Logo Repositorio Institucional

Por favor, use este identificador para citar o enlazar este ítem: https://dspace.ucuenca.edu.ec/handle/123456789/37857
Título : Influence of random forest hyperparameterization on short-term runoff forecasting in an andean mountain catchment
Autor: Contreras Andrade, Pablo Andres
Orellana Alvear, Johanna Marlene
Muñoz, Paul
Bendix, Jorg
Celleri Alvear, Rolando Enrique
Correspondencia: Orellana Alvear, Johanna Marlene, johanna.orellana@ucuenca.edu.ec
Palabras clave : Machine learning
Optimal hyperparameters
Random forest
Runoff forecasting
Tropical andes
Área de conocimiento FRASCATI amplio: 1. Ciencias Naturales y Exactas
Área de conocimiento FRASCATI detallado: 1.5.8 Ciencias del Medioambiente
Área de conocimiento FRASCATI específico: 1.5 Ciencias de la Tierra y el Ambiente
Área de conocimiento UNESCO amplio: 05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas
ÁArea de conocimiento UNESCO detallado: 0521 - Ciencias Ambientales
Área de conocimiento UNESCO específico: 052 - Medio Ambiente
Fecha de publicación : 2021
Volumen: Volumen 12, número 2
Fuente: Atmosphere
metadata.dc.identifier.doi: 10.3390/atmos12020238
Tipo: ARTÍCULO
Abstract: 
The Random Forest (RF) algorithm, a decision-tree-based technique, has become a promising approach for applications addressing runoff forecasting in remote areas. This machine learning approach can overcome the limitations of scarce spatio-temporal data and physical parameters needed for process-based hydrological models. However, the influence of RF hyperparameters is still uncertain and needs to be explored. Therefore, the aim of this study is to analyze the sensitivity of RF runoff forecasting models of varying lead time to the hyperparameters of the algorithm. For this, models were trained by using (a) default and (b) extensive hyperparameter combinations through a grid-search approach that allow reaching the optimal set. Model performances were assessed based on the R2, %Bias, and RMSE metrics. We found that: (i) The most influencing hyperparameter is the number of trees in the forest, however the combination of the depth of the tree and the number of features hyperparameters produced the highest variability-instability on the models. (ii) Hyperparameter optimization significantly improved model performance for higher lead times (12- and 24-h). For instance, the performance of the 12-h forecasting model under default RF hyperparameters improved to R2 = 0.41 after optimization (gain of 0.17). However, for short lead times (4-h) there was no significant model improvement (0.69 < R2 < 0.70). (iii) There is a range of values for each hyperparameter in which the performance of the model is not significantly affected but remains close to the optimal. Thus, a compromise between hyperparameter interactions (i.e., their values) can produce similar high model performances. Model improvements after optimization can be explained from a hydrological point of view, the generalization ability for lead times larger than the concentration time of the catchment tend to rely more on hyperparameterization than in what they can learn from the input data. This insight can help in the development of operational early warning systems.
URI : https://www.scopus.com/record/display.uri?eid=2-s2.0-85101248839&origin=resultslist&sort=plf-f&src=s&st1=Influence+of+random+forest+hyperparameterization+on+short-term+runoff+forecasting+in+an+andean+mountain+catchment&sid=37d80a7ea6b5002218992762007f2f6b&sot=b&sdt=b&sl=128&s=TITLE-ABS-KEY%28Influence+of+random+forest+hyperparameterization+on+short-term+runoff+forecasting+in+an+andean+mountain+catchment%29&relpos=0&citeCnt=4&searchTerm=
URI Fuente: https://www.mdpi.com/journal/atmosphere
ISSN : 2073-4433
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
documento.pdfdocument12.75 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00