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ABSTRACT. Wireless sensor networks (WSNs) are widely used in low-energy consump-
tion and dispersed monitoring applications. In this context, a common issue in WSNs
corresponds to connectivity in low-density networks. An unmanned aerial vehicle (UAV)-
based data collection is a promising solution for data transfer to tackle this challenge.
This work proposes and evaluates a delay-tolerant network (DTN) for data transmission,
where the transport mule is based on a UAV. The transmission throughput between the
sensor node and the collector node (UAV) is evaluated in an environment with three dif-
ferent distances between the sensor node and the UAV: 0 m (land), 3 m, and 6 m. The
results show that the transmission takes less time when the UAV is on land, while the
transmission time increases with greater distance.
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1. Imtroduction. Data transfer between information management nodes in large geo-
graphic areas using WSNs is a challenging task, mainly due to the low scalability and the
limited coverage area of traditional WSN [1]. On the other hand, the deployment of a
wired transmission infrastructure represents a significant investment and is limited by the
type of area and its accessibility conditions. Additionally, this infrastructure can imply a
waste of resources according to the data flow generated by the nodes. WSNs are capable
of overcoming issues associated with scalability and coverage. In this scenario, a WSN is
a good option for obtaining, processing and transmitting information.

Data collection in WSNs is typically performed using one of the following three methods:

e Static collection: In this method, the sink node is fixed, and ordinary nodes upload
data through one-hop or multi-hop routing;

e Ground-based collection: This method involves using a vehicle, typically equipped
with a sink node, to collect data by visiting the network nodes;

e Aerial mobile collection: This method uses aerial vehicles to collect data from de-
ployed nodes on the ground.

The processing and transmission of information in WSNs can become increasingly prob-
lematic in scenarios with low-density networks spread over a large area; in such scenarios,
the static collection method may not be feasible, whereas ground-based mobile sink or mo-
bile aerial methods could be deployed. However, the ground-based mobile sink method
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is limited by ground transport. On the other hand, the aerial mobile method enables
deployment in various environments with lower latency and higher bandwidth [2].

UAVs provide an information transport option for low-density networks spread over
a large area. The incorporation of UAVs in various tasks and systems is due to their
great capacity for customizing and adapting components to perform multiple functions
[3]. An example of a UAV operating as a relay is found in [4], whose promising simulation
results encourage the use of UAVs in low-density networks. According to [5], the data
transmission in an aerial mobile method can be performed using store-and-forward, real-
time, and hybrid data collection transfer models. In all cases, a UAV moves to positions
within the range of a sensor node to collect data. The real-time data transfer model
requires a way to send a message announcing a triggering event; this model is used in
emergencies. The hybrid model combines the store-and-forward and the real-time data
transfer models and is used depending on the situation and the type of data to be delivered.

The existing Internet protocols do not work well in certain environments. A DTN
allows intermittent connection between nodes, and the data transfer is done using the
store-and-forward model [6]. A DTN can carry data in environments where interruptions
and high error rates are common [7], due to extreme conditions or node mobility. WSNs
using DTN for covering vast geographic areas are emerging as a viable solution [8]. The
movement of DTN nodes or mules (aerial mobile nodes) allows data to be transported
between points in the network. Generally, the mules are adapted to existing services that
partially communicate the area of interest.

We conducted this study for future implementation in precision agriculture and inspec-
tion of photovoltaic systems. Precision agriculture is based on the observation, measure-
ment, and response to inter- and intra-parcel variability [9]. The purpose is to optimize
the yield of agricultural supplies based on information collected by various means [10].
The University of Cuenca, Ecuador has a farm where we have some projects about trans-
mitting variables used in agriculture. These variables are transmitted using LoRaWAN;
however, there are some places where there is no coverage. We have two approaches. The
first is to modify the LoRaWAN protocol to allow forwarder nodes and tree topology. The
second approach is to use a UAV to transmit the data. On the other hand, the University
has a microgrid laboratory. One of the projects aims to automate the inspection pro-
cess in photovoltaic systems; several papers focus on this subject; one of them is [11]; it
presents a system to address and detect the faults in a photovoltaic system by providing
an inspection system in real-time using a UAV.

