Logo Repositorio Institucional

Por favor, use este identificador para citar o enlazar este ítem: https://dspace.ucuenca.edu.ec/handle/123456789/38023
Título : Flood early warning systems using machine learning techniques: the case of the Tomebamba catchment at the southern Andes of Ecuador
Autor: Muñoz Pauta, Paul Andres
Feyen, Jan
Celleri Alvear, Rolando Enrique
Bendix, Jorg
Orellana Alvear, Johanna Marlene
Palabras clave : Flood early warning
Machine learning
Hydrological extremes
Forecasting
Andes
Área de conocimiento FRASCATI amplio: 1. Ciencias Naturales y Exactas
Área de conocimiento FRASCATI detallado: 1.5.10 Recursos Hídricos
Área de conocimiento FRASCATI específico: 1.5 Ciencias de la Tierra y el Ambiente
Área de conocimiento UNESCO amplio: 05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas
ÁArea de conocimiento UNESCO detallado: 0521 - Ciencias Ambientales
Área de conocimiento UNESCO específico: 052 - Medio Ambiente
Fecha de publicación : 2021
Volumen: Volumen 8, número 4
Fuente: Hydrology
metadata.dc.identifier.doi: 10.3390/hydrology8040183
Tipo: ARTÍCULO
Abstract: 
Worldwide, machine learning (ML) is increasingly being used for developing flood early warning systems (FEWSs). However, previous studies have not focused on establishing a methodology for determining the most efficient ML technique. We assessed FEWSs with three river states, No-alert, Pre-alert and Alert for flooding, for lead times between 1 to 12 h using the most common ML techniques, such as multi-layer perceptron (MLP), logistic regression (LR), K-nearest neighbors (KNN), naive Bayes (NB), and random forest (RF). The Tomebamba catchment in the tropical Andes of Ecuador was selected as a case study. For all lead times, MLP models achieve the highest performance followed by LR, with f1-macro (log-loss) scores of 0.82 (0.09) and 0.46 (0.20) for the 1 h and 12 h cases, respectively. The ranking was highly variable for the remaining ML techniques. According to the g-mean, LR models correctly forecast and show more stability at all states, while the MLP models perform better in the Pre-alert and Alert states. The proposed methodology for selecting the optimal ML technique for a FEWS can be extrapolated to other case studies. Future efforts are recommended to enhance the input data representation and develop communication applications to boost the awareness of society of floods.
URI : http://dspace.ucuenca.edu.ec/handle/123456789/38023
https://www.scopus.com/record/display.uri?eid=2-s2.0-85121787363&origin=resultslist&sort=plf-f&src=s&st1=Flood+early+warning+systems+using+machine+learning+techniques%3a+The+case+of+the+tomebamba+catchment+at+the+southern+Andes+of+Ecuador&sid=4065c7feb5a5555ffd1b4907acff3682&sot=b&sdt=b&sl=146&s=TITLE-ABS-KEY%28Flood+early+warning+systems+using+machine+learning+techniques%3a+The+case+of+the+tomebamba+catchment+at+the+southern+Andes+of+Ecuador%29&relpos=0&citeCnt=0&searchTerm=
URI Fuente: https://www.mdpi.com/2306-5338/8/4
ISSN : 2306-5338
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
documento.pdfdocument2.56 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00