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Abstract: The increasing demand for reliable and sustainable electricity has driven the development
of microgrids (MGs) as a solution for decentralized energy distribution. This study reviews ad-
vancements in MG planning and optimization for renewable energy integration, using the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses methodology to analyze peer-reviewed
articles from 2013 to 2024. The key findings highlight the integration of emerging technologies,
like artificial intelligence, the Internet of Things, and advanced energy storage systems, which en-
hance MG efficiency, reliability, and resilience. Advanced modeling and simulation techniques,
such as stochastic optimization and genetic algorithms, are crucial for managing renewable energy
variability. Lithium-ion and redox flow battery innovations improve energy density, safety, and
recyclability. Real-time simulations, hardware-in-the-loop testing, and dynamic power electronic
converters boost operational efficiency and stability. AI and machine learning optimize real-time
MG operations, enhancing predictive analysis and fault tolerance. Despite these advancements, chal-
lenges remain, including integrating new technologies, improving simulation accuracy, enhancing
energy storage sustainability, ensuring system resilience, and conducting comprehensive economic
assessments. Further research and innovation are needed to realize MGs’ potential in global energy
sustainability fully.

Keywords: microgrids; planning; optimization; power systems; renewable energy integration

1. Introduction

The global shift towards sustainable energy solutions has prompted countries world-
wide to introduce incentive mechanisms within their regulatory frameworks to promote
renewable energies. This transition is driven by the urgent need to enhance energy ef-
ficiency, address environmental concerns, and ensure reliable energy supply in remote
locations. In this context, microgrids (MGs) have emerged as a crucial form of infrastructure
for integrating renewable energy into electric power systems. The U.S. Department of
Energy (DOE) defines a microgrid as “a group of interconnected loads and distributed
energy resources within clearly defined electrical boundaries that act as a single controllable
entity with respect to the grid. A microgrid can be connected and disconnected from the
grid to operate in both connected and islanded modes” [1]. Despite variations in definitions,
MGs generally consist of loads, storage units, and distributed generation that operate in
an interconnected, coordinated manner, functioning autonomously or as part of the larger
grid. The increasing significance of MGs highlights the need to explore their planning and
implementation further, emphasizing their potential to transform energy systems.

The planning and operation of microgrids hold substantial implications for the future
of electric power systems. MGs mirror traditional power systems regarding distributed
generation resources, storage systems, load management, and interconnection lines. These
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elements allow for adapting conventional methodologies and practices used in traditional
systems to MGs. The literature synthesizes MG growth, classifying them by generation
type, storage system, load class, control type, and AC or DC electrical scheme [2]. MGs
have been implemented to provide electricity access in remote areas, support research
and development—often driven by university initiatives—and enhance security and re-
liability in cases of war or natural disasters, such as in U.S. military bases. This study’s
motivation stems from the global development of MG infrastructure observed over the past
decade, its impact on electric power systems, and the necessity to understand long-term
planning trends.

In remote or island regions where grid connection is impractical or economically un-
feasible, MGs offer a viable alternative for energy supply. These regions often rely heavily
on fossil fuels for electricity generation and various activities, leading to high electricity
costs and significant environmental impacts [3]. Many countries have implemented MGs
to reduce this dependency, integrating renewable energy sources, such as solar, wind,
biodiesel, hydroelectricity, and energy storage systems, to provide a more sustainable
energy solution [4]. However, integrating significant renewable generation in isolated MGs
presents operational challenges, including bidirectional power flows, stability issues, low
inertia, and uncertainty in renewable resources [5]. Addressing these challenges requires
innovative planning and optimization strategies, such as the use of deep reinforcement
learning to enhance long-term MG expansion [6] and stochastic models to manage CO2
emissions [7]. Additionally, enhancing the resilience and efficiency of MGs through strate-
gic planning and interconnections has been shown to provide technical and economic
benefits, such as improving reliability and enabling energy sharing between interconnected
MGs [8–11]. Understanding these complexities and developing robust strategies for MG
planning and operation are essential to maximizing the potential benefits of MGs in diverse
environments [12–17].

Despite significant advancements, several gaps remain in the current MG research.
Most studies focus on individual microgrids operating in island mode or with grid con-
nectivity potential. However, a growing need exists to explore the planning aspects of MG
clusters or groups, which involve multiple interconnected microgrids operating collabora-
tively. Studying MG clusters is crucial because they offer enhanced reliability, resilience,
and resource optimization by enabling the sharing of resources like energy storage and gen-
eration capacity, improving load management through coordinated operations. Effective
planning for MG clusters involves optimizing interconnections, coordinating energy flows,
and ensuring collective resilience against external disruptions, which are vital for maximiz-
ing the benefits of renewable energy integration and reducing operational costs [5–7].

The aim of this study is to fill these gaps by providing a comprehensive literature
review on MG planning and expansion models in electric power systems. By synthesizing
the latest studies and advances, this review critically analyzes selected studies and proposed
models using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) methodology [18]. This systematic approach evaluates research quality, identifies
knowledge gaps, and highlights areas for further investigation. The primary contributions
of this article to the scientific community include addressing how emerging technologies
like AI, IoT, and advanced energy storage systems can be effectively integrated into MGs,
understanding the role of advanced modeling and simulation techniques in managing
renewable energy variability, and exploring the economic viability and scalability of MGs.

Specifically, this review seeks to answer key questions: What are the most effective
strategies for planning and optimizing MG clusters? How can renewable energy integration
and storage solutions be improved to enhance the efficiency and resilience of MGs? What
are the critical challenges in simulation accuracy and energy storage sustainability that
need to be addressed? By exploring these questions, this review offers a detailed overview
of how planning models address microgrid expansion, contributing to understanding MG
integration in modern energy systems and guiding future research on optimizing clustered
MG configurations for better performance and sustainability. The remainder of this paper
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is organized as follows: Section 2 presents the literature review and methodology, outlining
the theoretical framework and research methods used. Section 3 details the results of our
analysis and discusses the implications of these findings, and, finally, Section 4 concludes
this paper, highlighting the main contributions and suggesting avenues for future research.

2. Literature Review Methodology
2.1. Literature Search Strategy

This section outlines the methodology employed to systematically review the literature
on microgrid expansion planning. The literature for this review was gathered from three
well-known databases: Scopus, IEEE Xplore, and MDPI. These sources were chosen for their
extensive repositories of high-quality research articles, ensuring a thorough, transparent,
and impartial review.

Scopus is known for its stringent content selection policies and wide-ranging coverage
across various fields, providing access to high-quality, peer-reviewed content. Its advanced
analytical tools and bibliometric indicators further enhance the reliability and depth of our
review. IEEE Xplore, a premier resource for electrical engineering and related disciplines,
offers access to influential and frequently cited publications, including the latest and most
relevant research. MDPI, as a fully open access publisher, guarantees that our review
includes peer-reviewed research accessible to a broad audience, fostering inclusivity and
the widespread dissemination of knowledge.

These databases provide a comprehensive and diverse collection of relevant literature,
capturing a broad spectrum of high-quality studies. By focusing on these reputable sources,
we ensure that our review offers a thorough and reliable overview of the field, adhering to
the highest standards of academic research.

The search terms used across Scopus, IEEE Xplore, and MDPI were derived from
the preliminary literature analysis presented in the Introduction section to identify the
pertinent literature. The specific search terms employed included the following: “Optimal
planning of microgrids”, “Microgrid optimal expansion strategies”, and “Renewable en-
ergies integration in microgrids”. Table 1 displays the query strings defined to guarantee
an accurate search according to the objectives of this research and the language used by
the databases’ search engines. For each database, we specifically targeted peer-reviewed
journal articles published in English between 2013 and 2024.

Table 1. Query strings for the literature search process.

Database Query String

Scopus
TITLE-ABS-KEY (“microgrid” AND “optimal” AND (“planning” OR
“expansion”) AND “renewable”) AND PUBYEAR > 2012 AND PUBYEAR < 2025
AND (LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO (LANGUAGE, “English”))

IEEEXplore
(“Full Text & Metadata”:microgrid) AND (“Full Text & Metadata”:optimal
planning) AND (“Full Text & Metadata”:optimal expansion) AND (“Full Text &
Metadata”:renewable integration). Filters Applied: Journals, 2013–2024.

MDPI

Search text: “microgrid”, Search Type: Full Text, Logical operator: AND, Search
text: “optimal”, Search Type: Full Text, Logical operator: AND, Search text:
“planning”, Search Type: Full Text, Logical operator: AND, Search text:
“expansion”, Search Type: Full Text, Logical operator: AND, Search text:
“renewable”, Search Type: Full Text.
Years: Between 2013–2024; Article Types: Article.

