer-reviewed
articles that provide detailed methodologies and experimental results. This approach aligns
with the objectives of this research, which are to explore the current state of Al technologies
in EMSs for EVs, identify key trends, and highlight innovative solutions that enhance
performance, energy efficiency, and vehicle range.

2.2. Literature Search Process

To capture the relevant literature effectively, the following search terms and query
strings were utilized across the Scopus, IEEE Xplore, and MDPI databases. These search
strategies ensured comprehensive coverage of the relevant research topics.

The review process detailed in this article adheres to the guidelines set forth by
the preferred reporting items for systematic reviews and meta-analyses (PRISMA) 2020
statement [26]. This approach is critical for ensuring a transparent, reproducible, and
methodologically sound review. The PRISMA guidelines provide a comprehensive frame-
work for systematically identifying, selecting, and critically appraising relevant research,
thereby bolstering the reliability and validity of our findings. By following PRISMA’s struc-
tured checklist and flow diagrams, we guaranteed a rigorous review process that included
detailed reporting of search strategies, selection criteria, and synthesis methods. This metic-
ulous documentation enhanced this review’s clarity and transparency, thus facilitating
replication and updates. Furthermore, by employing PRISMA, we addressed common
biases and improved the quality and completeness of reporting in systematic reviews. The
literature systematic review protocol designed for this study is registered in the Open
Science Framework (OSF) and can be found at https:/ /doi.org/10.17605/OSEIO/FHXCP.
More details about the design and execution of this methodology are provided in Figure 1
and Section 2.3.
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Figure 1. Diagram illustrating the steps of the literature review process.

2.3. Selection of Studies and Eligibility

Figure 1 illustrates a flowchart of the literature review process. The figure shows that
the review process began with applying the search terms and queries in Table 1. This initial
search yielded 339 items: 104 from Scopus, 80 from IEEE Xplore, and 155 from MDPI. With
these raw results, the authors assigned the following coding system to the items to facilitate
subsequent bibliometric processing: articles from Scopus were coded as S-XX, those from
IEEE Xplore as IEEE-XX, and those from MDPI as MDPI-XX.
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Table 1. Search terms and queries utilized for this literature review.

Database Query String

(TITLE-ABS-KEY (“Artificial Intelligence”) AND TITLE-ABS-KEY
Scopus (“EMS”) AND ALL (“EVs”)) AND PUBYEAR > 2013 AND PUBYEAR
P <2025 AND (LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO
(LANGUAGE, “English”))

(“Full Text & Metadata”:”Artificial Intelligence”) AND (“Full Text &
Metadata”:“Energy Management Systems”) AND (“All
IEEEXplore Metadata”:“EVs”)

Article type: Journals
Year range: 20142024

Search text: “Artificial Intelligence”, Search Type: Full Text

Logical operator: AND, Search text: “Energy Management Systems”,
MDPI Search Type: Full Text

Logical operator: AND, Search text: “EVs”, Search Type: All fields.

Article type: Article

Year range: 20142024

The first review stage (R1) involved the removal of duplicate items. During this stage,
only six duplicate documents were identified and withdrawn. A preliminary bibliometric
analysis is presented here to give the reader a global perspective of the literature review
results. Figure 2 shows the distribution of the 333 preselected works across different digital
databases, revealing a predominance in MDPI, which accounts for 47% of the total. Scopus
follows with 29%, and IEEE Xplore is slightly below with 24%. This distribution highlights
MDPT’s strong positioning in recent years in the research topic addressed in this study, likely
because of its extensive focus on cutting-edge technologies and interdisciplinary research.
Additionally, Figure 2 presents the historical record of the number of publications per
year. The trend line indicates a steady increase in publications over time, with a noticeable
dip in 2020, likely due to the COVID-19 pandemic, which impacted research activities
across various technological fields. Despite this temporary setback, the trend demonstrates
a robust upward trajectory, suggesting continued growth in the number of publications
through 2024, evidenced by the high number of publications recorded by mid-year.

IEEE
Xplore
24%

Scopus
29%

Digital
databases

o,
7% 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Figure 2. Breakdown of articles by digital database and publication year (R1 stage).

Following the bibliometric analysis, the second review stage (R2) involved evaluating
the remaining works to ensure they met the predefined inclusion and exclusion criteria
outlined in Sections 2.1.1 and 2.1.2 by examining the titles and abstracts. Two independent
reviewers thoroughly assessed all articles to minimize bias, independently verifying each
for potential bias to ensure objectivity and mitigate subjective influence. Importantly, no
automation tools were used in this process. There was no missing or unclear information in
the analyzed studies, eliminating the need for additional assumptions regarding the data.

This rigorous screening process reduced the pool to 94 qualifying works out of the initial
333, as shown in Figure 3. For the bibliometric analysis, we utilized tools such as MS Excel
(Microsoft Office Professional Plus 2019) and Zotero (Version 6.0.36), free online resources like
freewordcloudgenerator.com, URL: https:/ /www.freewordcloudgenerator.com/ (accessed on
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International Journal of Renewable Energy Development

CSEE Journal of Power and Energy Systems

International Journal of Hydrogen Energy

Journal of Cybersecurity and Privacy

Electric Power Components and Systems

11 August 2024), and custom Python routines designed and implemented by the authors to
facilitate the metadata collection, organization, and systematization. Figure 3 also presents
the distribution of the 94 articles resulting from the R2 review stage by journal. The
distribution highlights that a significant portion of the articles, approximately 13%, were
published in the journal Energies, indicating its prominence in EMSs and EVs. Similarly,
IEEE Access also features prominently, accounting for around 10% of the total articles. This
reflects the journal’s focus on high-impact, broad-scope research in electrical and electronic
engineering. With six articles, IEEE Transactions on Transportation Electrification underscores
its specialized focus on transportation electrification that is directly relevant to integrating
Al into EV EMSs. Both Sensors and Sustainability contributed five articles each, highlighting
the multidisciplinary nature of research in this field, encompassing sensor technology and
sustainable practices.

Journals like Energy and Applied Sciences each contributed three articles, indicating
their role in broader energy research and applied scientific studies. Specialized journals
such as Electric Power Components and Systems, Electronics, and Transportation Engineering
each contributed two articles, showcasing focused research areas that intersect with the
main topic of this study. Lastly, Applied Energy contributed one article, while a significant
portion (44 out of 94) were published in various other journals. This wide distribution
across numerous journals emphasizes the diverse interests and interdisciplinary approach
required to advance Al integration into EMSs for EVs.

