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Abstract: Hydrodynamic models (HMs) are tools for simulating flow behavior through the solution
of conservation equations. These equations can have different degrees of simplification, which
influence the model structure. One-dimensional (1D) HMs are still popular due to their simplicity.
A crucial parameter for obtaining accurate 1D HM outputs is the effective Manning roughness
factor (EMRF). The EMRF reflects additional numerical and dissipative aspects beyond boundary
roughness. Although generalized likelihood uncertainty estimation (GLUE) is an important method
for uncertainty analysis, it requires the selection of a likelihood function and a cutoff threshold. The
goal of this study was to determine the effect of the likelihood function on the EMRF characteristics
for mountain river morphologies, considering a certain cutoff threshold. The results show that the
error model and the treatment of the residual in the objective function affect the EMRF range and
limits in the studied reaches with a cascade or step pool. Furthermore, the analysis shows that
these morphologies deviate from the model structure, which may affect the likelihood curve shape.
Notably, the EMRF and measured roughness did not intersect in the studied reach with a plane bed,
which is attributed to the presence of vegetation on the banks of that reach.

Keywords: GLUE; mountain rivers; effective roughness

1. Introduction

Hydrodynamic models (HMs) are used to predict water motion through the solution
of conservation equations [1,2]. HMs are used for predicting flood levels and flood risk [3].
One-dimensional (1D) HMs are still useful models due to their low data and computational
resource requirements and ease of use [1,4,5]. Furthermore, the roughness factor is the
main source of uncertainty in HMs when topographic data are accurately collected [3].
However, the roughness factor in a HM is an effective parameter, and its definition changes
according to the flow description [6]. Thus, research on the behaviors of these parame-
ters in 1D models is important. On the other hand, generalized likelihood uncertainty
estimation (GLUE) is the most common methodology for reporting uncertainty [7] (other
methods for determining uncertainty are described in Chowdhury and Egodawatta [8] and
Yarahmadi et al. [9]). However, GLUE requires two arbitrary choices, likelihood functions
and cutoff thresholds, which potentially alter the GLUE results [10]. This research addresses
GLUE experiments on 1D HMs with different morphologies, different likelihood functions,
different flow magnitudes, and a cutoff threshold based on water depth uncertainty. The
goal of this study was to investigate the behavior of an effective roughness parameter,
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namely, the effective Manning roughness factor (EMRF), for different resistance phenomena
and likelihood functions.

GLUE research has focused on likelihood curves, GLUE methodology modification, un-
certainty bounds analysis, and comparisons with other uncertainty quantification method-
ologies. The likelihood curves are compared in two cases: (i) in a 1D unsteady flow HEC-
RAS (U.S. Army Corps of Engineers) model of two reaches with discrete and continuous
datasets [1] and (ii) in a two-dimensional (2D) shallow water equation (where convec-
tive and inertial terms are discarded), where two different types of likelihood functions
are tested [11]. Some studies have focused on improving the GLUE framework. Aron-
ica et al. [12] proposed a methodology to obtain the spatially distributed uncertainty within
GLUE frameworks. The methodology was tested in two reaches using LISFLOOD: 1D mod-
eling for the main channel and 2D modeling for the floodplain. Blasone et al. [13] proposed
an adaptive sampling method for the prior parameter distribution. This methodology was
tested in three different hydrological models. Papaioannou et al. [5] aimed to develop a
generic methodology for roughness uncertainty assessment via 1D HMs. This approach
includes a technique to determine the prior distribution of roughness and proposes an
approach for the sampling procedure. The method was tested using a 1D HEC-RAS model.
Some GLUE studies consider uncertainties in several parameters, which are individually
and simultaneously propagated through the HMs. For example, this includes roughness
and upstream flow in 1D models with uniform flow and steady shallow water equations [14]
or flow–topography–roughness coupling in 1D HEC-RAS models [7]. Research has aimed
to constrain the uncertainty bounds using different techniques: Bhola et al. [3] proposed
a certain threshold for the objective function for HEC-RAS 2D, whereas Werner et al. [15]
tested the utility of comprehensive calibration data to constrain the distributed flood plain
roughness. The uncertainty quantification capabilities of GLUE have been assessed against
various methodologies and model types. Reis et al. [16] compared GLUE with DREAM
(Differential Evolution Adaptive Metropolis) in estimating discharge using the Manning
equation. The calibrated parameters included Manning roughness and slope. Although
both methods provided valid calibrated parameters for the model, DREAM exhibited a
lower relative deviation between estimated and measured discharge, and its calibrated
parameters showed a stronger correlation compared to those of GLUE. This et al. [17]
compared GLUE with a Bayesian procedure for calibrating parameter values and assessing
uncertainty in design flow estimates (quantiles) within catchment modeling. The Bayesian
approach has demonstrated superiority in parameter identification and results in lower
uncertainty in quantiles. In addition to GLUE, Mishra et al. [18] state that the turbulence
model used in Computational Fluid Dynamics (CFDs) for aerospace systems is simple and
cost-effective, yet capable of capturing specific characteristics of turbulence. Consequently,
explicit uncertainty quantification in model predictions is essential. Mishra et al. [18] suc-
cessfully tested a module in the CFD software SU2 that focused on estimating uncertainty
and errors associated with turbulence closure models (EQUiPS).