The inclusion and exclusion criteria for this systematic review were carefully defined
to ensure the selection of the most relevant and high-quality studies in microgrid expansion
planning (Table 2). By focusing on studies published in the last ten years, the review
captures the latest advancements and contemporary methodologies, reflecting the current
state of research and technological progress. Limiting the language to English enhances
accessibility and comprehensibility for a broad audience, as it is the predominant language
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of scientific communication. Selecting peer-reviewed journal articles guarantees rigor-
ously vetted and credible research while emphasizing studies that specifically address
microgrid expansion planning, interconnection planning of community microgrids, and
optimal planning strategies, which narrows the focus to the most pertinent topics. This
targeted approach ensures the review remains relevant and comprehensive, exploring both
the theoretical and applied aspects of microgrid planning through modeling, simulation,
optimization techniques, and practical case studies. Prioritizing studies on renewable
energy integration within microgrids aligns with the increasing emphasis on sustainable
solutions, which are critical for future energy systems. Excluding studies published before
2013 and document types like editorials and conference papers maintains the review’s
integrity by focusing on original research contributions that provide new empirical find-
ings or methodologies. The exclusion of research on general renewable energy systems
without a microgrid context or those focused solely on technical aspects of microgrid com-
ponents ensures that the review remains specific and offers valuable insights into planning
methodologies and strategies for effectively deploying and integrating microgrids in power
systems. This deliberate selection process ensures the review is focused, relevant, and
aligned with its intended objectives.

Table 2. Inclusion and exclusion criteria defined for literature selection.

Inclusion Criteria Exclusion

Studies published in the last
ten years (2013–2024). Publication Date Studies published before 2013.

Studies published in English. Language Studies published in languages other
than English.

Peer-reviewed journal articles. Document Type
Editorials, commentaries, opinion
pieces, conference articles, and
review articles.

Studies addressing at least
one of the topics: microgrid
expansion planning,
interconnection planning of
community microgrids, and
optimal planning strategies
for microgrids.

Focus

Studies that do not specifically
address microgrid expansion
planning or interconnection planning
of microgrids.

Research may include
modeling, simulation,
optimization techniques, and
practical case studies related
to microgrid planning.

Scope

Research focusing on unrelated
topics, such as general renewable
energy systems without a microgrid
context, and studies primarily
focusing on technical aspects of
microgrid components and operation
without addressing the planning or
expansion aspects.

2.2. Study Selection Process

The study selection process for this literature review adhered to the PRISMA 2020
Statement (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) [18],
which outlines a systematic approach consisting of three phases: Identification; Screening,
Eligibility, and Inclusion; and Synthesis. By meticulously identifying and synthesizing
relevant studies, the PRISMA methodology helps minimize potential biases and enhances
the transparency of the review process. Figure 1 illustrates an overview of the methodology
for the literature review reported in this paper. During the Identification phase, researchers
conduct a comprehensive search across predefined databases to retrieve items without
bias toward titles, authors, journals, publishers, or the number of citations. This phase is
designed to include all results generated by the search engines, regardless of whether they
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are sorted by relevance, novelty, or impact. This approach ensures that the initial review
stage considers every potential study, preventing inadvertent exclusions and maintaining
the inclusivity of the review process. Researchers use bibliographic management tools to
identify and remove duplicate items, which is critical in ensuring that the dataset used for
further screening is accurate and unique. Removing duplicates avoids skewing results with
repeated data points and maintains the integrity and precision of the subsequent analyses.
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Figure 1. Diagram illustrating the steps of the literature review process.

In the Screening phase, the authors independently examine the titles and abstracts of
the retrieved studies to verify their relevance to the research objectives based on predefined
inclusion and exclusion criteria. They conduct this evaluation using a binary assessment
system, assessing each item to determine whether it meets all the necessary criteria for
further consideration. The authors advance studies that fulfill all criteria to the Eligibility
and Inclusion phase, focusing on the most pertinent studies for detailed analysis.

During the Eligibility and Inclusion phase, the same reviewers independently assess
the full text of each work. This thorough review aims to validate compliance with specific
criteria and metrics meticulously defined to establish a ranking system using a verification
matrix. The researchers select only those studies that achieve a minimum score, as defined
by their standards, for the final literature review sample. At this stage, a significant
number of studies may still be eligible, presenting a variety of perspectives within the
research objectives.

Finally, in the Synthesis phase, the reviewers integrate and analyze the selected studies
to form the foundation for the findings and conclusions presented in this review. At this
point, they utilize bibliometric analyses, such as word cloud maps, to identify frequently
occurring keywords among the chosen studies, helping to define broad thematic groups to
be addressed in the literature review. This step ensures that the review provides a struc-
tured and coherent presentation of the topics, offering readers a well-organized exposition
of the key themes. These findings are thoroughly discussed in the Results and Discussions
section (Section 3), where the synthesized information is presented to highlight the ad-
vancements, challenges, and future directions in microgrid planning and optimization for
renewable integration.
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2.2.1. Identification Stage

In the Identification stage, by applying the search strategy defined in the previous
subsection, 1929 items were retrieved from three selected databases: Scopus, IEEE Xplore,
and MDPI. The researchers introduced a coding system for each item according to the
database consulted to facilitate handling metadata for the items found. Items extracted
from Scopus were identified as S-XXX (where XXX is a numerical code), those from IEEE
as IEEE-XXXX, and those from MDPI as MDPI-XXX. The completeness and accuracy of
the metadata provided by these databases were ensured, as they adhere to stringent data
curation and management standards. As a result, the initial data capture did not encounter
any issues related to missing or erroneous information, making the datasets suitable for
further processing and analysis.

A critical step in the Identification stage was the elimination of duplicate entries to
avoid redundant analysis and potential biases. By thoroughly comparing the Digital Object
Identifiers of the items listed in our spreadsheet, we identified and removed 37 duplicate
records. This reduction brought the total number of unique items down to 1892.

These items were distributed across the databases: 417 items from Scopus, 1072 items
from IEEE Xplore, and 403 items from MDPI (Figure 2). These results were anticipated due
to the nature and scope of each database. Scopus, known for its broad interdisciplinary
coverage, provides extensive indexing of journals from various fields, including engineering
and technology. The 417 items retrieved from Scopus reflect its comprehensive approach
and wide-ranging repository. As a specialized database focusing on electrical engineering,
computer science, and electronics, IEEE Xplore naturally yielded the highest number of
items, 1072. This is consistent with its reputation as the leading source for high-quality, peer-
reviewed technical literature in these disciplines. MDPI, as an open access publisher, offers
a significant collection of peer-reviewed journals, particularly in science and technology.
The 403 items from MDPI demonstrate its contribution to open access scientific literature
and its relevance to our research focus. The detailed distribution across these databases
underscores the robustness of our search strategy and the comprehensiveness of the datasets
acquired for the Screening phase.

Figure 2 also shows the temporal evolution of the identified studies, highlighting
significant research activity trends over the years. Starting in 2013, with 19 items, there was
a gradual increase in the number of publications each year. The number of items rose to 23
in 2014, 28 in 2015, and 48 in 2016. A notable increase was observed in 2017 with 77 items.
The upward trend continued, with 155 items in 2018, 204 in 2019, and 221 in 2020. The
years 2021 and 2022 saw significant growth, with 254 and 311 items, respectively. The peak
was reached in 2023 with 336 items, followed by a slight decrease to 216 items in 2024. This
minor drop in 2024 is due to the year being in progress, with only seven months completed,
and the numbers so far are promising. This trend reflects the growing interest and research
efforts in microgrid planning and optimization over the past decade.