Database Inclusion and Exclusion Criteria Article Fulfillment (R2-stage)
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Energy 3
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Sensors Articles that met the

IEEE Transactions on Transportation Electrification
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IEEE Access exclusion criteria
Energies

Other journals

0 8 16 24 32 40
Figure 3. Summary of the screening process of this literature review (R2 stage).

The third review step (R3) involved conducting a comprehensive full-text review of
each work to determine the relevance of the topics concerning the identified terms and the
main focus of this research. For this purpose, the research team defined a series of criteria
to evaluate each of the 94 items using a five-level Likert scale for the evaluation metrics.
The Likert scale, rather than a binary rating system, was chosen to capture the nuanced
and multifaceted nature of each study’s contribution and relevance. A binary scale would
have oversimplified the evaluation process, potentially overlooking significant qualitative
differences among studies that a more granular scale can capture.
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The evaluation criteria and metrics are provided in Table 2 below. Each criterion is
rated on a scale from 1 to 5, where 1 indicates poor quality or relevance and 5 indicates
excellent quality or relevance.

The suggested minimum score for inclusion in the review process was 35. This
score ensured that articles comprehensively address the integration of Al in EMSs for
EVs, demonstrating high methodological rigor, experimental validation, novelty, clarity,
technical depth, reproducibility, data quality, practical applicability, and impact on the
field. A score of 35, which is 70% of the maximum possible score (50), guaranteed that the
articles included were of very high quality and relevance. This threshold ensured a balance
among rigor, relevance, and practical applicability, allowing only the most pertinent and
robust studies to be considered in this systematic review. Increasing the minimum score to
35 ensured a higher standard of excellence, enhancing the overall quality and reliability of
the review.

Figure 4a shows the final scores achieved by each item at this stage. Based on the
results, 46 articles met the predefined minimum threshold; therefore, the remaining articles
were discarded. To facilitate the reader’s comprehension, the research team considered it
convenient to group the main themes addressed by each article into broad study topics.
The keywords from the 46 articles were extracted to generate a word cloud map to aid
this clustering process. This method helped identify the frequency of terms used across
the selected literature. The result, shown in Figure 4b, reveals that the most prevalent
keywords are Al, EV energy management, optimization techniques, BMS, renewable energy
integration, and smart grids.

Table 2. Criteria and metrics for full-text evaluation (R3 stage).

Criterion Description and Evaluation Metrics
How well the study addresses the integration of Al techniques in energy
Relevance to Al in EMSs for EVs management systems for EVs (1: peripheral, 2: somewhat, 3: relevant, 4: highly
relevant, 5: central focus).
Methodological rigor The robustness and appropriateness of the research methodology employed in the

study (1: needs improvement, 2: fair, 3: good, 4: very good, 5: excellent).

Experimental validation

The extent to which the study includes experimental results, simulations, case
studies, or real-world implementations (1: none, 2: limited, 3: moderate, 4:
extensive, 5: comprehensive).

Novelty and contribution

The originality and significance of the study’s contributions to the field (1: minor,
2: low, 3: moderate, 4: significant, 5: groundbreaking).

Clarity and completeness

The clarity of writing and the completeness of the information provided in the
study (1: needs improvement, 2: fair, 3: good, 4: very good, 5: excellent).

Technical depth

The level of technical detail and depth in the study (1: introductory, 2: basic, 3:
adequate, 4: detailed, 5: highly detailed).

Reproducibility

The extent to which the study provides enough detail to allow for replication of
the results (1: none, 2: limited, 3: moderate, 4: extensive, 5: comprehensive).

Data quality and integrity

The quality and integrity of the data presented in the study (1: poor, 2: fair, 3:
good, 4: very good, 5: excellent).

Practical applicability

The potential for practical application of the study’s findings in real-world
scenarios (1: none, 2: low, 3: moderate, 4: high, 5: very high).

Impact on field

The potential impact of the study’s findings on Al in energy management for EVs
(1: minor, 2: low, 3: moderate, 4: significant, 5: groundbreaking).
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Figure 4. Graphical summary of the eligibility process (R3 stage) of this literature review: (a) eligibility
matrix and (b) word cloud map of keywords from the selected articles.

Based on this identification, the synthesis process of the selected works focused on the
following five specific topics:

e  Artificial Intelligence in EV Energy Management: This topic encompasses articles
that apply Al techniques such as machine learning, deep learning, and genetic al-
gorithms in the EMSs of EVs. These studies explore how Al can optimize energy
consumption, predict energy demand, and enhance the overall efficiency of EV opera-
tions.

e  Optimization Techniques in Energy Management Systems: Articles under this topic
discuss various optimization algorithms and techniques designed to enhance the
efficiency and performance of EMSs in EVs. These include traditional optimization
methods and advanced algorithms tailored to improve EVs’ operational efficiency and
energy utilization.

e Battery Management Systems: This category includes articles on the management,
monitoring, and optimization of battery systems in EVs. Key areas of focus within this
topic are estimating the state of charge (SoC), lifecycle management of batteries, and
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strategies to ensure the longevity and reliability of battery systems through advanced
monitoring and control techniques.

e Renewable Energy Integration: Articles exploring integrating renewable energy
sources, such as solar and wind power, into the EMSs of EVs fall under this topic. These
studies examine how renewable energy can be efficiently harnessed and managed to
support the sustainable operation of EVs, thus contributing to a greener and more
sustainable energy landscape.

e  Smart Grids and Electric Vehicles: This topic covers articles examining the interaction
between smart grids and EVs. Key areas of interest include grid stability, demand
response strategies, and the impact of EV integration on smart grid infrastructure.
These studies investigate how EVs can be integrated into smart grids to enhance grid
efficiency, stability, and resilience and the potential benefits and challenges.

By categorizing the selected literature into these five overarching topics, the research
team aimed to provide a clear and structured synthesis of the current state of the research.
Table 3 shows the relationship of each selected item within the five identified topic groups.

Finally, overall bibliographic information of the selected studies for this literature
review is provided in Appendix A.

