Logo Repositorio Institucional

Por favor, use este identificador para citar o enlazar este ítem: https://dspace.ucuenca.edu.ec/handle/123456789/41671
Título : Partial meanings of the Pythagorean theorem used by teachers in the creation of tasks within the framework of a continuing education program
Otros títulos : Significados parciales del teorema de Pitágoras usados por docentes en la creación de tareas en el marco de un programa de formación continua
Autor: Breda, Adriana
Font, Vicenc
Calle Palomeque, Carmen Eulalia
Palabras clave : Idoneidad didáctica
Creación de tareas
Formación continua de profesores
Significados parciales del teorema de Pitágoras
Área de conocimiento FRASCATI amplio: 5. Ciencias Sociales
Área de conocimiento FRASCATI detallado: 5.3.1 Educación en general
Área de conocimiento FRASCATI específico: 5.3 Ciencias de la Educación
Área de conocimiento UNESCO amplio: 01 - Educación
ÁArea de conocimiento UNESCO detallado: 0114 - Formación de Profesor con Asignatura de Especialización
Área de conocimiento UNESCO específico: 011 - Educación
Fecha de publicación : 2023
Volumen: Volumen 37, número 1
Fuente: Uniciencia
metadata.dc.identifier.doi: 10.15359/ru.37-1.1
Tipo: ARTÍCULO
Abstract: 
[Objective] This article presents the results of research on the teaching and learning of the criterion “implement a representative sample of the complexity of the mathematical object to be taught,” which was carried out with high school mathematics teachers from Ecuador in a master’s degree program in continuing education. [Methodology] After a discussion of the instructional process which was used when teaching this criterion, a qualitative analysis of the responses to one of the tasks proposed for the students in this master’s degree program is presented: creating tasks for whose resolution the students had to apply a certain partial meaning of the Pythagorean theorem (geometric or arithmetic-algebraic), as a demonstration of the learning that they had achieved. [Results] The results show that some students in the master’s degree program proposed tasks to work on the Pythagorean theorem, but did not specify or justify whether the tasks they designed were related to arithmetic-algebraic meaning, to geometric meaning or to both; other students did not propose any task to work on arithmetic-algebraic meaning; and one participant in the master’s program did not propose any task to work on geometric meaning. It was also observed that some students created tasks that did not correspond to either of these meanings. [Conclusions] It was concluded that teachers have difficulties in creating a task and indicating the type of meaning of the Pythagorean theorem that should be used to solve it, and that geometric meaning was most related to the tasks that they proposed.
Resumen : 
[Objetivo] El objetivo de este artículo es presentar resultados de una investigación sobre la enseñanza y el aprendizaje del criterio “implementar una muestra representativa de la complejidad del objeto matemático que se quiere enseñar”, implementado con profesorado de secundaria de matemáticas de Ecuador en un máster de formación continua. [Metodología] Después de explicar el proceso de instrucción en el que se enseñó este criterio, se presenta el análisis cualitativo de las respuestas a una de las tareas que se propuso al alumnado de este máster: crear tareas en las que, para su resolución, se tenía que aplicar un determinado significado parcial del teorema de Pitágoras (el geométrico o el aritmético-algebraico), como ejemplo de evidencia del aprendizaje conseguido. [Resultados] Los resultados muestran que algunos alumnos del máster proponen tareas para trabajar el teorema de Pitágoras, pero no especifican ni justifican si las tareas diseñadas por ellos están relacionadas con el significado aritmético-algebraico, con el geométrico o con ambos; otros no propusieron ninguna tarea para trabajar el significado aritmético algebraico y un participante del máster no propuso ninguna tarea para trabajar el significado geométrico. También se observa que algunos crearon tareas que no se corresponden con el significado que señalan. [Conclusiones] Se concluye que los profesores tienen dificultades para crear una tarea y señalar el tipo del significado del teorema de Pitágoras que se debe usar para resolverla y que el significado geométrico es el que mejor relacionan con la tarea que proponen.
URI : http://dspace.ucuenca.edu.ec/handle/123456789/41671
https://www.revistas.una.ac.cr/index.php/uniciencia/article/view/16667
URI Fuente: https://www.revistas.una.ac.cr/index.php/uniciencia
ISSN : 2215-3470
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
documento.pdf1.15 MBAdobe PDFVisualizar/Abrir


Este ítem está protegido por copyright original



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00