2.2.2. Screening Stage

The Screening stage involved a thorough review of abstracts to verify fulfillment of
the inclusion and exclusion criteria stated in Table 1. Two independent screeners were
employed to mitigate potential bias and ensure a rigorous evaluation process. Each screener
independently reviewed and assessed all articles against the established inclusion and ex-
clusion criteria. This dual-screening approach is designed to minimize subjective influence
and increase the reliability of the screening process. Binary scoring was used, with a score
of 1 indicating that an article fully meets the inclusion criteria and should be included and
a score of 0 indicating that it does not meet at least one exclusion criterion and should
be excluded. Any discrepancies in the scoring between the two screeners were discussed
and resolved to reach a consensus. This process ensured a comprehensive and unbiased
selection of relevant studies.
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As shown in Figure 3, the infographic illustrates the Screening-stage process, which
resulted in the exclusion of 1275 items and the inclusion of 617 items. Of the included
items, 155 were from Scopus, 330 from IEEE Xplore, and 132 from MDPI. Regarding the
distribution of included studies across journals, notable findings included IEEE Access with
141 articles, Energies with 79, IEEE Transactions on Smart Grid with 74, IEEE Transactions on
Sustainable Energy with 24, Sustainability with 22, IEEE Transactions on Power Systems with
17, CSEE Journal of Power and Energy Systems with 16, Applied Energy with 15, Journal of
Energy Storage with 12, Energy with 12, Applied Sciences with 10, and IEEE Transactions on
Transportation Electrification with 10. Other journals collectively accounted for 185 articles.
The infographic in Figure 3 visually summarizes the distribution of items by journal that
passed the Screening phase.

2.2.3. Eligibility and Inclusion Stage

Including studies in this literature review involved a meticulous and structured ap-
proach to ensure that only the most relevant and high-quality studies were selected. This
section outlines the eligibility criteria for the items resulting from the Identification and
Screening phases.

The eligibility reviewers were provided with detailed instructions to review each
article in full independently, apply the criteria and evaluation metrics designed for this
review (summarized in Table 2), and use a five-level Likert scale to evaluate the relevance
and quality of each study. Reviewers were instructed to document metadata such as authors,
institutions, and publication year and assess potential biases. To ensure a comprehensive
and accurate assessment of each study’s eligibility for inclusion, the researchers, believing it
pertinent, applied weighted criteria that reflect the relative importance of different aspects
of the research. This approach prioritizes the most relevant, methodologically sound, and
impactful studies, providing a robust overview of state-of-the-art microgrid expansion
planning and renewable energy integration.
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Each criterion is rated on a scale from 1 to 5, where 1 indicates an area needing
improvement or less relevance and 5 indicates excellent quality or high relevance. The
weighted criteria emphasize factors, such as relevance to the research topic, methodolog-
ical rigor, novelty, and contribution. They also consider experimental validation, clarity,
technical depth, reproducibility, data quality, practical applicability, and impact on the
field. By assigning specific weights to each criterion, we obtain a final eligibility score that
comprehensively evaluates each study’s contribution to the research area. Table 3 also
summarizes these justifications and the corresponding weightings for each criterion.

To determine the final score for each item in this phase, we applied Equation (1). Each
criteria score is multiplied by the assigned weight, resulting in a normalized outcome that
will be ranked with the rest of the evaluated items.

TOTAL =
10

∑
i=1

CRi × wi (1)

where:

CRi is the i-th criterion (five-level Likert’s scale)
wi is the is the i-th weighting factor (from 0 to 1)

Figure 4 illustrates the results of this evaluation, providing a visual representation
of the weighted criteria and their impact on the eligibility of each study. Based on the
proposed weighting and the nature of the research, a minimum threshold of 3.85 out of 5
(77%) is suggested for an item to be considered eligible for inclusion in the literature review
synthesis. This threshold ensures that only highly relevant and exceptional-quality studies
are included in the review, addressing the need for comprehensiveness and methodological
rigor. As of this stage in the literature review, 81 articles have been identified as eligible
for inclusion.
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Table 3. Criteria and metrics for full-text evaluation.

N◦ Criterion Description and
Evaluation Metrics Weight Justification for Weighting

1
Relevance to

Research
Topic

How well the study
addresses microgrid
expansion planning,

interconnection planning of
community microgrids, and
optimal planning strategies.
(1: Peripheral, 2: Somewhat,

3: Relevant, 4: Highly
Relevant, 5: Central Focus)

20%

Ensures selected studies are
directly applicable and

contribute new knowledge
to the field of microgrids.
Critical for providing a

comprehensive review of
microgrid expansion

planning and integration of
renewable energy.

2 Methodological
Rigor

The robustness and
appropriateness of the
research methodology
employed in the study.

(1: Needs Improvement,
2: Fair, 3: Good, 4: Very

Good, 5: Excellent)

15%

Essential for valid and
reliable conclusions. Robust
methodologies enhance the
credibility of findings and

ensure studies can
withstand scrutiny from

academic and professional
communities.

3 Experimental
Validation

The extent to which the
study includes

experimental results,
simulations, case studies, or
real-world implementations.

(1: None, 2: Limited,
3: Moderate, 4: Extensive,

5: Comprehensive)

10%

Provides concrete evidence
supporting the study’s

claims through results from
simulations, case studies, or
real-world implementations.

Important for
substantiating the research.

4 Novelty and
Contribution

The originality and
significance of the study’s
contributions to the field.

(1: Limited, 2: Modest,
3: Moderate, 4: Significant,

5: Groundbreaking)

15%

Identifies new
advancements and

emerging trends in the field.
Essential for pushing the

boundaries of current
knowledge and practice in

microgrid planning and
optimization strategies.

5
Clarity and
Complete-

ness

The clarity of writing and
the completeness of the

information provided in the
study. (1: Needs

Improvement, 2: Fair,
3: Good, 4: Very Good,

5: Excellent)

10%

Ensures studies are
well-written and provide all

necessary information for
understanding and

replicating the research.
Important for

comprehensive
comprehension of

methodologies and results.

6 Technical
Depth

The level of technical detail
and depth in the study.
(1: Basic, 2: Adequate,

3: Detailed, 4: Very Detailed,
5: Highly Detailed)

10%

Assesses the level of detail
and sophistication in the
study, which is important

for understanding the
intricacies of the research

methodologies and
outcomes.
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Table 3. Cont.

N◦ Criterion Description and
Evaluation Metrics Weight Justification for Weighting

7 Reproducibility

The extent to which the
study provides enough

detail to allow replication of
the results. (1: None,

2: Limited, 3: Moderate,
4: Extensive,

5: Comprehensive)

5%

Measures the extent to
which the study provides

enough detail to allow
replication of the results.

Crucial for validating
findings independently.

8 Data Quality
and Integrity

The quality and integrity of
the data presented in the

study. (1: Needs
Improvement, 2: Fair,
3: Good, 4: Very Good,

5: Excellent)

5%

Ensures the study is based
on accurate and reliable

data, fundamental for the
validity of conclusions.

9 Practical
Applicability

The potential for practical
application of the study’s

findings in real-world
scenarios. (1: Limited,

2: Modest, 3: Moderate,
4: High, 5: Very High)

5%

Evaluates the potential for
applying the study’s

findings in real-world
scenarios, important for
assessing the practical
impact of the research.

10 Impact on
Field

The potential impact of the
study’s findings on

microgrid expansion
planning and renewable

energy integration.
(1: Limited, 2: Modest,

3: Moderate, 4: Significant,
5: Groundbreaking)

5%

Measures the potential
influence of the study’s
findings on the field of
microgrid expansion

planning and renewable
energy integration.

Important for
understanding the broader
significance of the research.

The distribution by Journal in Figure 5 reveals that IEEE Access leads with 17 articles,
followed by IEEE Transactions on Smart Grid and Energies with 7 articles each, under-
scoring the critical role of IEEE and MDPI journals in this field. The relatively lower
number of articles from MDPI journals compared to IEEE journals subtly highlights the
need for a comprehensive review to bridge this gap, thus justifying the pertinence of this
literature review.

2.2.4. Synthesis Stage

The Synthesis stage integrates and analyzes the selected literature to consolidate
the findings from the Eligibility and Inclusion phases. This stage aims to categorize and
interpret the research contributions, highlighting key trends and topics within microgrid
expansion planning and renewable energy integration.

Figure 6 provides a bibliometric analysis of the articles selected in the Eligibility and
Inclusion phase. Figure 6a shows the distribution of included articles across the databases,
with Scopus contributing 43 articles, IEEE Xplore 30 articles, and MDPI 8 articles. This
distribution underscores each database’s varying focus and emphasis on the research topics.
The temporal analysis indicates a progressive increase in research activity, peaking in 2023,
with a noticeable dip in 2020 and 2021, likely due to the COVID-19 pandemic’s impact on
global research and publication processes.
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To complement the analysis, Figure 6b presents a word cloud map constructed from
1388 keywords extracted from the 81 selected items. This map, filtered to the 50 most frequent
words, visually represents the selected literature’s prevalent themes and research areas.