Table 3. Categorization of selected items within the identified topic groups.
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21 S-006 65 v v 44 MDPI-114 66 v v v v
22 S-012 67 v v v v 45 MDPI-137 68 v v v
23 S-017 69 v v v 46 MDPI-144 70 v v v v

3. Descriptive Analysis of the Literature

This section presents a detailed analysis of the reviewed studies, organized into the
following five main topics: Al in EV energy management, optimization techniques in EMS,
BMS renewable energy integration, and smart grids and EVs. Two independent reviewers
meticulously evaluated the selected studies to ensure the integrity of and reduce the risk of
bias in our synthesis. This independent review process helped maintain objectivity and
enhanced the credibility of the findings. Each topic was divided into three subsections
as follows: description, current state, trends, and future challenges, providing a compre-
hensive view of the advancements, current applications, and pending challenges in each
area. By systematically categorizing and analyzing the studies, we aimed to offer a robust
synthesis that highlights the key developments and identifies gaps in the existing literature.
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3.1. Artificial Intelligence in EV Energy Management
3.1.1. Description

Al is pivotal in optimizing energy management for EVs, utilizing advanced ma-
chine learning algorithms, neural networks, and optimization techniques [27,31]. These
technologies are essential for enhancing EV performance, energy efficiency, and range
through sophisticated control algorithms. Techniques such as RL are particularly effective
in real-time energy management, offering near-optimal solutions even in dynamic driving
conditions [27,29]. Al applications extend to fault diagnosis and predictive maintenance
of electric propulsion systems and batteries, ensuring higher reliability and extended bat-
tery life [46]. This capability is crucial for maintaining EV performance and user safety.
Moreover, Al enables personalized driving experiences tailored to driver preferences and
environmental conditions [35,39]. In cybersecurity, Al is instrumental in detecting and
mitigating security threats within EV-EMS, safeguarding against potential vulnerabilities.
The integration of Al into these domains highlights its potential to drive innovation and
efficiency in sustainable mobility solutions [33].

3.1.2. Current State and Recent Advances

In the energy management of EVs, advances driven by Al are noteworthy [48,52]. Re-
inforcement learning (RL) has been particularly effective in optimizing energy consumption
and route planning. For instance, ref. [27] proposes a Q-learning-based system for hybrid
powertrains, emphasizing the need for precise agent and environment design to achieve
near-optimal real-time solutions. Additionally, hybrid algorithms combining actual data
and simulations, as seen in [29], enhance energy consumption efficiency in hybrid electric
vehicles (HEVs) through advanced deep learning (DL) and RL techniques. In fuel cell
electric buses, ref. [37] applies DRL to optimize energy management, reducing consumption
and improving operational efficiency under diverse conditions. Strategies like TD3 in [35]
optimize energy resources in residential settings, thus reducing costs. Moreover, algorithms
such as deep g-network and double deep g-network in [44] enhance energy efficiency by
optimizing device scheduling amidst dynamic environments.

An Al and IoT-based adaptive system can optimize energy efficiency and extend the EV
range by up to 2.5% through DL algorithms [50]. Strategies combining heuristic knowledge
with DRLA enhance the efficiency of hybrid electric vehicles, competing with traditional
techniques like dynamic programming [54]. In microgrids, techniques such as artificial
neural networks and RL optimize the economic dispatch of energy and integration of
renewable resources [41,56]. A genetic optimization algorithm also manages energy storage
in residential systems with solar panels and batteries, minimizing costs and maximizing self-
consumption [63]. Technologies like DL are integrated into microgrid systems to improve
energy efficiency and demand management [67]. Prediction models for photovoltaic
solar energy integrated with EV charging platforms are also being explored to achieve
sustainable energy transition and carbon neutrality [62]. These advancements demonstrate
Al’s potential to transform energy management, enhancing operational efficiency and
promoting sustainability [34].

3.1.3. Industrial Adoption

Implementing Al in fleet management systems and autonomous vehicles is revolution-
izing energy efficiency [58]. Strategies such as DRL, fuzzy logic control, and Al-based EMSs
are optimizing consumption and operational stability. Al uses internal pricing mechanisms
in households to optimize energy trading among distributed resources [28]. In renewable
energy microgrids, Al systems ensure optimal energy flow and stability [30]. Furthermore,
predictive models based on Al, such as deep neural networks and transfer learning, are
crucial for predicting torque demand in electric and hybrid vehicles [32,42]. These models
enhance vehicle efficiency and promote sustainable energy use.

In hydrogen fuel cell vehicles, Al-based optimization efficiently manages energy re-
sources, minimizing environmental impacts and costs [36]. While it is true that the use
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of green hydrogen, which is produced through renewable energy sources, results in zero
emissions during vehicle operation, there are still several environmental impacts associated
with the lifecycle of hydrogen production, transportation, and storage. The production of
hydrogen, particularly when not derived from renewable sources, can lead to significant
environmental impacts. For instance, hydrogen production through natural gas reform-
ing, a common method, results in carbon emissions unless carbon capture and storage
technologies are employed. Moreover, the transportation and storage of hydrogen involve
energy-intensive processes that can contribute to environmental footprints. Furthermore,
in hydrogen fuel cell vehicles, efficient water management within the fuel cell is crucial to
maintaining optimal performance [36].

The proton exchange membrane (PEM) fuel cells used in these vehicles require precise
control of water balance to avoid issues such as water flooding or membrane drying. Water
flooding occurs when excess water obstructs the gas diffusion layer, reducing fuel cell
efficiency, while membrane drying can lead to cell degradation. Al-based optimization
can enhance the management of these complex liquid water characteristics, ensuring
efficient operation and extending the life of the fuel cells [36]. Algorithms such as Q-
Learning can improve energy management in hybrid electric vehicles (HEVs) by adapting to
changing conditions and optimizing energy flow [38]. Additionally, peer-to-peer platforms
in smart homes utilize Al to distribute energy efficiently among prosumers, integrating
photovoltaic systems and EVs [40]. Model predictive control (MPC) systems enhanced with
machine learning can manage EV charging infrastructures, optimizing energy distribution
in urban environments [45]. This adoption of Al drives operational efficiency and promotes
sustainable energy practices, marking a step towards a smarter and more conscientious
energy future.

3.1.4. Trends and Future Challenges

Advanced energy management increasingly uses real-time data and predictive an-
alytics to enhance decision-making. This is evident in implementing systems like deep
deterministic policy gradient (DDPG) integrated with ANFIS to optimize energy efficiency
and state-of-charge for plug-in hybrid vehicles [51]. Furthermore, integrating Al-based
smart EMSs into smart grids improves automation and interoperability, using embedded
devices and IoT communication protocols to optimize consumption and renewable energy
generation [53]. In the realm of electricity consumption and demand management, pro-
totypes of energy meters based on current sensors with real-time and frequency-domain
analysis are being developed, utilizing edge and cloud analytics for demand-side manage-
ment (DSM) [55]. Moreover, expert home energy management systems integrate voice as-
sistants with IoT platforms, enhancing user efficiency and comfort through multi-objective
optimization and process automation [57,59,61].