The scope of this paper focuses on studying the EMRF under various dissipative
processes and likelihood functions in mountain river reaches. To our knowledge, a similar
study has not yet been presented. Section 2 describes different methodologies used to
determine the EMRF and measured roughness (MR), considering the characteristics of the
reaches studied, available data, GLUE testing, metrics, cutoff threshold, and HEC-RAS
modeling. The results and discussion of the EMRF range and limits and a comparison of
the obtained EMRFs and MRs are presented in Sections 3 and 4. Finally, in Section 5, a
summary of the sections and the main findings of this study are presented.

2. Materials and Methods
2.1. Studied Site

Figure 1 shows a map of part of the Quinuas River. This part of the river has been di-
vided into six reaches based on morphology, where different field data have been collected.
For the present study, three reaches were chosen as representatives of each morphology
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studied: Cascade 3, Plane bed 1, and Step pool 1. The names of the reaches and some
geometric characteristics are shown in Table 1.
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Figure 1. Map of the reaches studied: Cascade 3, Step pool 1, and Plane bed 1.

Table 1. Geometric characteristics of the reaches studied.

Reach Length (m) Slope (%) D84 (m)

Cascade 3 18.08 8.5 316.5 × 10−3

Step pool 1 12.22 6.1 251.2 × 10−3

Plane bed 1 6.26 3.16 218.8 × 10−3

2.2. Studied Available Data

Data on the reaches studied here are available and have already been used in some
studies [19,20]. Table 2 provides a summary of the different available data types for the
reaches described in Table 1, which will hereafter be referred to as cascade, step pool, and
plane bed.

Table 2. Available data in the studied reaches.

Variable Instrument Methodology Reference

Topography Total station/Differential GPS Point surveying of different cross-sections at the
studied reaches [20]

Water levels Staff gauges Measurement of water depth with a measuring tape in
Staff gauges [20]

Wetted width Measuring tape Measuring the water surface width excluding any
protruding boulder width [21]

Flow HOBO U24-00 freshwater
conductivity data loggers Dilution gauging method [22]

Velocity Two HOBO U24-00 freshwater
conductivity data loggers

U = L T-1, L is the distance between two instruments, T
is the travel time estimated through the Harmonic

method
[23]

Friction Slope Staff gauges Approximation through water surface slope using the
measured staff gauges reads [24]

Bed material size distribution Sampling frame/Pebble-box Pebble counting [25]
Roughness parameter Indirect determination Darcy–Weisbach or Manning resistance equation [26]
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2.3. GLUE Test

The GLUE methodology has been developed for calibration and uncertainty estima-
tion [27]. In this article, GLUE has been utilized for calibration purposes. During modeling,
various sources of error can arise, including model structures, boundary conditions, and ob-
servations. GLUE acknowledges that different combinations of these variables can produce
acceptable simulations. GLUE consist of the following steps:

• Select the model parameter for calibration: the Manning roughness factor for the
main channel.

• Choose a formal definition of likelihood. This function reflects how well the simulated
results predict observations [27]. The functions used in this study are explained in the
section titled “Likelihood Function”.

• Select the distribution of the parameter to be varied. In cases of limited knowledge, it
is advisable to use a uniform distribution [1,27]. The roughness range for the cascade
and plane bed is set at 0.03–0.5, whereas in the step pool, the range is expanded to
0.03–0.7, as the previous range was insufficient.

• Perform multiple simulations using the parameter sets within the chosen range. Each
simulation is assigned a likelihood value. In this study, 20,000 runs were conducted for
the three morphologies, with model outputs compared to water depth observations at
three staff gauges (step pool and plane bed) and five staff gauges (cascade). An iterative
process was implemented in the HEC-RAS controller using Visual Basic for Excel®

based on the code provided by Goodell [28]. Simulations with high likelihood values
were retained. In this context, the separation between behavioral and non-behavioral
models was achieved using a cutoff threshold (see Section CUTOFF Threshold).