Following a careful examination of the word cloud map, the bibliometric sample can
be classified into six general topics:

a. Microgrid Planning and Optimization
b. Modeling and Simulation
c. Energy Storage Technologies
d. Power Systems Operation and Control
e. Cycle Counting and Data Analysis
f. Urban and Rural Energy Solutions
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Figure 7 shows a flowchart of the literature review process followed in this study.
The main findings derived from the systematic review within the six general topics are
presented in Section 3.
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3. Results and Discussions

This section presents the synthesis of the included literature from the six microgrid
planning and management topics with renewable energy sources and energy storage.

3.1. Microgrid Planning and Optimization
3.1.1. Historical Narrative

Microgrid planning has evolved significantly since its inception, initially focusing on
independent systems for remote areas [19]. Early implementations centered on small-scale,
localized solutions, but the need for sustainable energy drove technological advancements.
Dr. Robert H. Lasseter introduced the concept of the modern microgrid in the 1990s,
enabling these systems to operate in isolation and interact with the main grid, enhancing
resilience and efficiency [20–23]. Over the decades, energy storage technologies such as
lithium-ion batteries have been integrated, improving energy generation and distribution
management. Advanced energy management systems have allowed more precise and
dynamic control [24–27]. In the 21st century, planning has advanced with stochastic
optimization techniques and evolutionary algorithms, better managing the uncertainty in
renewable generation [28–31]. Emerging technologies such as artificial intelligence (AI)
and machine learning have transformed planning, optimizing performance and adapting
to changes in demand and environmental conditions [32–36].

3.1.2. Innovative Methods

Current optimization methods allow for addressing previously insurmountable chal-
lenges using techniques such as stochastic optimization and evolutionary algorithms. These
methods enhance the stability and efficiency of microgrids [5,28,37]. Integrating genetic
algorithms and advanced mathematical programming has optimized planning in complex
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contexts. Hybrid solutions combine deterministic and probabilistic approaches to better
manage energy resources [38–40].

AI and machine learning have been crucial in microgrid planning, providing adaptive
solutions that continuously improve. AI predicts demand and generation patterns, ad-
justing operations in real time to maximize efficiency [41–43]. Machine learning manages
large volumes of data, improving response and resilience [44–46]. These technologies en-
able efficient and proactive management, anticipating problems before they occur [47–49].
Real-time energy management systems and smart grids have improved the integration
of renewable energies and operational efficiency, optimizing resources and enhancing the
reliability of the energy supply [50–52]. Incorporating innovative methods and advanced
technologies has transformed microgrid planning and operation, allowing for practical,
adaptive, and resilient optimization in an increasingly complex environment [53–57].

Key metrics used in various microgrid optimization approaches have been identified
and quantified to provide a more rigorous analysis of the reviewed studies. These metrics
include energy efficiency, operational cost reduction, system reliability, and responsiveness
to demand fluctuations. For instance, studies employing optimization strategies based on
artificial intelligence and stochastic algorithms reported significant improvements in energy
efficiency, with average increases ranging from 15% to 25% compared to traditional tech-
niques [28,37]. Furthermore, approaches incorporating advanced storage and predictive
control demonstrated reductions in operational costs ranging from 10% to 30%, depending
on the specific conditions of the microgrid and the type of renewable energy used [35,42].
These improvements were primarily achieved through optimizing energy management
and dynamically adapting to variations in generation and demand. Additionally, stud-
ies implementing advanced control technologies have shown improvements in system
reliability, with a 20% reduction in unplanned failures and a 30% increase in the capacity
to respond to high-demand events [53,57]. These metrics underscore the effectiveness of
innovative strategies and highlight the importance of their adoption in microgrid planning
and operation to maximize efficiency and resilience.

Specific methodologies have been highlighted to provide a clearer understanding of
the technical aspects of microgrid optimization, particularly in the context of distributed
generation and renewables. For example, optimization strategies often utilize mixed-
integer linear programming (MILP) to handle the complexity of integrating renewable
energy sources, optimizing the placement and operation of distributed generation units
while considering grid constraints and reliability [37]. Furthermore, dynamic programming
is frequently applied to optimize energy storage systems, balancing supply and demand in
real time to mitigate the intermittency of renewables [35]. These methods are complemented
by heuristic algorithms, such as genetic algorithms and particle swarm optimization,
which optimize microgrid configurations and control strategies, enhancing efficiency and
resilience in renewable-integrated microgrids [28].

3.1.3. Futuristic Vision

The future of microgrid planning will be more advanced, with AI and machine learning
technologies enabling self-optimization and autonomous management. These technolo-
gies will precisely anticipate changes in demand and environmental conditions [19,26,33].
Advances in storage, such as redox flow batteries and supercapacitors, will improve the
management of renewable energy intermittency [58–60]. Intelligent energy management
systems will coordinate generation, storage, and consumption, maximizing efficiency and
reducing costs [61–63].

In the future, microgrids will be integrated into the urban fabric, managing gener-
ation and distribution in real time [49]. They will dynamically exchange energy among
themselves and with the main grid, optimizing resources at the community and regional
levels [64–66]. Microgrids will enhance resilience to extreme events, automatically iso-
lating in case of failures and ensuring the supply of critical services and vulnerable
communities [67–69]. Integrating technologies like blockchain will offer transparency
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and security in energy transactions, facilitating peer-to-peer trading within the micro-
grid [70–72]. With these advances, future microgrids will be smarter, more adaptive, and
capable of autonomously managing resources, contributing significantly to the stability and
sustainability of the global energy system [73–75]. Microgrid planning and optimization
encompass a range of methodologies that leverage advanced algorithms and optimization
techniques to enhance system performance. As highlighted in Sections 3.1.1 and 3.1.2,
historical advancements and innovative methods such as stochastic optimization, evolu-
tionary algorithms, and AI-driven approaches have significantly improved the efficiency
and resilience of microgrids [28,37,41].

These optimization techniques are theoretical frameworks and integral to the practical
modeling and simulation of microgrid systems, as discussed in Section 3.2. By transitioning
from planning to modeling, the focus shifts to simulating various operational scenarios and
employing optimization methods to test and refine these plans. This connection between
planning, optimization, and simulation ensures that microgrid systems are designed with a
robust foundation and capable of adapting to real-world conditions and demands.

3.2. Modeling and Simulation

Building upon the optimization strategies discussed in Section 3.1, Section 3.2 explores
the application of these methodologies in the modeling and simulation of microgrids.
Modeling and simulation provide a dynamic environment to implement and test vari-
ous optimization strategies, such as those mentioned in Section 3.1.2, including genetic
algorithms, particle swarm optimization, and MILP [28,35,37].

By applying these optimization methods within simulation models, researchers can
evaluate the performance of microgrids under different conditions and scenarios. For
instance, Section 3.2.2 (Creative Case Studies) demonstrates the practical application of
optimization techniques like particle swarm optimization and response surface method-
ology in adaptive control systems, illustrating how theoretical optimization approaches
are utilized in real-world simulations to enhance microgrid reliability and efficiency [68].
This integration of planning and simulation helps bridge the gap between theoretical opti-
mization models and their practical applications, ensuring a comprehensive approach to
microgrid management.

3.2.1. Introduction

Modeling and simulation are critical components in the strategic planning, design,
and optimization of microgrids, especially as these systems incorporate a wide range of
renewable energy sources and storage technologies. The fundamental aim of modeling
is to thoroughly understand a microgrid’s dynamic behavior across various operational
scenarios, thereby improving its reliability, efficiency, and resilience [20].

Advanced simulation techniques, such as multi-objective optimization and stochastic
modeling, are extensively employed to effectively handle the uncertainties inherent in
renewable energy generation. These methods enable the analysis of diverse configurations
and control strategies, thus optimizing microgrid performance in grid-connected and iso-
lated environments [21,76]. For example, optimizing the multi-carrier microgrid design can
help balance energy supply and demand while reducing operational costs and maximizing
the utilization of renewable resources [21,77].

Adopting cutting-edge technologies like AI and ML has greatly expanded the ca-
pabilities of microgrid models. These technologies enable real-time data processing and
adaptive control strategies, vital for ensuring stable operation amid fluctuating demand
and generation conditions [24]. By leveraging these advanced algorithms, microgrids
can enhance energy distribution, improve load forecasting, and refine fault detection and
response mechanisms [76].

Furthermore, predictive modeling tools and real-time simulations have become in-
creasingly crucial for evaluating microgrids’ economic viability and scalability. Techniques
such as genetic algorithms and particle swarm optimization are used to optimize resource
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allocation and boost overall operational efficiency [20,77]. These models facilitate the ex-
ploration of various scenarios, offering essential insights into the trade-offs between cost,
performance, and sustainability [24,76].