The advancement towards smart grids and Al implementation is transforming energy
markets towards greater operational efficiency and sustainability [64,66]. However, chal-
lenges such as cybersecurity in smart grids, ongoing optimization of prediction algorithms,
and load management for EVs and renewable energy systems persist [68,70]. Address-
ing these challenges will enhance the reliability and efficiency of grids and facilitate the
transition to cleaner and more sustainable energy sources.

The rise in EV usage has heightened the need for efficient electric load management,
particularly to mitigate adverse impacts on the electrical grid [60]. ML-based charging
management systems, such as long short-term memory recurrent neural networks (LSTM),
k-nearest neighbors, random forests, support vector machines (SVMs), and decision trees,
have proven effective in optimizing EV charging [45,60]. These systems reduce costs and
voltage fluctuations and enhance electrical system stability [47]. Furthermore, energy man-
agement in autonomous residential microgrids benefits from advanced home EMSs based
on Al [65]. Algorithms like the African Vultures optimization algorithm have been shown
to reduce operational costs and improve the lifespan of energy storage systems, which are
crucial for managing random EV charging. Digitization and the application of emerging
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1. Description

technologies such as digital twins and multi-agent systems are revolutionizing energy
efficiency in smart cities [69]. These technologies enable dynamic optimization of com-
plex energy systems, including renewable energy integration and demand management,
essential for resilience against extreme weather events [43,69].

Intelligent transformer management and the integration of Al-based EMSs are cru-
cial for preventing grid failures and optimizing power flow in substations [43]. Hybrid
Al models, such as combining SVM and linear regression algorithms, are used for real-
time monitoring and maintenance planning, improving operational efficiency. Moreover,
advances in large-scale EV charging management systems, driven by machine learning
techniques and MPC, are transforming EV charging infrastructure. These systems signifi-
cantly reduce phase imbalances and energy losses, which are crucial for mitigating impacts
on low-voltage networks [45].

Figure 5 provides a summary of the key findings in the synthesis of the literature on
artificial intelligence in EV energy management.

4. Trends and Future
Challenges

2. Current State and

3. Industrial Adoption

Recent Advances

Optimization of Energy Management:

- Technologies: machine learning (ML),
neural networks, optimization techniques.
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Personalized Driving and Cybersecurity:
- Features: tailors driving experience to
driver preferences and conditions.

- Role in Cybersecurity: detects and
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Figure 5. Literature review on artificial intelligence in EV energy management.

3.2. Optimization Techniques in EMSs
3.2.1. Description

Optimization techniques in EMSs encompass a variety of methodologies aimed at
enhancing efficiency and reducing operational costs across diverse applications. These
techniques leverage mathematical, heuristic, and metaheuristic approaches to address com-
plex energy distribution and consumption challenges. Recent advancements highlight the
integration of Al and machine learning (ML) paradigms, such as RL, DRL, and data-driven
algorithms, into EMS frameworks [25,35,46,48,50,54]. RL methods, including Q-learning
and twin delayed DDPG (TD3), have demonstrated efficacy in optimizing power allocation
and energy flow in HEVs and fuel cell hybrid electric buses (FCHEBs). These algorithms
adapt dynamically to real-world conditions, achieving near-optimal performance under
varying operational scenarios.

Additionally, combining Al techniques with blockchain technology has facilitated
the development of decentralized energy trading platforms, enhancing grid stability and
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optimizing power transactions in microgrid environments. Such platforms integrate smart
contracts and distributed ledger technologies to ensure secure and transparent energy
transactions. Moreover, the application of Al in smart home EMSs has revolutionized
residential energy consumption by optimizing the use of distributed energy resources
(DERs) and responding to real-time demand fluctuations [25,39,50]. These systems employ
predictive analytics and adaptive control strategies to minimize costs and maximize energy
efficiency, contributing to sustainable energy practices.

3.2.2. Current State

Recent innovations in EMSs highlight significant advancements driven by Al and
machine learning (ML). For instance, integrating DL algorithms such as bidirectional
long short-term memory (Bi-LSTM) with optimization techniques has revolutionized the
management of home microgrids. As described in [42], this approach optimizes the
scheduling of battery energy storage systems (BESSs) to minimize daily electricity costs
under time-of-use pricing while also considering the operational constraints of renewable
resources and household appliances. Similarly, advancements in digital twin technologies,
detailed in [69], have enabled real-time monitoring and optimization of energy systems
in smart cities, enhancing the efficiency and resilience of photovoltaic (PV) systems, heat
pumps, and multi-energy storage solutions.

Real-world applications illustrate successful implementations across diverse energy
management contexts. For instance, the application of backpropagation neural networks
in hybrid energy recognition and management systems, discussed in [34], demonstrates
high accuracy in identifying and managing various energy inputs, including photovoltaic
and piezoelectric energy sources. Moreover, machine learning-based online MPC, as
detailed in [45], has been pivotal in managing large-scale EV charging infrastructures.
This approach leverages ML predictions to mitigate EV charging impacts on the grid,
significantly reducing peak demand and enhancing voltage stability.

The impact of these innovations extends beyond technical advancements to tangible
benefits in industry practices. In the context of hydrogen fuel cell vehicles, Al-driven EMSs,
as reviewed in [36], optimize vehicle-to-everything (V2X) interactions, enhancing energy
efficiency and sustainability. Furthermore, studies such as [64] explore the application
of DRL in home EMSs, illustrating their effectiveness in dynamically optimizing energy
consumption and costs through demand response strategies.

3.2.3. Trends and Future Challenges

Current trends in EMSs underscore a shift towards more adaptive and real-time
approaches. These advancements leverage cutting-edge technologies such as Al, machine
learning (ML), and digital twins to enhance operational efficiency and responsiveness [67].
For instance, Al-driven predictive models integrated with DL algorithms are increasingly
used to optimize energy distribution and scheduling in microgrid systems [69]. Similarly,
digital twin technologies enable dynamic modeling and simulation for proactive energy
management, particularly in smart city infrastructures. These trends reflect a broader
movement towards agile EMS solutions capable of swiftly adapting to changing energy
demands and environmental conditions.