2.4. Likelihood Function

Three likelihood functions were selected in this research, namely, the root mean square
error (RMSE), the mean absolute error (MAE), and a modification of MAE called MAEU,
which includes the uncertainty in water level measurements. The RMSE, MAE, and MAEU
were modified to be dimensionless; this process is shown below.

2.4.1. First Likelihood Function: RMSEa

The RMSE is a metric commonly used during model performance evaluation [29].
According to Li et al. [10], this metric follows a square error model, where the residuals
are squared. This metric has been used as a statistical measure when soft computing is
used to predict Manning roughness parameters [9] or in the calibration of complex models
encompassing urban hydrology, hydraulics, and stormwater quality [8].

RMSE =

√
∑n

i=1(Oi − Si)
2

N
, (1)

RMSEa =
RMSE

O
, (2)

where Oi is the water depth observation [cm], Si is the simulated water depth [cm], O is the
mean of the water depth observations [cm], and N is the number of data points.

2.4.2. Second Likelihood Function: MAEa

The MAE is a widely used metric to estimate model performance [29]. It follows an
absolute error model, where the absolute value of the residuals is taken, as discussed by
Li et al. [10]. The MAE was selected as the metric in Werner et al. [15] for discrete field data.
Similarly, Li et al. [10] selected the MAE as a typical likelihood measure for hydrological
model research, using the inverse MAE.

MAE =
1
N∑N

i=1|Oi − Si|, (3)
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MAEa =
MAE

O
, (4)

2.4.3. Third Likelihood Function: MAEUa

MAEU is a modification of MAE in which the uncertainty in the measured water
level (δah = 1.5%) is added. Thus, if a residual is less than the expected uncertainty, the
residual will not be considered an error but rather an expected difference between the
model outputs and observations.

if
{

Residuali < δah wi = 0
Residuali > δah wi = 1

, (5)

MAEU =
∑n

i=1 residuali wi

N
, (6)

MAEUa =
MAEU

O
, (7)

2.5. CUTOFF Threshold

Figure 2 depicts a scheme to illustrate the concept of the cutoff threshold, which obtains
a model with acceptable performance [13]. Indeed, the cutoff threshold is an acceptable
difference from the peak likelihood, which can be a certain value [13] or percentage [10,15].
However, in earlier work, the cutoff threshold was based on an arbitrary decision instead
of an explicit criterion, as stated by Werner et al. [15]. In this research, the uncertainty in
the water level measurements (δah = 1.5%) was used as the cutoff threshold.
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2.6. HEC-RAS

The selected reaches were run in the 1D component of HEC-RAS developed by the
Hydrologic Engineering Center of the United States Army Corps of Engineers. All the
HMs were run under steady-state conditions with a mixed flow regime. The HEC-RAS
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Controller® allowed the iterative process to vary different parameters [28]. In this case, the
main channel roughness parameter was chosen because the water level did not reach the
floodplain. The reach topographic data were obtained from a combination of differential
GPS and total station measurements to achieve high accuracy. The cross-sections were
placed at crucial points, such as locations with changes in bed slope or abrupt alterations in
XS shape. The boundary conditions were imposed upstream and downstream as normal
depth. At some critical points, additional cross-sections were interpolated to stabilize
the HM.

3. Results
3.1. Effective Manning Rougheness Factor Range

The EMRF range, or nh-nl, in Figure 2 presents different magnitudes depending on
the likelihood, morphology, and flow magnitude studied.

When the general trends of the EMRF in terms of MAEa, RMSEa, and MAEUa were
analyzed, it was observed that the range of the EMRF decreased with increasing flow
(refer to Table 3). For low flow, the plane bed exhibited the lowest EMRF range (~0.1), in
contrast to the cascade (~0.32) or the step pool (~0.36). Furthermore, in the moderate- and
high-flow scenarios, the step pool and plane bed demonstrated comparable EMRF ranges
(~0.02), whereas the cascade EMRF still varied between the moderate- (~0.1) and high-flow
scenarios (0.07).

Table 3. EMRF ranges (nh-nl in Figure 2).

Likelihood\Flow
Magnitude

Cascade Step Pool Plane Bed

Low Moderate High Low Moderate High Low Moderate High

L1: RMSEa 0.296 0.098 0.082 0.311 0.023 0.019 0.115 0.024 0.019
L2: MAEa 0.326 0.107 0.071 0.398 0.024 0.023 0.119 0.023 0.021

L3: MAEUa 0.323 0.110 0.063 0.373 0.023 0.021 0.090 0.023 0.019

Differences can be observed in the EMRF ranges obtained from the MAEa, RMSEa,
and MAEUa likelihoods (Table 3). Furthermore, the variations in EMRF ranges from these
likelihood functions were small for the cascade and plane bed, indicating differences of less
than 13% for only two extreme cases, with a difference of approximately 23%. In the step
pool, the differences in EMRF ranges were more pronounced, particularly for the results of
RMSEa and MAEa-MAEUa, with differences reaching 27%.