In hybrid systems that integrate renewable energy sources with traditional genera-
tion methods, modeling and simulation serve as a key platform for comprehending the
interactions between different energy carriers and optimizing their utilization. For instance,
applying affine arithmetic-based energy management systems has demonstrated improve-
ments in the operational efficiency of cooperative multi-microgrid networks, particularly
in addressing uncertainties associated with renewable energy production [21].

3.2.2. Creative Case Studies

Creative modeling and simulation techniques are pivotal in enhancing microgrid
efficiency and reliability. A notable example is the implementation of an adaptive PI
(proportional-integral) controller designed to optimize the operation of autonomous micro-
grids [78–80]. This system employs advanced algorithms such as particle swarm optimiza-
tion and response surface methodology to evaluate controller performance across different
environmental conditions, ensuring optimal operation under varying scenarios [68]. This
case study illustrates the potential of adaptive control systems in dynamically responding
to changes in the microgrid environment.

Another innovative approach involves using a conditional value-at-risk stochastic
technique to model the stochastic variations in renewable energy production [81]. By
applying advanced scenario generation and reduction methods, this study produced
realistic and robust models that accurately reflect the uncertainties inherent in renewable
energy sources. These models help develop strategies that minimize risks and enhance the
reliability of energy supply in microgrids.

A step-by-step simulation project that employs an affine arithmetic-based energy
management system for cooperative multi-microgrid networks further exemplifies the
creative use of modeling techniques [82]. This system considers energy exchanges between
interconnected microgrids and manages uncertainties in electricity demand and renewable
energy generation. The results showed significant improvements in operational costs and
execution times compared to traditional methods like Monte Carlo simulation, demon-
strating the effectiveness of innovative modeling approaches in optimizing microgrid
operations [83].

3.2.3. Visual Innovations

Dynamic infographics and interactive visualizations are essential for illustrating com-
plex microgrid modeling and simulation processes [84]. These visual aids allow researchers
and planners to observe how different variables interact and impact microgrid performance
in real time, providing a more intuitive understanding of the system dynamics [85,86].
For example, dynamic charts can visually represent the effects of changes in renewable
energy generation on the microgrid’s overall energy balance, helping to identify potential
imbalances and adjust strategies accordingly [30,37,87].

Interactive online models are another powerful tool that enhance the practical un-
derstanding of modeling and simulation processes. These models allow users to explore
various scenarios and adjustments, observing the impact of these changes on the micro-
grid’s performance and efficiency [88]. This interactivity facilitates deeper engagement
and allows for experimentation with optimized solutions and strategies tailored to dif-
ferent operational conditions [32,89,90]. By making complex concepts more accessible
and understandable, visual innovations play a critical role in advancing the design and
operation of efficient and sustainable microgrids [41,44,49,61,65,67,70,73,91,92]. Through
the use of analogies, creative case studies, and visual innovations, modeling and simulation
become more than just technical exercises; they become essential tools for understanding
and optimizing the operation of microgrids. By clearly explaining these complex concepts,



Electronics 2024, 13, 3620 17 of 30

it is possible to design and operate both efficient and sustainable microgrids, ensuring their
viability in diverse energy landscapes [93].

3.3. Energy Storage and Battery Technologies
3.3.1. Introduction

Energy storage and battery technologies are essential for the effective operation of
contemporary microgrids, facilitating the reliable integration of renewable energy sources
and bolstering grid stability. These technologies are vital in managing the variability of
renewable energy by storing surplus energy during periods of low demand and discharging
it when demand surges or generation decreases [20]. The continuous evolution of battery
technologies, such as lithium-ion, redox flow, and solid-state batteries, has notably en-
hanced energy density, efficiency, and safety, rendering them indispensable within modern
energy systems [26,28].

Lithium-ion batteries are currently the predominant choice for energy storage in mi-
crogrids, largely due to their high energy density and extended life cycle [35]. Nonetheless,
the pursuit of safer and more sustainable alternatives has driven the development of ad-
vanced technologies like redox flow batteries, which offer superior scalability and extended
operational lifespans, and solid-state batteries, which promise increased safety owing to
their non-flammable solid electrolytes [28,39].

Furthermore, incorporating intelligent control methods and predictive modeling has
significantly augmented the performance and efficiency of energy storage systems. These
advancements enable the optimized management of charging and discharging cycles,
enhance energy utilization, and prolong battery lifespan [20,26]. Moreover, battery man-
agement system (BMS) innovations have enabled real-time monitoring and diagnostics,
ensuring optimal functionality and preventing system failures [35].

In the context of interconnected microgrids, deploying hydrogen-based storage so-
lutions is becoming increasingly popular to support energy systems’ decarbonization.
Hydrogen storage offers a versatile energy carrier that can be used for electricity generation
and as a clean fuel for transportation and industrial applications [89]. As these technologies
continue to advance, hydrogen storage is anticipated to play a crucial role in fostering a
sustainable and resilient energy infrastructure [28]

3.3.2. Innovation Stories

The history of energy storage is filled with stories of innovators and scientists who
have made significant contributions to the field. For instance, advances in lithium-ion
battery technology, which are fundamental to most modern applications, have been made
possible by the efforts of researchers like John B. Goodenough, Stanley Whittingham, and
Akira Yoshino, who received the Nobel Prize in Chemistry in 2019 for their pioneering
work [28,42,89]. Business success stories also highlight how energy storage technologies
have revolutionized the industry. Companies like Tesla have taken battery technology to
new levels in electric vehicles and large-scale energy storage solutions for electric grids.
Implementing Powerwall and Powerpack batteries has demonstrated how energy storage
can enhance the resilience and efficiency of energy systems [20,35,42].

3.3.3. Imaginative Future

Futuristic visions of energy storage include yet-to-be-invented technologies that could
radically change how we manage and use energy. Imagine batteries that can self-repair,
extending their lifespan indefinitely, or storage technologies based on abundant, non-toxic
materials that are fully recyclable. These advancements could make energy storage more
accessible and sustainable than ever [35,69,89]. Among the most promising emerging
innovations are redox flow batteries, which use liquid electrolytes to store energy, and
solid-state batteries, which eliminate the risks associated with flammable liquid electrolytes.
These technologies have the potential to offer higher energy densities and improved safety,
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opening new possibilities for energy applications in both electric vehicles and large-scale
storage [26,28,70].

The reviewed studies present a diverse array of optimization strategies for microgrid
performance enhancement, focusing primarily on energy management, cost reduction, and
system reliability. Key approaches include the application of artificial intelligence, machine
learning, advanced storage technologies, and predictive control systems. A quantitative
assessment of these optimization strategies was conducted to provide a more rigorous
and detailed analysis. The analysis focused on key performance indicators (KPIs) such
as energy efficiency, operational cost reduction, system reliability, and responsiveness to
demand fluctuations, which were systematically evaluated across various studies.

For instance, optimization strategies that utilized machine learning algorithms, such
as reinforcement learning and neural networks, demonstrated significant improvements
in energy efficiency, with average increases ranging from 15% to 30% compared to tradi-
tional optimization methods. These improvements are attributed to the ability of machine
learning algorithms to adjust energy production and consumption based on real-time
data dynamically, thus minimizing energy wastage and optimizing resource use [35,42,89].
In terms of cost reduction, strategies incorporating advanced energy storage technolo-
gies, like lithium-ion batteries and redox flow batteries, coupled with predictive control
systems, achieved operational cost savings between 10% and 35%. These savings were
most pronounced in scenarios with high variability in renewable energy input, where
effective storage management mitigated the intermittency and improved overall grid
stability [26,70]. Furthermore, integrating advanced control technologies and real-time
simulation techniques resulted in a notable increase in system reliability. Studies showed
a 20% reduction in unplanned outages and a 30% improvement in the system’s ability to
respond to high-demand events. This was particularly evident in microgrids that utilized
hardware-in-the-loop testing and real-time simulations to refine control strategies and
enhance fault tolerance [63,76,94]. These findings indicate that while innovative optimiza-
tion strategies significantly improve microgrid performance, their effectiveness can vary
based on specific conditions and configurations, suggesting a need for tailored approaches
to optimization.

In addition to the quantitative benefits, optimization strategies address specific techni-
cal challenges associated with distributed generation and renewable integration. Advanced
control methods, such as model predictive control and real-time optimization algorithms,
are employed to dynamically adjust the operation of microgrids, ensuring stability and
efficient energy distribution despite the variability and unpredictability of renewable
sources [42]. These control strategies are crucial for maintaining the balance between
energy supply and demand, particularly in scenarios with high solar and wind energy
penetration. By continuously monitoring and adjusting to changes in generation and load,
these techniques help mitigate the risks of overvoltage, frequency deviation, and other
stability issues, thereby enhancing the overall reliability of microgrids [89].

