Logo Repositorio Institucional

Por favor, use este identificador para citar o enlazar este ítem: https://dspace.ucuenca.edu.ec/handle/123456789/29235
Título : Artificial Neural Network and Monte Carlo Simulation in a Hybrid Method for Time Series Forecasting with Generation of L-Scenarios
Autor: Bermeo Moyano, Henry Vinicio
Nombre de Revista: 13th IEEE International Conference on Ubiquitous Intelligence and Computing 13th IEEE International Conference on Advanced and Trusted Computing 16th IEEE International Conference on Scalable Computing and Communications IEEE International Conference on Cloud and Big Data Computing IEEE International Conference on Internet of People and IEEE Smart World Congress and Workshops UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld 2016
Palabras clave : Anova
Armax
Autocorrelation
Chi-Square Test
Monte Carlo Simulation
Neural Network
Fecha de publicación : 18-jul-2016
Fecha de fin de embargo: 1-ene-2022
Fuente: Proceedings - 13th IEEE International Conference on Ubiquitous Intelligence and Computing, 13th IEEE International Conference on Advanced and Trusted Computing, 16th IEEE International Conference on Scalable Computing and Communications, IEEE International Conference on Cloud and Big Data Computing, IEEE International Conference on Internet of People and IEEE Smart World Congress and Workshops, UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld 2016
metadata.dc.identifier.doi: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0110
Editor: INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS INC.
Ciudad: 
Toulose
Tipo: Article
Abstract: 
Sometimes, there are time series segment, it is necessary to reconstruct information from the past, predict information for the future, in this paper a hybrid approach between Artificial Neural Network (ANN), Monte Carlo simulation (MCS) for the reconstruction (and / or prediction) of time series with the generation of L-scenarios is proposed, in order to evaluate results from hybrid method, the Chi-square test, analysis of variance (ANOVA), functions of autocorrelation were used, additionally, the forecasting ANN is compared with ARMAX model prediction, results show that the proposed method could reconstruct the past, could predict the future from known time series segment, so that each prediction in a whole period selected generates a scenario, the L-scenarios have high sameness statistical from original information. In the hybrid method, first, artificial neural network is trained with known information, second the statistics for the MCS are estimated, then L-scenarios were generated by MCS in the selected period, these information will serve such as inputs for ANN trained, finally these outputs ANN will be the whole time series within in the chosen period, which it want to be analysed.
URI : https://www.scopus.com/inward/record.uri?eid=2-s2.0-85013168655&doi=10.1109%2fUIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0110&partnerID=40&md5=0356ddc13d9825c649b7c6c007a2f706
http://dspace.ucuenca.edu.ec/handle/123456789/29235
ISBN : 9781509027705
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
documento.pdf168.92 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00