3.2. EMRF Limits

The influence of the likelihood function on EMRF limits (nl and nh according to
Figure 2) was limited to the cascade morphology. MAEa and MAEUa produced similar
nl/nh values for all the cases studied, with the maximum difference ranging from 0.21%
to 11%, which was observed only in the extreme case of a plane bed and low flow. The
average difference between MAEa and MAEUa was 3.03%. This difference is considered
acceptable given that the uncertainty in the MR at this studied site was 22% [20]. Likewise,
the nl/nh values obtained from the RMSEa and MAEa/MAEUa likelihoods exhibited
similar differences between the step pool and plane bed morphologies. In the step pool,
the maximum difference in nh between RMSEa and MAEa/MAEUa reached 13%, whereas
the maximum difference in nl reached 1.65%, where the largest difference occurred for
low flow. However, the remaining flows in this morphology produced differences in the
nl/nh values of less than 3%. In the plane bed, the maximum difference in nl reached 11%
at low flow, whereas in other scenarios, the difference in nl/nh was less than 1.5%. The
cascade nl/nh values from RMSEa-MAEa/MAEUa demonstrate a stronger reliance on the
likelihood function than those of the step pool or plane bed morphologies. Furthermore,
nl, determined through RMSEa-MAEa/MAEUa, exhibited a maximum disparity of 41%,
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whereas nh displayed a maximum difference of 20%. Notably, these variations were absent
during low flow, but were noticeable during moderate and high flows.

3.3. EMRF and Measured Roughness Factor

Figure 3 depicts the EMRF range and the measured Manning roughness (MR) values
at the studied sites, considering uncertainty. The occurrence of the intersection between the
EMRF and MR depends on morphology. In the cascade and step pool morphologies, all
likelihoods resulted in EMRF intersecting with MR across all flow magnitudes, but in the
plane bed, the intersection was limited to low flows.
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4. Discussion
4.1. EMRF Range

The EMRF and topography are the major sources of uncertainty in HMs [1,12]. Accord-
ing to Bhola et al. [3], topography is usually seen as an input with the lowest uncertainty;
however, there are studies in which this input has an important effect on model output. In
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this research, the topography was carefully measured with accurate instruments (see the
description of the methodology in Section 2), so the main source of uncertainty was the
EMRF. Moreover, the EMRF definition changes depending on the flow description (model
structure [1]); thus, the EMRF encompasses different momentum and energy dissipation
phenomena not included in the simplified conservation equations. In 1D HMs, roughness
not only represents the interaction between water and the flow boundary but also the
low-level representation of turbulence losses, three-dimensional (3D) effects, and incorrect
geometry [3,6].

The general tendency of the EMRF range decreasing as flow increases is intuitive given
that at low flow, there are more dissipative processes affecting water flow than at a moderate
or high flow [30,31]. Furthermore, the cascade corresponds to higher EMRF ranges than
those of the step pool or plane bed, given that the cascade likelihood curves (see Figure 4)
are smoother than the step pool and plane bed likelihood curves (see Figures 5 and 6). This
behavior is attributed to the interaction of water with a random transverse and longitudinal
distribution of boulders and cobbles in the cascade [32], where different flow patterns with
different velocity components are present [24], even at high flows.

Different likelihoods have been used to test the effects of distinct error projections [29]
on EMRF ranges. The cascade and plane bed EMRF ranges have shown no sensitivity to
the residual weighting (RMSEa, MAEa [29]) or to the inclusion of uncertainty in the metrics
(MAEUa [29]), but the step pool EMRF ranges are sensitive to residual weighting (RMSEa,
MAEa) in the likelihood function. A possible explanation is the tumbling flow present in
this morphology, where subcritical and supercritical flow occurs [30]. Moreover, the step
pool likelihood curves do not have a ‘U’ shape. Instead, they start at an optimum, and the
model performance decreases as the flow increases.

4.2. EMRF Limits

In the EMRF range, the EMRF limits show sensitivity to only the residual weighting
in one morphology: the cascade morphology with moderate and high flows. Figure 4
shows that as the roughness parameter increases, the likelihood curves of the RMSEa and
MAEa/MAEUa start to markedly differ. Moreover, the resulting optimum values are differ-
ent. For example, in the cascade with low flow, the curves of RMSEa and MAEa/MAEUa
have the same pattern, but the likelihood values are different.