3.4. Power System Operation and Control
3.4.1. Introduction

The operation and control of power systems are critical to ensuring microgrids’ stabil-
ity, reliability, and efficiency, particularly as these systems incorporate various renewable
energy sources and advanced technological solutions. Effective control strategies are imper-
ative for managing the intricate interactions among generation, storage, and load, essential
for maintaining system equilibrium under dynamic conditions [76,94].

A significant challenge in the operation of power systems lies in the necessity for real-
time monitoring and control to cope with the variability and intermittency of renewable
energy inputs. Techniques such as real-time hardware-in-the-loop (HIL) testing have
emerged as crucial for evaluating and enhancing the performance of power systems in
dynamic environments, facilitating rapid responses to faults and disturbances [94]. This
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methodology allows for the rigorous validation of control algorithms and the assessment
of system resilience, ensuring optimal performance across diverse scenarios [26].

Advanced control methodologies, including intelligent control systems and predictive
algorithms, are increasingly employed to optimize energy management within micro-
grids. These approaches enable proactive decision making and adaptive management,
improving system efficiency by reducing power losses and integrating renewable energy
sources [23,89]. For example, intelligent control techniques have been successfully applied
to optimize energy storage systems’ charging and discharging cycles, which helps lower
operational costs and extend battery life [26].

Incorporating smart transformers and other cutting-edge technologies is also pivotal in
contemporary power system operations. Smart transformers provide advanced capabilities
for voltage regulation, power quality enhancement, and energy loss reduction, all of which
are critical for the efficient operation of microgrids [26]. These innovations facilitate the
seamless integration of distributed energy resources and significantly enhance the overall
reliability of the power supply [42].

3.4.2. Challenges and Solutions Narrative

One of the main challenges in the operation and control of energy systems is managing
system resilience and stability against faults and disturbances. The integration of renewable
energy sources, while environmentally beneficial, introduces variability and uncertainty
that must be effectively managed to maintain grid stability. Fault mitigation through
proactive scheduling algorithms and advanced control has proven an effective solution
to enhance system resilience [76,89,94]. Innovative solutions include implementing real-
time simulations and hardware-in-the-loop (HIL) testing to evaluate and improve adaptive
protection capabilities in AC microgrids. This approach allows engineers to test and validate
control systems under realistic conditions, ensuring microgrids respond appropriately to
faults and disturbances [89,94]. Additionally, dynamic power electronic converters and
demand response programs have significantly improved operational efficiency, reducing
operational costs and energy losses [63,69].

3.4.3. End-User Perspective

Innovations in the operation and control of energy systems directly impact end users,
improving the reliability and quality of electricity supply. For example, implementing
advanced control and energy management technologies can reduce service interruptions
and improve power quality, resulting in a more reliable and consistent consumer experi-
ence [26,63,76,89,94]. Testimonials and case studies from the end-user perspective highlight
how these technological improvements have increased customer satisfaction and enabled
more efficient use of energy resources. End users can benefit from reduced energy costs
and greater participation in demand management programs, which optimize energy use
and offer economic incentives [26,42,89].

In addition to the quantitative analysis, a comparative analysis of the different opti-
mization techniques was performed to identify common patterns and unique strengths.
Techniques leveraging artificial intelligence and machine learning showed a consistent
ability to enhance predictive capabilities and adapt to changing conditions, making them
ideal for environments with high energy supply-and-demand variability. Conversely,
optimization strategies focused on advanced storage solutions and predictive controls
were particularly effective in stabilizing microgrid operations in contexts with significant
renewable energy integration. These strategies excel in smoothing out the fluctuations
associated with renewable sources, thereby reducing reliance on fossil fuels and enhancing
overall grid stability [35,70,89].

The comparison also revealed that while certain strategies are highly effective in
specific scenarios, their performance can diminish when applied outside their optimal
conditions. This underscores the importance of selecting the appropriate optimization
approach based on the unique characteristics of each microgrid, including its size, location,
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energy sources, and demand profiles. Quantitative data synthesis across multiple studies
also highlights the potential benefits of conducting a meta-analysis to understand further
the impacts of various optimization strategies on microgrid performance. A meta-analysis
could combine data from different studies to comprehensively assess these strategies,
offering robust conclusions about their effectiveness under various conditions and configu-
rations. For instance, a meta-analysis could quantify the overall increase in energy efficiency
associated with different types of machine learning algorithms across various microgrid se-
tups or measure the cost savings linked to integrating advanced storage technologies under
diverse renewable energy scenarios. This approach would enhance the rigor of the findings
and help identify the most effective optimization strategies for specific microgrid applica-
tions [5,28,37,42]. Future research should focus on standardizing evaluation metrics and
methodologies to facilitate such analyses, ensuring consistent data reporting across studies.
This would enable more direct comparisons and facilitate a deeper understanding of which
strategies are most beneficial for different microgrid contexts. Moreover, a comprehensive
meta-analysis could provide valuable insights for researchers and practitioners, guiding
the development of more effective and efficient microgrid optimization frameworks.

The comparative analysis also highlights the importance of selecting appropriate opti-
mization techniques based on the unique characteristics of each microgrid. For microgrids
heavily reliant on renewable energy, optimization must account for these sources’ inter-
mittent and variable nature. Techniques like robust optimization and chance-constrained
programming are particularly effective in such environments, as they allow for creating
flexible operational plans that can adapt to the uncertainty and variability of renewable
generation [26]. Additionally, deploying decentralized control systems helps manage dis-
tributed generation more effectively by enabling real-time decision making closer to the
generation source, thus reducing latency and improving overall system responsiveness [70].

3.5. Cycle Counting and Data Analysis
3.5.1. Introduction

Cycle counting and data analysis are fundamental to managing microgrid energy
storage systems. Cycle counting involves tracking the number of charge and discharge
cycles a battery completes throughout its operational lifespan. This metric is vital for
evaluating the health and longevity of batteries, as each cycle contributes to the gradual
degradation of the battery’s capacity and performance [20]. Understanding the life cycle
of batteries enables more accurate predictions regarding maintenance requirements and
replacement schedules, which is crucial for maintaining the reliability and efficiency of
microgrid operations [28,89].

The significance of cycle counting is amplified by the growing dependence on renew-
able energy sources, which frequently produce intermittent and variable power outputs.
To balance supply and demand effectively, batteries must undergo frequent charging and
discharging cycles, making precise monitoring of these cycles essential for preventing
premature battery failure and optimizing the performance of energy storage systems [95].
Data analysis is pivotal in this context, allowing for the detection of patterns and anomalies
that might signal potential issues before they escalate into critical problems [23].

Advanced data analytics and predictive modeling tools have been developed to
enhance the accuracy of cycle counting and forecast battery degradation under various
operating conditions. These tools utilize machine learning algorithms to process large
datasets, offering insights into optimal charging strategies and maintenance schedules that
can extend battery life and lower operational costs [28,89]. For example, intelligent control
methods can optimize energy usage based on real-time data, thereby reducing unnecessary
cycling and extending the lifespan of batteries [95].

Moreover, integrating cycle counting with comprehensive data analysis frameworks
provides a holistic approach to energy management in microgrids. By combining real-time
monitoring with historical data analysis, operators can make well-informed decisions
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regarding energy storage deployment and maintenance, enhancing the microgrid’s overall
resilience and sustainability [20,28].

3.5.2. Data Narrative

The data journey in a microgrid begins with its collection through sensors and mon-
itoring devices strategically placed at various points within the system. These devices
continuously gather real-time data on parameters, such as voltage, current, temperature,
and state of charge. These data are then transmitted to a centralized control center, where
they are processed and analyzed to extract valuable insights into the microgrid’s oper-
ational status. This process is akin to how doctors collect and analyze clinical data to
diagnose and treat patients, using data to make informed decisions that optimize the
patient’s health [63,73,94].

The role of engineers and scientists in analyzing these data is crucial. By leveraging
advanced data analytics, they can detect inefficiencies, predict potential failures, and im-
plement corrective actions to improve microgrid performance. For example, analyzing
data trends can reveal patterns of energy consumption that may suggest the need for
adjustments in load management strategies or the reconfiguration of energy storage to opti-
mize efficiency. Such proactive management helps maintain balance within the microgrid,
minimizing energy wastage and maximizing resource utilization [28,73,89].

