Logo Repositorio Institucional

Por favor, use este identificador para citar o enlazar este ítem: https://dspace.ucuenca.edu.ec/handle/123456789/40843
Título : Near-real-time satellite precipitation data ingestion into peak runoff forecasting models
Autor: Muñoz Pauta, Paul Andres
Gerald Augusto, Corzo Pérez
Dimitri, Solomatine
Jan, Feyen
Celleri Alvear, Rolando Enrique
Correspondencia: Muñoz Pauta, Paul Andres, paul.munozp@ucuenca.edu.ec
Palabras clave : Baseflow separation
Extreme runoff
Feature engineering
Forecasting
IMERG
PERSIANN
Tropical andes
Área de conocimiento FRASCATI amplio: 1. Ciencias Naturales y Exactas
Área de conocimiento FRASCATI detallado: 1.5.10 Recursos Hídricos
Área de conocimiento FRASCATI específico: 1.5 Ciencias de la Tierra y el Ambiente
Área de conocimiento UNESCO amplio: 05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas
ÁArea de conocimiento UNESCO detallado: 0521 - Ciencias Ambientales
Área de conocimiento UNESCO específico: 052 - Medio Ambiente
Fecha de publicación : 2023
Volumen: Volumen 160
Fuente: Environmental Modelling and Software
metadata.dc.identifier.doi: 10.1016/j.envsoft.2022.105582
Tipo: ARTÍCULO
Abstract: 
Extreme peak runoff forecasting is still a challenge in hydrology. In fact, the use of traditional physically-based models is limited by the lack of sufficient data and the complexity of the inner hydrological processes. Here, we employ a Machine Learning technique, the Random Forest (RF) together with a combination of Feature Engineering (FE) strategies for adding physical knowledge to RF models and improving their forecasting performances. The FE strategies include precipitation-event classification according to hydrometeorological criteria and separation of flows into baseflow and directflow. We used ∼ 3.5 years of hourly precipitation information retrieved from two near-real-time satellite precipitation databases (PERSIANN-CCS and IMERG-ER), and runoff data at the outlet of a 3391-km2 basin located in the tropical Andes of Ecuador. The developed models obtained Nash-Sutcliffe efficiencies varying from 0.86 to 0.59 for lead times between 1 and 6 h. The best performances were obtained for peak runoffs triggered by short-extension precipitation events (<50 km2) where infiltration- or saturation-excess runoff responses are well learned by the RF models. Conversely, the forecasting difficulty is associated with extensive precipitation events. For such conditions, a deeper characterization of the biophysical characteristics of the basin is encouraged for capturing the dynamic of directflow across multiple runoff responses. All in all, the potential to employ near-real-time satellite precipitation and the use of FE strategies for improving RF forecasting provides hydrologists with new tools for real-time runoff forecasting in remote or complex regions.
URI : https://www.scopus.com/record/display.uri?eid=2-s2.0-85143327427&doi=10.1016%2fj.envsoft.2022.105582&origin=inward&txGid=c07f74911f0f1747717040cb383eabc0
URI Fuente: https://www.sciencedirect.com/journal/environmental-modelling-and-software/vol/160/suppl/C
ISSN : 1364-8152
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
documento.pdf6.39 MBAdobe PDFVisualizar/Abrir


Este ítem está protegido por copyright original



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00