4.3. EMRF and MR

During calibration, such as that performed here through GLUE, the goal is to find the
parameters that provide results closer to observations while considering different uncer-
tainties [11]. Uncertainty in the model results is related to the model structure (in this case,
1D) and uncertainties are related to the available information. The available information
was meticulously quality controlled to reduce its associated uncertainty. Furthermore, the
uncertainty in the MR was evaluated and estimated.

The EMRF is an important parameter in a HM, so an appropriate estimation of this
parameter is a priority. However, frequently, data are insufficient, and the roughness
parameter must be chosen using empirical equations, tables, or any other method devel-
oped to predict MR. Thus, if there is an intersection between EMRF and MR values, the
methodologies developed to estimate MR can be used to estimate EMRF. These results
indicate that the influence of the likelihood function on the intersection of the EMRF and
MR depends on the magnitude of the flow resistance.

In this research, the cascade and step pool exhibited similar MR values, whereas the
plane bed parameters were smaller [20]. Surprisingly, in the plane bed, the EMRF and MR
intersected only at low flow. The reason for the lack of intersection in this morphology
could be the presence of vegetation that enters the water, increasing the flow resistance [20].
Based on the current findings and insights from [20] Cedillo et al., when data are lacking, it
is recommended to utilize nondimensional hydraulic geometry equations to estimate the
EMRF while considering an uncertainty of 22%.
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4.4. Comparison with the Literature Review

Pappenberger et al. [1] emphasize the need for a distinction between EMRF and MR,
which are clearly not the same. The MR in this research was determined through field
measurements described in the Methodology section (see Table 2). However, MR can be
estimated based on data from the literature or the land use type [3]. The EMRF depends
on the flow description, so this parameter can have different physical meanings [33]. This
research aimed to compare the EMRF in the HEC-RAS steady-state model across different
morphologies and MRs. Note that a similar study has not yet been presented in the
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literature. Most of the related literature addresses (i) changes in the likelihood curves due
to the use of different calibration datasets [1] or different likelihood function types [11],
(ii) improvements in GLUE to obtain spatially distributed uncertainty [12] or to improve
the efficiency by modifying the sampling process of the prior parameter distribution [13],
and (iii) comparisons of the predictability capacities of 1D and 2D inundation extents [33].

In this research, the EMRF range decreased as flow increased; however, another study
indicates that low flows can complicate model predictions. In Reis et al. [16], which com-
pares the uncertainty quantification of GLUE and DREAM when discharge was simulated
using the Manning equation, the lowest simulated discharges consistently overestimated
the observed values. In fact, that study identified a pattern similar to the one in this research,
showing an inverse relationship between the relative deviation of estimated and measured
discharges and flow magnitude. Furthermore, the discharge observations fell outside the
uncertainty interval.

5. Conclusions

The effective Manning roughness factor (EMRF) has an important influence on hy-
drodynamic models (HMs) and is generally different from the measured roughness (MR).
In this research, different analyses were developed to understand EMRF behavior in one-
dimensional (1D) stationary models (SMs). Thus, the generalized likelihood uncertainty
estimation (GLUE) methodology was implemented in a 1D SM with different likelihood
functions and a threshold equal to the water depth measurement uncertainty. Three moun-
tain river reaches were simulated with different morphologies (distinct flow patterns and
dissipative processes). These studied reaches have detailed geometries, bed material com-
position, flow, MR, and field measurement uncertainty data available. The goal of this
research was to analyze the influence of morphology and the likelihood function on the
EMRF ranges, EMRF limits, and differences between the EMRF and MR.

Different results were obtained from different tests, where the influence of the mor-
phology and flow magnitude on the EMRF vary. The tendency for the EMRF range to
decrease as flow increases is attributed to the occurrence of different flow dissipative pro-
cesses in mountain rivers. The influence of these processes decreases as flow increases.
Moreover, the cascade and step pool morphologies were sensitive to likelihood residual
weighting, affecting the EMRF range and EMRF limits. A common characteristic of these
morphologies is the flow characteristics and resistance phenomena affecting the shapes
of the likelihood curves. For example, the likelihood curves of the step pool start at an
optimum, and as the roughness parameter increases, model performance decreases. The
cascade likelihood curves differ at a certain roughness value. Moreover, the comparison of
the EMRF and MR revealed that in the cascade and step pool, there was an intersection of
these parameters. However, in the plane bed, there was an intersection of these parameters
only at low flows. This difference may be due to the presence of vegetation on the banks.
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