3.5.3. Innovations in Analysis

Advanced data analysis tools revolutionized microgrid management by enabling more
precise and real-time decision making. AI algorithms and machine learning techniques
allow for the rapid analysis of vast amounts of data, identifying patterns and trends that
may not be immediately apparent through traditional methods [96]. These tools facilitate
predictive maintenance by forecasting potential problems based on historical data and
optimizing microgrid operations to respond dynamically to changing conditions [73,76,83].
For instance, machine learning models can predict battery performance degradation, al-
lowing operators to schedule timely maintenance and avoid costly downtimes. Similarly,
AI-driven analytics can optimize energy dispatch in real time by adjusting generation and
storage parameters based on demand forecasts and renewable energy availability. These
innovations are crucial for enhancing the efficiency and reliability of microgrids, as they
enable a more adaptive and resilient management approach that can quickly respond to
disturbances and fluctuations in energy supply and demand [73,89,94].

The future of microgrid data analysis promises even more advancements, with the
continuous development of deep learning and quantum computing technologies expected
to enable even more sophisticated data processing capabilities. These technologies will
allow for the real-time analysis of complex datasets, improving predictive accuracy and
enabling more effective management of energy resources. As a result, microgrids will be-
come more resilient and efficient, capable of adapting to varying conditions and optimizing
operations to meet evolving energy needs [73,89,94].

3.6. Urban and Rural Energy Solutions
3.6.1. Introduction

Urban and rural energy solutions present unique challenges and opportunities, espe-
cially when integrating renewable energy sources and energy storage systems in microgrid
planning. In urban environments, microgrids are typically designed to enhance energy
efficiency and sustainability by utilizing advanced technologies and integrated energy
management systems. These systems are instrumental in reducing emissions and improv-
ing grid resilience by seamlessly integrating with existing infrastructure, thereby meeting
the diverse energy demands of densely populated areas while bolstering overall grid
stability [23,26,97].

In contrast, rural areas often grapple with limited infrastructure and a heavy reliance
on traditional energy sources, such as diesel generators, which tend to be inefficient and
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environmentally harmful. However, adopting microgrids in these regions provides a
significant opportunity to improve energy accessibility and reliability. Standalone micro-
grids, tailored for renewable energy integration and optimized for local conditions, can
dramatically decrease reliance on fossil fuels and reduce operational expenses [40,98].

Strategic planning and the deliberate interconnection of microgrids can yield robust
energy solutions for urban and rural settings, fostering a more resilient and flexible energy
infrastructure. For example, the application of IoT-based control strategies and advanced
energy storage systems can optimize the operation of microgrids, ensuring real-time bal-
ance between supply and demand and maintaining reliable energy delivery, even amid
fluctuating renewable energy outputs [97]. In rural areas, such interconnected microgrids
can facilitate energy sharing among neighboring communities, enhancing energy security
and promoting regional development [23,26].

Integrating energy storage systems within microgrids is crucial for mitigating the
intermittency of renewable energy sources like solar and wind. Effective storage solutions
allow microgrids to capture surplus energy during low-demand periods and release it as
needed, thus ensuring a consistent and reliable energy supply [97,98]. This capability is
particularly important in rural areas, where grid reliability may be lower and access to
backup power options is more limited.

3.6.2. Community Stories

Stories of communities creatively addressing their energy challenges are inspiring.
For example, in a rural community, implementing a renewable-energy-based autonomous
microgrid has transformed residents’ lives by providing a reliable electricity supply and
reducing dependence on diesel generators [42,73]. In an urban setting, a microgrid project
has enabled a community to reduce energy costs and improve sustainability by integrating
solar panels and energy storage systems [40,97].

3.6.3. Local Innovations

Customized energy solutions are crucial to addressing the specific needs of each com-
munity. In rural areas, projects like long-term capacity planning for isolated microgrids
using advanced optimization algorithms have proven effective in meeting fluctuating
demand and the intermittent nature of renewable energy sources [69,73]. In urban envi-
ronments, local innovations include the implementation of affine arithmetic-based energy
management schemes for multi-microgrid networks, enabling efficient energy exchanges
and robust management against uncertainties [26,69].

3.6.4. Holistic Vision

A holistic vision for integrating urban and rural solutions could create a more efficient
and resilient energy system [52]. For example, urban microgrids can act as energy hubs
that exchange electricity with rural microgrids, leveraging the advantages of both settings
to optimize resource use and improve system stability [26,40]. This integration enhances
operational efficiency and promotes sustainable development by providing access to clean
and reliable energy across all communities [42,97]. Sustainable community development
can be significantly driven by energy solutions that consider local particularities. Projects
incorporating renewable energy technologies, storage, and advanced management strate-
gies can reduce carbon emissions and promote a greener economy [40,69]. In this context,
energy solutions must be designed to be scalable and adaptive, ensuring that both urban
and rural areas can benefit from technological advancements and best practices in energy
management [69,73]. Based on the PRISMA methodology’s systematic review, several novel
findings and future challenges have been identified across six key microgrid planning and
optimization topics. Table 4 summarizes these discoveries and outlines the challenges that
lie ahead.
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Table 4. Novel findings and future challenges of the six topics.

Topic Novel Findings Future Challenges

Microgrid Planning
and Optimization

The use of evolutionary and stochastic algorithms
to enhance microgrid planning and optimization.
Integrating AI and machine learning to optimize
performance and efficiency [5,28,37].

Develop technologies that allow for the
self-optimization and autonomous management of
microgrids. Efficiently integrate new renewable
energy sources [35,69,89].

Modeling and
Simulation

Application of stochastic optimization techniques
and genetic algorithms. Use of advanced
simulations to predict and manage variability in
renewable energy generation [20,24,76].

Improve the accuracy and efficiency of simulations
to predict better and manage fluctuations in energy
generation and demand [28,73,94].

Energy Storage and
Battery Technologies

Development of redox flow batteries and
solid-state batteries. Innovations in lithium-ion
batteries to enhance energy density and
safety [26,28,35].

Increase the sustainability and recyclability of
batteries. Reduce production costs and improve
the lifespan of storage technologies [42,70,89].

Power Systems
Operation and Control

Implementation of real-time simulations and
hardware-in-the-loop (HIL) testing. Dynamic
power electronic converters enhance operational
efficiency [63,89,94].

Enhance microgrid resilience against faults and
disturbances. Optimize the integration of
renewable energies to maintain system
stability [69,76,94].

Cycle Counting and
Data Analysis

Application of AI algorithms and machine
learning to analyze large data volumes. Advanced
data analysis tools are used to optimize real-time
microgrid operations [63,73,83].

Develop more advanced methods for predictive
analysis and real-time data management. Improve
the accuracy and speed of analysis
algorithms [69,89,94].

Urban and Rural
Energy Solutions

Implementation of autonomous microgrids in
rural areas. Use of affine arithmetic-based energy
management schemes for multi-microgrid
networks in urban settings [26,40,97].

Foster the integration of urban and rural energy
solutions to optimize resource use. Promote
sustainable development through the adoption of
clean and efficient technologies [42,69,97].

3.7. Quantitative Analysis of Optimization Strategies

A detailed descriptive analysis of the quantitative data available in the reviewed
studies revealed several significant trends in the performance of microgrid optimization
strategies. Strategies based on artificial intelligence, such as machine learning, have proven
particularly effective in enhancing energy efficiency and operational stability. Studies
that applied deep learning techniques reported average improvements of 20% in energy
efficiency, attributed to these algorithms’ ability to anticipate demand and adjust energy
production in real time [35,42,89]. Furthermore, studies that integrated advanced storage
technologies, such as redox flow batteries and supercapacitors, along with predictive control
systems, reported reductions in operational costs between 15% and 35%, underscoring
the effectiveness of these approaches in managing the intermittency of renewable energy
sources [26,28,70]. A notable improvement in system resilience was also observed; in
microgrids that utilized advanced controllers and real-time simulations, a 30% reduction
in fault recovery time and a 25% increase in the capacity to respond to extreme events
were documented [63,76,94]. These quantitative findings underscore the effectiveness
of innovative strategies and highlight the need for a more systematic and quantitative
approach in evaluating the benefits of microgrid optimization, considering both operational
and economic aspects.

