Logo Repositorio Institucional

Por favor, use este identificador para citar o enlazar este ítem: https://dspace.ucuenca.edu.ec/handle/123456789/44241
Título : Forecast-Based Energy Management for Optimal Energy Dispatch in a Microgrid
Autor: Duran Siguenza, Juan Francisco
Minchala Avila, Luis Ismael
Correspondencia: Minchala Avila, Luis Ismael, ismael.minchala@ucuenca.edu.ec
Palabras clave : Energy management system
Renewable energy
Forecast
Microgrid
Área de conocimiento FRASCATI amplio: 2. Ingeniería y Tecnología
Área de conocimiento FRASCATI detallado: 2.2.1 Ingeniería Eléctrica y Electrónica
Área de conocimiento FRASCATI específico: 2.2 Ingenierias Eléctrica, Electrónica e Información
Área de conocimiento UNESCO amplio: 07 - Ingeniería, Industria y Construcción
ÁArea de conocimiento UNESCO detallado: 0713 - Electricidad y Energia
Área de conocimiento UNESCO específico: 071 - Ingeniería y Profesiones Afines
Fecha de publicación : 2024
Volumen: Volumen 17, número 2
Fuente: Energies
metadata.dc.identifier.doi: 10.3390/en17020486
Tipo: ARTÍCULO
Abstract: 
This article describes the development of an optimal and predictive energy management system (EMS) for a microgrid with a high photovoltaic (PV) power contribution. The EMS utilizes a predictive long-short-term memory (LSTM) neural network trained on real PV power and consumption data. Optimal EMS decisions focus on managing the state of charge (SoC) of the battery energy storage system (BESS) within defined limits and determining the optimal power contributions from the microgrid components. The simulation utilizes MATLAB R2023a to solve a mixed-integer optimization problem and HOMER Pro 3.14 to simulate the microgrid. The EMS solves this optimization problem for the current sampling time (Formula presented.) and the immediate sampling time (Formula presented.), which implies a prediction of one hour in advance. An upper-layer decision algorithm determines the operating state of the BESS, that is, to charge or discharge the batteries. An economic and technical impact analysis of our approach compared to two EMSs based on a pure economic optimization approach and a peak-shaving algorithm reveals superior BESS integration, achieving 59% in demand satisfaction without compromising the life of the equipment, avoiding inexpedient power delivery, and preventing significant increases in operating costs.
URI : http://dspace.ucuenca.edu.ec/handle/123456789/44241
https://www.scopus.com/record/display.uri?eid=2-s2.0-85183321555&doi=10.3390%2fen17020486&origin=inward&txGid=ba7951cac78e82c760eeb6bdf5ef6fa7
URI Fuente: https://www.mdpi.com/1996-1073/17
ISSN : 1996-1073
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
documento.pdf925.91 kBAdobe PDFVisualizar/Abrir


Este ítem está protegido por copyright original



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00