Despite these technological strides, the practical implementation of advanced EMS
solutions faces significant challenges. One key obstacle is the inherent complexity of
integrating diverse technologies and optimizing their performance across various oper-
ational contexts [34,38]. Customizing EMS solutions to meet specific environmental and
user requirements demands extensive data integration, computational resources, and in-
terdisciplinary expertise. Moreover, ensuring the interoperability and cybersecurity of
interconnected energy systems remains critical [68]. Robust protocols and standards are
essential to mitigate cybersecurity risks and ensure the reliable operation of smart grid
infrastructures. Furthermore, scaling these solutions across different scales—from indi-
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vidual homes to large industrial complexes—poses additional logistical and regulatory
challenges [40,49].

Figure 6 summarizes the key findings from the literature synthesis on optimization
techniques in EMSs. This figure highlights the various optimization algorithms and method-
ologies identified in the reviewed articles, showcasing their applications and contributions
to enhancing the efficiency and performance of EMSs in electric vehicles. The summarized
findings illustrate the advancements in optimization techniques and their impact on the
overall effectiveness of energy management in EVs.

Techniques and Methodologies
® mathematical, heuristic, metaheuristic
approaches.
©® Al and ML Integration: reinforcement
learning (RL), deep reinforcement learning
(DRL), data-driven algorithms.

Al and Blockchain Integration
® Decentralized Energy Trading: use of smart
contracts for secure transactions.
® Applications: enhances grid stability,
optimizes power transactions.

Smart Home EMS
® Predictive Analytics, Adaptive Control:
optimizes distributed energy resources (DERs).
® Benefits: minimizes costs, maximizes energy

Current State

Innovations in EMS
DL Algorithms (Bi-LSTM), digital twin
technologies.
Applications: home microgrids, PV systems,
heat pumps.

Real-World Applications
Machine Learning-Based MPC: manages EV
charging infrastructure.
Backpropagation Neural Networks: enhances
energy rvn‘ogniti(m and managemen t.

Industry Benefits
Hydrogen Fuel Cell Vehicles: optimizes V2X
interactions.
DRL in Home EMS: dynamic energy
optimization.

Trends
® Adaptive, Real-Time Approaches: Al-driven
predictive models, digital twins.
® Applications: dynamic modeling in smart
cities, microgrid optimization.

Challenges
® Technological Integration, Performance
Optimization
Complexity: diverse technology integration,
data management.
Interoperability and Cybersecurity: ensuring
secure operations in smart grids.
® Scaling Solutions: logistical and regulatory
challenges.

efficiency.

Figure 6. Literature synthesis on optimization techniques in EMSs.

3.3. Battery Management Systems
3.3.1. Description

BMSs are essential components in EVs and renewable energy systems, tasked with
monitoring, controlling, and protecting battery packs to ensure their efficiency, longevity,
and safety [45,46,58,63,66]. These systems integrate sophisticated electronics and software
algorithms to oversee critical parameters such as SoC, SoH, and temperature, optimizing
battery performance and preventing operational failures. Accurately measuring these
parameters simultaneously can be challenging, and non-destructive testing technologies
are often preferred. Recent advancements in this field include methods for joint estima-
tion of SOC and temperature using ultrasonic reflection waves. A study [71] presents a
novel approach where a piezoelectric transducer is affixed to the battery surface to enable
ultrasonic-electric transduction. This method allows for the transmission and reflection of
ultrasonic signals, providing accurate estimates of SOC and temperature with root mean
square errors of 7.42% and 0.40 °C, respectively. Additionally, innovations in energy man-
agement strategies have highlighted the importance of degradation adaptive approaches
that focus on the current SoH to enhance durability and prevent degradation. As a current
example, in [72], an innovative technique is proposed to adapt the energy management
process to the real-time state of the powertrain, achieving an optimal balance between
energy economy and long-term durability.

3.3.2. Current State

Recent advancements in BMS technology have focused on enhancing monitoring preci-
sion and control accuracy. This includes implementing advanced diagnostic techniques and
predictive algorithms [58]. For instance, artificial neural networks (ANNs) combined with
adaptive strategies like the maximum correntropy criterion (MCC) have improved SoC
estimation accuracy by considering higher-order statistical moments, thereby mitigating



World Electr. Veh. ]. 2024, 15, 364

17 of 27

the impact of outliers in battery data. Similarly, intelligent prediction algorithms inte-
grated into BMSs for microgrids utilize machine learning models such as LSTM networks
to forecast energy production and optimize power management. Despite technological
strides, challenges persist in mitigating battery degradation and managing thermal dy-
namics [46,63]. Maintaining optimal SoC without compromising battery lifespan and
managing heat dissipation during high-demand scenarios remain critical areas of research
and development.

3.3.3. Trends and Future Challenges

Future trends in BMSs point towards developing smarter systems capable of more
accurate diagnostics and predictive capabilities [46]. Integrating Al technologies, including
fuzzy logic and convolutional neural networks (CNNs), aims to enhance real-time decision-
making and adaptive control strategies. These advancements are crucial for optimizing
battery performance across environmental and operational conditions. Overcoming current
limitations in battery technology, such as cycle life and temperature, remains a primary
challenge for BMSs [66]. Effective energy management strategies are crucial for optimizing
battery performance and lifespan. Reference [63] highlights the importance of advanced
energy management strategies in hybrid systems to ensure continuous power supply.
Reference [66] discusses intelligent algorithms for managing power flows and optimizing
the SOC. By leveraging machine learning techniques, Al-based algorithms significantly
improve battery health prediction, charging cycle optimization, and overheating prevention.
For instance, LSTM networks enhance the accuracy and reliability of SOC forecasting. Al-
driven control strategies use real-time data to keep batteries within safe temperature ranges,
preventing thermal degradation [66]. Future advancements in Al, including reinforcement
learning and advanced neural networks, promise further improvements in battery life and
performance, contributing to the efficiency, reliability, and sustainability of electric vehicle
battery systems [63,66].

