Logo Repositorio Institucional

Por favor, use este identificador para citar o enlazar este ítem: https://dspace.ucuenca.edu.ec/handle/123456789/40801
Título : Integrating artificial neural networks and cellular automata model for spatial-temporal load forecasting
Autor: Zambrano Asanza, Sergio Patricio
Franco, John Fredy
Montalvan Delgado, Joel Alejandro
Morales Muñoz, Eddie Raul
Palabras clave : Cellular automata
Artificial neural network
Spatial load forecasting
Big data analytic
Geospatial analysis
Distribution planning
Área de conocimiento FRASCATI amplio: 2. Ingeniería y Tecnología
Área de conocimiento FRASCATI detallado: 2.2.1 Ingeniería Eléctrica y Electrónica
Área de conocimiento FRASCATI específico: 2.2 Ingenierias Eléctrica, Electrónica e Información
Área de conocimiento UNESCO amplio: 07 - Ingeniería, Industria y Construcción
ÁArea de conocimiento UNESCO detallado: 0713 - Electricidad y Energia
Área de conocimiento UNESCO específico: 071 - Ingeniería y Profesiones Afines
Fecha de publicación : 2023
Volumen: Volumen 148
Fuente: International Journal of Electrical Power and Energy Systems
metadata.dc.identifier.doi: 10.1016/j.ijepes.2022.108906
Tipo: ARTÍCULO
Abstract: 
The long-term distribution planning should include an understanding of consumer behavior and needs to develop strategic expansion alternatives that meet the future demand. The magnitude of growth along with the place where and when it will be developed are determined by the spatial load forecasting. Thus, this paper proposes a spatial-temporal load forecasting method to recognize and predict development patterns using historical dynamics and determine the development of consumers and electric load in small areas. An artificial neural network is integrated to a cellular automaton method to establish transition rules, based on land-use preferences, neighborhood states, spatial constraints, and a stochastic disturbance. The main feature is the incorporation of temporality, as well as taking advantage of geospatial-temporal data analytics to calibrate and validate a holistic and integral framework. Validation consists of measuring the spatial error pattern during the training and testing phase. The performance of the method is assessed in the service area of an Ecuadorian power utility. The knowledge extraction from large-scale data, evaluating the sensitivity of parameters and spatial resolution was carried out in reasonable times. It is concluded that adequate normalization and use of temporality in the spatial factors improve the error in the spatial-temporal load forecasting.
URI : http://dspace.ucuenca.edu.ec/handle/123456789/40801
https://www.scopus.com/record/display.uri?eid=2-s2.0-85145022329&doi=10.1016%2fj.ijepes.2022.108906&origin=inward&txGid=259d1c8df4e21e31a7aaf1eb49425efd
URI Fuente: https://www.sciencedirect.com/journal/international-journal-of-electrical-power-and-energy-systems/vol/148/suppl/C
ISSN : 0142-0615
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
documento.pdf11.71 MBAdobe PDFVisualizar/Abrir


Este ítem está protegido por copyright original



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00