3.8. Comprehensive Analysis of Microgrid Planning Components

Microgrid planning requires a holistic approach, encompassing various components
to ensure efficient and sustainable operation. Key elements include the selection and sizing
of RES, such as PV, WT, and hydropower, and the appropriate selection and sizing of ESS,
like batteries, fuel cells, hydro-pumped storage, flywheels, and supercapacitors.
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3.8.1. Renewable Energy Source Selection and Sizing

The selection of RESs for microgrids is critical in determining their overall performance
and sustainability. Technologies, such as PV systems, wind turbines, and hydropower,
have unique characteristics that affect their integration into microgrids. For instance, PV
systems are well suited for regions with high solar irradiance, while wind turbines are
effective in areas with consistent wind patterns. Although less common in microgrids,
hydropower can provide a stable and reliable energy source, especially in water-abundant
regions [99]. Accurate sizing of these RESs is essential to balance energy supply and demand
while minimizing costs and maximizing efficiency. Mathematical optimization, including
techniques like MILP and dynamic programming, helps determine the optimal capacity
of RESs to install in a microgrid, considering factors, such as peak demand, generation
variability, and cost constraints [35,37].

3.8.2. Energy Storage System Selection and Sizing

Energy storage systems play a vital role in managing the variability and intermittency
of renewable energy sources. The selection of ESSs depends on the specific needs of the
microgrid, such as storage capacity, discharge rate, lifespan, and cost. Common types of
ESSs include batteries, fuel cells, hydro-pumped storage, flywheels, and supercapacitors.
Each technology has its advantages and limitations; for example, batteries are ideal for short-
term storage due to their fast response times, while hydro-pumped storage is better suited
for long-term energy storage due to its high capacity [99]. Proper sizing of ESSs is crucial to
ensure that the microgrid can store excess energy generated during periods of low demand
and release it during peak demand. Optimization methodologies such as metaheuristics
and heuristics, including genetic algorithms and particle swarm optimization, are widely
used to determine the optimal size and placement of ESSs within a microgrid, ensuring
cost-effectiveness and reliability [28,42].

3.8.3. Microgrid Topologies and Load Forecasting

Microgrid topologies, which define the arrangement of RESs and ESSs, significantly
impact the efficiency and reliability of the system. Traditional AC microgrids have been
the most common configuration; however, the integration of DC components is gaining
traction due to the increasing number of DC loads and the inherent efficiency of DC power
distribution. Hybrid AC/DC microgrids combine the benefits of both AC and DC systems,
offering flexibility and efficiency advantages, especially in systems that incorporate a mix
of generation sources and loads [100]. Load forecasting is another crucial component
of microgrid planning. Accurate load forecasts enable better planning and operation,
ensuring that the microgrid can meet future energy demands without over-sizing or under-
sizing its components. Techniques such as machine learning and artificial neural networks
are increasingly used to improve the accuracy of load forecasts by analyzing historical
consumption data and predicting future trends [37,70].

3.8.4. Integration of Emerging Technologies and Sector Coupling

Integrating emerging technologies such as EV charging stations, heat pumps, and solid-
state transformers is becoming increasingly important in microgrid planning. EV charging
stations, for example, add a new dimension to energy demand, requiring careful planning
to avoid overloading the grid while optimizing the use of renewable energy. Heat pumps
provide a means to use electricity for heating and cooling efficiently, contributing to sector
coupling by linking the electricity sector with the heating and cooling sectors [101]. Solid-
state transformers offer significant advantages in AC/DC conversion, providing greater
flexibility and efficiency in managing power flows between different parts of the microgrid.
When integrated effectively, these technologies enhance microgrids’ functionality and
resilience, making them more adaptable to future energy landscapes [26,70,89].
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3.8.5. Optimization Methodologies

Optimization methodologies play a pivotal role in microgrid planning, helping to
balance costs, performance, and sustainability. Mathematical optimization methods, such
as linear programming, mixed-integer linear programming, and dynamic programming,
provide precise solutions for optimizing RES and ESS capacities and developing efficient op-
erational strategies [35,37]. Metaheuristics and heuristics, including genetic algorithms and
particle swarm optimization, offer flexible and robust solutions for complex optimization
problems where traditional methods may fall short [28,42].

4. Conclusions

This review systematically synthesized the advancements, challenges, and future
directions in microgrid (MG) planning and optimization for renewable integration, utilizing
the PRISMA methodology to ensure a thorough and unbiased analysis. The literature
review encompassed an extensive search across multiple databases, including Scopus,
IEEE Xplore, and MDPI, ensuring a broad coverage of high-quality, peer-reviewed studies.
After removing duplicates, the review identified a total of 1929 articles, with 1892 unique
items. These articles were rigorously screened against predefined inclusion and exclusion
criteria, ultimately resulting in 617 studies that were included for detailed analysis. After
the eligibility and inclusion phase, 81 articles were selected based on a minimum threshold
of 3.85 out of 5, as validated in an eligibility and inclusion matrix, constituting the sample
for the literature review synthesis.

The selected articles were published between 2013 and 2024, reflecting the most recent
advancements and trends in MG research. A significant portion of the literature was
sourced from reputable journals, with notable contributions from IEEE Access, Energies,
IEEE Transactions on Smart Grid, and IEEE Transactions on Sustainable Energy, among others.
The distribution of articles over the years highlighted a growing interest in MGs, with a
notable increase in publications from 2017 onwards, peaking in 2023. This trend underscores
the expanding focus on sustainable energy solutions and the critical role of MGs in modern
energy systems.

The literature synthesis revealed significant advancements and challenges in microgrid
planning and optimization across six key areas. Historical narratives show the evolution
from early independent systems to sophisticated, integrated microgrids with enhanced
resilience and efficiency through advanced energy management systems and stochastic
optimization techniques. Innovative methods, including AI and machine learning, offer
adaptive solutions that improve operational efficiency and resilience by predicting and
responding to demand and environmental changes in real time. Innovations in energy
storage, particularly lithium-ion and redox flow batteries, have enhanced energy density,
safety, and recyclability, which are critical for managing the intermittency of renewable
energy sources and improving MG sustainability. Implementing real-time simulations,
hardware-in-the-loop testing, and dynamic power electronic converters has significantly
enhanced MG operational efficiency and stability, ensuring the effective integration of
renewable energies while maintaining reliability. AI and machine learning applications
for data analysis have optimized real-time MG operations, with advanced data-driven
methods improving predictive analysis, fault tolerance, and overall system stability, lead-
ing to more efficient energy management. Customized energy solutions for urban and
rural communities show great promise, with autonomous MGs in rural areas and ad-
vanced energy management schemes in urban settings demonstrating the potential to
enhance sustainability and operational efficiency, optimizing resource use and promoting
sustainable development.

Specifically, this review seeks to answer key questions: What are the most effective
strategies for planning and optimizing MG clusters? How can renewable energy integration
and storage solutions be improved to enhance MG’s efficiency and resilience? What are
the critical challenges in simulation accuracy and energy storage sustainability that need
to be addressed? The findings indicate that integrating AI, IoT, and advanced energy
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storage systems into MGs significantly enhances efficiency, reliability, and resilience. Ad-
vanced modeling and simulation techniques, such as stochastic optimization and genetic
algorithms, are crucial for managing renewable energy variability. However, the critical
challenges identified include developing self-optimization technologies for MGs, improv-
ing simulation accuracy, enhancing the sustainability of energy storage technologies, and
conducting comprehensive economic assessments of MG scalability.

Despite these advancements, several challenges require further research and inno-
vation: developing technologies that allow for the self-optimization and autonomous
management of MGs is crucial, as efficiently integrating new renewable energy sources into
existing MG frameworks remains a significant challenge that needs innovative solutions.
Improving simulations’ accuracy and efficiency to predict and manage energy generation
and demand fluctuations is essential, as enhanced simulation techniques will provide more
reliable data for optimizing MG operations. Increasing the sustainability and recyclability
of energy storage technologies, while reducing production costs and improving lifespan, is
necessary for the broader adoption of MGs, with research into new materials and storage
solutions being vital in achieving these goals. Enhancing the resilience of MGs against faults
and disturbances and optimizing the integration of renewable energies to maintain system
stability are ongoing challenges that require advanced control strategies and fault-tolerant
designs. Comprehensive economic assessments of MG scalability and sustainability across
different contexts are underexplored, and future research should focus on the economic
viability and long-term benefits of MGs to ensure they are both cost-effective and scalable.
The current literature often isolates aspects like scheduling or fault detection, lacking a
holistic approach that integrates machine learning for efficiency and reliability; thus, fu-
ture studies should adopt more integrated methodologies to comprehensively address the
multifaceted challenges of MGs.
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