3.3.4. Advantages and Shortcomings of Al Technologies in BMSs for EV's

The integration of Al into BMSs for electric vehicles offers numerous advantages.
One of the main benefits is the optimization of battery performance. Al enables real-time
optimization of energy use, improving efficiency and reducing waste. Algorithms such
as ANNs and LSTM networks have shown significant improvements in SoC estimation
accuracy [58]. Additionally, Al facilitates predictive diagnostics, allowing for the anticipa-
tion of battery failures and enabling preventive maintenance, thus avoiding unexpected
breakdowns [58]. Another important advantage is the extension of battery life. Thermal
management through Al helps control battery temperature, mitigating the risk of over-
heating and prolonging cell lifespan [63]. Furthermore, optimizing battery usage through
Al reduces degradation, maintaining optimal performance for longer periods [63]. Real-
time adaptation is another significant benefit. Al adapts battery management to changing
driving and environmental conditions, optimizing energy use based on traffic, weather,
and driver preferences [45,46]. Additionally, Al facilitates the integration of renewable
energy sources, adjusting energy consumption according to the availability of solar or wind
energy [55].

3.3.5. Shortcomings and Challenges of Applying Al in BMSs for EVs

Despite the numerous advantages, the application of Al in BMSs for electric vehicles
also presents several shortcomings and challenges. One of the main shortcomings is the
complexity of implementation. Adapting Al algorithms to real-world driving conditions
remains a significant challenge, as simulations and theoretical models do not always ac-
curately reflect real-world conditions [63,66]. Moreover, advanced Al algorithms require
considerable processing power and data storage capacity, which can be costly and difficult
to implement in real-time energy management systems [37,42]. Another important short-
coming is the lack of empirical validation. Many studies rely on simulations and lack testing
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in real-world scenarios, limiting the practical validation of proposed solutions [61]. Collabo-
ration between academia and industry is crucial to implement and validate solutions in real
environments, ensuring their effectiveness and long-term viability [46]. Interoperability
and cybersecurity issues also represent significant challenges. Integrating various BMSs,
IoT devices, and communication protocols requires seamless interoperability, which is
challenging because of the lack of unified standards [66]. Additionally, energy management
systems’ increasing digitalization and connectivity make them vulnerable to cyberattacks.
It is essential to develop robust cybersecurity protocols to protect these systems [46].

Figure 7 presents a summary of the key insights from the literature synthesis on
battery management systems (BMSs). This figure showcases the strategies and technologies
identified in the reviewed articles, highlighting their role in enhancing battery performance,
longevity, and efficiency. The summarized findings underscore the advancements in BMSs
and their critical impact on improving the overall effectiveness of energy management in
electric vehicles.

Description

Functions: monitoring, controlling,
protecting.

Key Parameters: SoC, SoH, temperatura.
Technologies: non-destructive testing,
ultrasonic reflection.

Current State

Advancements: diagnostic techniques.
Technologies: ANNSs with MCC, LSTM
networks.

Challenges: battery degradation, thermal

Battery dynamics.
Management
Systems

Trends and Future Challenges

Trends: smarter systems, Al integration.
Challenges: energy density, cycle life,
regulatory standards, safety.

Figure 7. Key insights from the literature synthesis on battery management systems.

3.4. Renewable Energy Integration
3.4.1. Description

Renewable energy integration involves seamlessly integrating sustainable energy
sources, such as solar and wind power, into the existing electrical grid and the EMSs of
EVs. This process aims to enhance overall energy efficiency, reduce reliance on fossil fuels,
and mitigate environmental impacts [41].

3.4.2. Current State, Projects, and Impact

Renewable energy integration is progressing through several noteworthy develop-
ments and initiatives. Across various sectors, significant projects are underway that com-
bine EV technologies with renewable energy sources. These initiatives aim to reduce
carbon footprints and demonstrate the synergy between transportation and energy sectors
in achieving broader sustainability goals [62]. For instance, studies highlight the potential
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for effectively integrating predictive analytics and machine learning in managing energy
consumption and distribution [35]. The integration of renewable energy is reshaping the
energy market landscape. It promotes the adoption of cleaner technologies, enhances
energy independence, and supports sustainable economic growth. This transition is crucial
for reducing greenhouse gas emissions and advancing environmental stewardship.

3.4.3. Trends and Future Challenges

Recent trends and ongoing challenges in renewable energy integration are multifaceted.
Hybrid renewable energy projects, which combine solar PV with wind turbines or other
sources, are increasingly popular. These projects optimize energy production by leveraging
the complementary characteristics of different renewable sources, thereby enhancing system
reliability and performance [66]. Moreover, advancements in Al and machine learning
facilitate more precise predictions of renewable energy generation, enabling better grid
integration strategies [69]. Despite these technological advancements, significant challenges
persist, particularly related to the algorithms used in renewable energy integration. One of
the primary challenges is managing the intermittency of renewable sources, which remains
a critical issue for grid stability [30]. AI algorithms must accurately predict energy supply
and demand to maintain balance, but the variability in renewables like wind and solar can
complicate this task.

Effective integration with existing infrastructure also requires robust energy storage
solutions and adaptive management systems capable of responding to variable renewable
outputs [53,63]. The complexity of developing algorithms that can seamlessly integrate
diverse energy sources and adapt to fluctuating conditions poses a significant challenge.
For instance, algorithms must account for the stochastic nature of renewable generation
and optimize the dispatch of stored energy in real time. Another algorithmic challenge
is the need for scalability and efficiency in handling large datasets from various sensors
and devices within the grid. As the grid incorporates more renewable energy sources, the
volume of data increases, necessitating more sophisticated data processing and decision-
making algorithms. Ensuring these algorithms can operate efficiently without excessive
computational resources is crucial [69].

Furthermore, integrating renewable energy with the market poses challenges related
to pricing and incentives. Algorithms must dynamically adjust energy prices and manage
transactions in a way that incentivizes renewable energy use while ensuring economic
feasibility. This comprehensive literature review underscores the dynamic evolution of re-
newable energy integration, emphasizing ongoing efforts and advancements in technology;,
policy, and market dynamics [35,41,53,62,63,66,69]. These insights inform current practices
and set the stage for future research and innovation to achieve a sustainable and resilient
energy future. Addressing the algorithmic challenges associated with renewable energy
integration is crucial to realizing the full potential of these technologies and achieving a
stable, efficient, and sustainable energy system.

An overview of the key findings related to integrating renewable energy sources in
the literature is provided in Figure 8. This figure details the approaches and technologies
identified in the reviewed studies, emphasizing their role in incorporating renewable
energy into energy management systems. The findings highlight significant advancements
in integrating renewable sources, such as solar and wind power, and their impact on
enhancing the sustainability and efficiency of electric vehicles’ energy management systems.
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Trends and Future Challenges

Trends:

- Hybrid Projects: solar PV and wind
turbine combinations.

