Logo Repositorio Institucional

Por favor, use este identificador para citar o enlazar este ítem: https://dspace.ucuenca.edu.ec/handle/123456789/31932
Título : a stochastic mixed-integer conic programming model for distribution system expansion planning considering wind generation
Autor: Lopez Quizhpi, Julio Cesar
Palabras clave : Conic Model
Distributed Generation
Power Distribution System Planning
Stochastic Programming
Tabu Search
Área de conocimiento FRASCATI amplio: 2. Ingeniería y Tecnología
Área de conocimiento FRASCATI detallado: 2.2.4 Ingeniería de La Comunicación y de Sistemas
Área de conocimiento FRASCATI específico: 2.2 Ingenierias Eléctrica, Electrónica e Información
Área de conocimiento UNESCO amplio: 06 - Información y Comunicación (TIC)
ÁArea de conocimiento UNESCO detallado: 0613 - Software y Desarrollo y Análisis de Aplicativos
Área de conocimiento UNESCO específico: 061 - Información y Comunicación (TIC)
Fecha de publicación : 2018
Fecha de fin de embargo: 31-dic-2049
Volumen: volumen 9, número 3
Fuente: Energy Systems
metadata.dc.identifier.doi: 10.1007/s12667-018-0282-z
Tipo: ARTÍCULO
Abstract: 
This paper presents a stochastic scenario-based approach to finding an efficient plan for the electrical power distribution systems. In this paper the stochasticity for the distribution system expansion planning (DSEP) problem refers to the loads and wind speed behavior. The proposed DSEP model consist the expansion and/or construction of new substations, installation of new primary feeders and/or reinforcement the existing, installation of wind-distributed generation based, reconfiguration of existing network, and the proposed DSEP is solved considering uncertainty in electric demand and distributed generation. In this regard, a two-stage stochastic programming model is used, wherein the first stage the investment decision is made and the second stage calculates the expected operating value which depends on the stochastic scenarios. The mathematical approach is based on a mixed integer conic programming (MICP) model. By using this MICP model and a commercial optimization solver, finding the optimal global solution is guaranteed. Moreover, in this paper by using the Tabu Search algorithm and take the advantages of a stochastic conic optimal power flow model, an efficient hybrid algorithm is developed. With the aim of comparing the performance of the optimization techniques based on solution of MICP model directly and using a hybrid proposed methodology, they are tested in a 24-node distribution system and the results are compared in detail. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.
Resumen : 
This paper presents a stochastic scenario-based approach to finding an efficient plan for the electrical power distribution systems. In this paper the stochasticity for the distribution system expansion planning (DSEP) problem refers to the loads and wind speed behavior. The proposed DSEP model consist the expansion and/or construction of new substations, installation of new primary feeders and/or reinforcement the existing, installation of wind-distributed generation based, reconfiguration of existing network, and the proposed DSEP is solved considering uncertainty in electric demand and distributed generation. In this regard, a two-stage stochastic programming model is used, wherein the first stage the investment decision is made and the second stage calculates the expected operating value which depends on the stochastic scenarios. The mathematical approach is based on a mixed integer conic programming (MICP) model. By using this MICP model and a commercial optimization solver, finding the optimal global solution is guaranteed. Moreover, in this paper by using the Tabu Search algorithm and take the advantages of a stochastic conic optimal power flow model, an efficient hybrid algorithm is developed. With the aim of comparing the performance of the optimization techniques based on solution of MICP model directly and using a hybrid proposed methodology, they are tested in a 24-node distribution system and the results are compared in detail. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.
URI : http://dspace.ucuenca.edu.ec/handle/123456789/31932
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050309693&doi=10.1007%2fs12667-018-0282-z&partnerID=40&md5=d32a3d4ad3ee65f74228726f946f6b5b
URI Fuente: https://link.springer.com/journal/volumesAndIssues/12667
ISSN : 1868-3967
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
documento.pdf
  Until 2049-12-31
document263.1 kBAdobe PDFVisualizar/Abrir     Solicitar una copia


Este ítem está protegido por copyright original



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00