- Advancements in AI/ML: enhanced
predictions for energy generation.

Challenges:

- Intermittency Management:
ensuring grid stability.

- Infrastructure Integration: robust
energy storage, adaptive management
systems.

Description

Integration Process:

- Sustainable Energy Sources: solar,
wind power.

- Objectives: enhance energy
efficiency, reduce fossil fuel reliance,
mitigate environmental impacts.

Current State, Projects, and Impact

Developments and Initiatives:

- Projects: combining EV technologies
with renewables.

- Techniques: predictive analytics,
machine learning for energy management.

Impacts:
- Environmental Benefits: carbon

footprint reduction, cleaner technology
adoption.

- Economic Benefits: energy
independence, sustainable economic
growth.

Figure 8. Key findings related to integrating renewable energy sources.

3.5. Smart Grids and EVs
3.5.1. Description

Smart grids represent a pivotal advancement in EMSs, particularly in optimizing EVs’
charging and discharging cycles. This integration not only enhances the overall efficiency
of the electrical grid but also supports the seamless incorporation of renewable energy
sources [33]. Key technologies driving these advancements include Al, blockchain, and
the Internet of Things (IoT), which collectively enable sophisticated energy management
strategies [39,41].

Al algorithms embedded within smart grid frameworks enable real-time optimization of
EV charging schedules based on fluctuating energy supply and demand dynamics [50,60]. By
leveraging predictive analytics and machine learning, these systems ensure the optimal use
of renewable energy resources while minimizing operational costs and grid congestion [50].
Moreover, the bidirectional capabilities facilitated by IoT devices allow EVs to not only
consume energy but also contribute back to the grid during peak demand periods—a
concept known as vehicle-to-grid (V2G) interaction. This bidirectional flow enhances grid
stability and reliability, making EVs integral components of a sustainable and resilient
energy infrastructure.

3.5.2. Current State and Implementations

Significant innovations in communication and control technologies have propelled
recent advancements in energy management within smart grids. These developments
enhance energy distribution, consumption efficiency, and flexibility across diverse grid
environments. Technologies such as advanced metering infrastructure (AMI) and Al are
crucial in optimizing grid operations, enabling real-time adjustments based on demand
fluctuations and supply variations. Al-driven predictive models, like bidirectional Bi-
LSTM, are increasingly integrated into EMSs, facilitating precise energy distribution and
scheduling in microgrid environments [50].

Moreover, integrating edge and fog computing techniques has revolutionized the
implementation of smart grid solutions. These techniques enhance local processing capa-
bilities and reduce reliance on centralized cloud services, improving system reliability and
response times [53]. The deployment of smart autonomous devices, capable of real-time
analysis and decision-making at the network edge, exemplifies this trend [55].
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Cities and regions worldwide actively implement smart grid technologies to bolster
sustainability and energy efficiency. For instance, integrating distributed energy resources
(DERs) and energy storage systems (ESSs) in urban settings exemplifies a proactive ap-
proach to grid modernization. These implementations leverage smart sensors and IoT-based
communication protocols to optimize energy consumption and reduce environmental im-
pact [43]. In addition, adopting incentive mechanisms within smart grids incentivizes
consumer participation in demand-side management (DSM) activities. This includes lever-
aging game theory and blockchain technologies to optimize energy distribution during
peak periods and promote using renewable energy sources (RESs) [59]. Such initiatives
enhance grid reliability and contribute significantly to carbon emission reduction efforts.

3.5.3. Trends and Future Challenges

The evolution of smart grids is increasingly characterized by decentralization and
participatory energy management strategies. Cities and regions are moving towards
integrating distributed energy resources (DERs), energy storage systems (ESSs), and EV
charging stations into their grid infrastructures [43]. This shift facilitates a more adaptive
and resilient grid architecture that manages fluctuating power flows and enhances overall
reliability. Furthermore, advancements in Al and ML are driving innovations in grid
management, enabling predictive maintenance and optimal energy distribution [70]. These
technologies empower local communities to engage in energy generation and consumption
decisions actively, fostering a more sustainable energy ecosystem.

Despite the promising advancements, smart grids face significant challenges that must
be addressed for widespread adoption and efficiency. One of the foremost challenges is
cybersecurity. The increased digital connectivity in smart grids makes them susceptible to
cyberattacks, posing risks to grid stability and consumer data security [68]. Ensuring robust
cybersecurity measures, including Al-enhanced threat detection and mitigation strategies,
is crucial to safeguarding grid operations and maintaining public trust.

Another critical challenge is interoperability. Integrating diverse EMSs, IoT devices,
and communication protocols requires seamless interoperability to ensure efficient grid
operations [53]. Standardization efforts are essential to enable compatibility and interoper-
ability across various grid components and technologies, enhancing system resilience and
scalability. Moreover, substantial investments in infrastructure are required to support the
transition towards smarter grids. Upgrading existing grid infrastructure to accommodate
DERs, ESSs, and advanced metering systems entails significant costs [64]. Addressing these
investment needs while ensuring affordability and equitable access to smart grid benefits
remains a key challenge for policymakers and utilities.

In summary, while the trends towards decentralized, participatory grids powered by
Al and ML show immense promise for energy sustainability and efficiency, addressing
cybersecurity, interoperability issues, and infrastructure investments is critical for realizing
the full potential of smart grid technologies in the future. Decentralized grids enhance
security by distributing control across multiple nodes, which reduces vulnerability to
single points of failure often targeted in cyberattacks. Al and ML algorithms further
bolster this security by providing real-time monitoring and anomaly detection, allowing for
quick identification and response to potential threats. These technologies can dynamically
adjust security measures, making them more adaptive to emerging threats and ensuring
robust protection of grid infrastructure. Interoperability remains a challenge as well,
requiring standardized communication protocols and seamless integration of diverse
energy management systems and IoT devices. Al can aid in overcoming these challenges
by optimizing data exchange and ensuring compatibility across different platforms and
technologies. Significant infrastructure investments are needed to support the widespread
adoption of smart grids, including upgrading existing systems to accommodate distributed
energy resources and advanced metering technologies. Ensuring these investments are
made effectively will be crucial in achieving a secure, efficient, and resilient energy future
where smart grid technologies can thrive.
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Figure 9 encapsulates the comprehensive findings on the integration of smart grids
and electric vehicles (EVs) from this literature review.

- Technologies: Al blockchain, IoT.
- Capabilities: real-time optimization, V2G interactions.

- EV Charging Optimization: efficient use of renewable energy.
- Bidirectional Capabilities: Vehicle-to-Grid (V2G) interactions.

Innovations:

- Communication and Control Technologies: advanced metering
infrastructure (AMI), Al predictive models.

- Edge and Fog Computing: local processing, improved reliability.

2. Current State and

. Global Impl tations:
Implementations EG T

- DERs and ESS in Urban Settings: optimization using loT-based
communication protocols.
- Incentive Mechanisms: game theory, blockchain for DSM.

Trends:

- Decentralization and Participatory Energy Management:
Integration of DERs, ESS, and EV charging stations.

- Al and ML in Grid Management: predictive maintenance,
3. Trends and Future optimal energy distribution.

Challenges

Challenges:
- Cybersecurity: enhancing threat detection and mitigation.
- Interoperability: ensuring seamless integration of diverse
technologies.
- Infrastructure Investments: upgrading grid infrastructure.

Figure 9. Comprehensive findings on the integration of smart grids and electric vehicles (EVs) from
this literature review.

4. Discussion

Based on the findings synthesized in the previous section of this systematic literature
review report, integrating artificial intelligence into energy management systems for electric
vehicles reveals substantial advancements and potential for optimizing EV performance,
energy efficiency, and range. The application of Al techniques, including machine learning
(ML), deep learning (DL), and reinforcement learning (RL), has demonstrated significant
improvements in real-time energy management, fault diagnosis, predictive maintenance,
and cybersecurity. The general interpretation of these results aligns with the broader
evidence that Al is pivotal in addressing EVs’ dynamic and complex energy demands,
offering near-optimal solutions under varying operational conditions. For instance, studies
utilizing Q-learning and hybrid algorithms illustrate Al’s capability to enhance energy
consumption efficiency in hybrid electric vehicles and fuel-cell electric buses, achieving
improved operational efficiency and reduced energy costs.

However, several limitations of the evidence included in this review warrant discus-
sion. The variability in algorithm adaptation to real-time driving conditions remains a
critical challenge, impacting the practical application of these Al techniques. Furthermore,
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the reviewed studies often lack comprehensive real-world validation, primarily relying on
simulations and theoretical models. This gap highlights the necessity for closer collabora-
tion between academia and industry to implement and test these Al-driven solutions in
actual EV environments, ensuring their effectiveness and long-term viability.

The review process itself also has limitations, particularly in the selection criteria and
scope. While ensuring high-quality evidence, excluding conference papers and non-peer-
reviewed articles may have omitted relevant findings from emerging research. Additionally,
the focus on publications from the last ten years may exclude foundational studies that
could provide valuable insights into the evolution of Al in EMSs for EVs. These method-
ological choices, while aimed at maintaining rigor and relevance, inherently limit the
breadth of this review.

The implications of these results for practice, policy, and future research are profound.
Practically, the integration of Al into EMSs can revolutionize fleet management, enhance
renewable energy integration, and improve the overall sustainability of EV operations.
Policymakers should consider supporting the development and implementation of Al-
driven EMS technologies, promoting standards that facilitate interoperability and data
sharing between different systems and platforms. For future research, there is a clear need
for interdisciplinary approaches that combine Al, energy management, and automotive
engineering to address the identified gaps. Specifically, research should focus on develop-
ing adaptive algorithms capable of real-time optimization in diverse driving conditions,
validating Al techniques through extensive field trials, and exploring the socio-economic
impacts of widespread Al adoption in EVs.

5. Conclusions

This systematic review comprehensively examined the integration of artificial intelli-
gence (Al) into energy management systems (EMSs) for electric vehicles (EVs) using the
preferred reporting items for systematic reviews and meta-analyses (PRISMA) method-
ology. We identified 46 relevant articles highlighting the significant advancements and
practical applications of Al, focusing on machine learning (ML), deep learning (DL), and
genetic algorithms. The findings reveal that Al integration into EMSs offers numerous
advantages. Optimized energy management is achieved through AI’s ability to provide
precise real-time optimization, enhancing energy efficiency and vehicle range. Advanced
Al techniques enable effective route planning and energy consumption adjustments, con-
sidering traffic and environmental conditions. Fault diagnosis and predictive maintenance
are significantly improved with Al, which allows for accurate predictions of battery health
and energy needs, thereby reducing unexpected failures and extending the lifespan of
critical components.

Al also plays a crucial role in renewable energy integration, promoting sustainable
energy practices by enhancing the prediction and management of renewable energy sources.
This integration supports energy independence and contributes to environmental sustain-
ability by enabling better forecasting and utilization of renewable energy. However, this
study also identifies several challenges that must be addressed for the widespread adoption
of Al-enhanced EMSs. Cybersecurity is a primary concern as increased connectivity exposes
EMSs to potential cyberattacks. Implementing robust cybersecurity measures, including
Al-driven threat detection and mitigation strategies, safeguards data and maintains grid
stability. Interoperability poses another challenge, requiring the seamless integration of
diverse EMSs, IoT devices, and communication protocols. Establishing standardized proto-
cols is crucial to ensure efficient communication across different systems and enhance the
functionality of Al-enhanced EMSs. Infrastructure investments are critical to supporting
the transition towards Al-integrated EMSs. Upgrading existing grid infrastructures to
accommodate distributed energy resources, advanced metering systems, and smart grids is
vital to achieving reliability and efficiency. Addressing these infrastructure needs while
ensuring equitable access to benefits remains a key challenge for policymakers and utilities.
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Finally, Al integration into EMSs for EVs holds transformative potential to enhance
performance, efficiency, and sustainability. Future research should focus on developing
advanced Al models adaptable to diverse driving conditions, improving cybersecurity
measures, and exploring innovative optimization techniques. These efforts will be instru-
mental in creating more robust and adaptive Al applications in EMSs, paving the way for
a sustainable and efficient future in electric mobility. Enhanced interdisciplinary collabo-
ration between academia and industry will be essential to validate and implement these
solutions in real-world environments, ensuring their effectiveness and long-term viability.
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Appendix A
Owerall Information of the Selected Studies for This Literature Review

All the bibliographic information for the 94 articles resulting from stage R2 and the
46 articles that passed the eligibility criteria in stage R3 can be downloaded from the fol-
lowing GitHub URL: https:/ /github.com/dannyochoa87 /WEV]-MDPI-001.git (accessed
on 11 August 2024).
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