According to [2], the entire aerial data collection process can be divided into five steps:
(i) the deployment of networks, (ii) node positioning, (iii) anchor point searching, (iv)
fast path planning, and (v) data collection. This paper contributes to the last step. We
analyze three network performance metrics in a UAV-based data collection system: de-
livery time, throughput, and delivery probability. We design and implement a system to
analyze network performance metrics. These metrics evaluate the impact of the separa-
tion distance between nodes and the vehicle’s flight on packet transmission and delivery
in the DTN network. The first separation distance is 0 m, which means the UAV is on the
ground. A heliport with a diameter of 1 m was built due to irregularities where the tests
were performed. Consequently, an autonomous precision landing system is also required.
The proposed autonomous landing system uses a camera, an ArUco marker, and an im-
age processing system based on the OpenCV library. The distance measured between
the center of the vehicle camera and the landing platform was defined to evaluate the
performance of the landing system.
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The main contributions of this paper are as follows.

e The evaluation of the proposed platform for aerial data collection with an au-
tonomous landing system using OpenCV and ArUco marker. The source code and
docker scripts are available at https://github.com/fabianastudillo/uav-dtn.

e Performance analysis based on node distance of a DTN network implemented in
UAV-based data collection.

The remainder of the document is organized as follows. Section 2 discusses related works
found in the literature. Section 3 illustrates the system deployment. Section 4 discusses
the results. Finally, in Section 5, we conclude this paper.

2. Related Works.

2.1. Autonomous landing. The current literature reports several solutions related to
UAYV landing. In [12], a WiFi connection is established between the UAV and a computer
responsible for edge detection in images captured by an onboard camera. A robot operat-
ing system (ROS) toolkit is used to recognize augmented reality markers (AR, Augmented
Reality) to determine the position error in two axes and control the descent of the UAV
using a proportional integral derivative (PID) control. In [13], the authors report the use
of a Raspberry Pi 3; the ROS and OpenCV libraries are combined to perform edge detec-
tion (using the Canny Edge algorithm) and calculate the invariant moments of Hu. The
latter detects the landing pad (marker) and exchanges flight parameters with the Pizhawk
controller.

Similarly, the authors of [14] used a front camera to obtain two estimates of the UAV’s
position. The visual estimation detects the position of an AR marker using the ArUco
library based on OpenCV. The sensor estimation uses a Kalman filter to improve the
measurements obtained by the UAV’s speed, acceleration, and angle sensors. The landing
process is carried out using feedback from the marker-vertical camera assembly. Precision
landing of UAVs can be used to accomplish tasks such as automatic battery replacement
[15].

The characteristics of the landing platform are used to control the vehicle’s approach
to the ground. In [16], a semi-autonomous search algorithm is implemented to detect
key points and compute descriptors to define landing marks. The algorithms used by
the authors search for descriptor matches in the frames captured by an onboard camera,
and speed signals are generated for the flight PID controller. In [17], an infrared camera
(IR) detects a specially designed landing platform marked with IR diodes. The reading
from the onboard camera is processed to establish speed signals for the flight controller.
Similarly, in [18], authors use a camera for object detection based on HSV color threshold
and a PID controller. However, a complementary filter has been introduced to determine
the landing platform’s altitude and position and mitigate the channel’s effects.

The paper by Xu et al. [19] primarily focuses on detailing the methods employed for
the autonomous landing of UAVs on moving targets. It utilizes both GPS and vision-
based navigation throughout various stages of the landing process within a simulation
environment. The main step involves estimating uncertain markers using techniques such
as convex hull transformation, interference preclusion, ellipse fitting, and specific feature
matching. Additionally, the paper introduces a comprehensive visual measurement pro-
gram and guidance strategy specifically designed for UAV autonomous landing. Extensive
experiments have been conducted, demonstrating the significance and feasibility of this
vision-based approach for autonomous landing on moving targets.

In another review paper by Liu et al. [20], the research on UAV autonomous landing uti-
lizing visual processing is thoroughly described. The paper covers various aspects, such as
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image processing, target tracking, position estimation, and autonomous control technolo-
gies employed during the landing process. Existing limitations are identified, and research
ideas are proposed to address these limitations, considering practical considerations.

Similarly, in a different review paper by Xin et al. [21], the authors provide a com-
prehensive summary of research findings in the field of vision-based autonomous land-
ing for UAVs. The research is categorized into static, dynamic, and complex scenarios
based on the specific landing destinations. Within the static scenario, cooperative targets
and natural landmarks are the main categories, while the dynamic scenario encompass-
es vehicle-based and ship-based autonomous landing. The paper summarizes, compares,
and analyzes key technologies while identifying future development trends. It serves as a
valuable reference for further research in the domain of vision-based autonomous landing
for UAVs.

2.2. UAV-based data collection system. UAVs typically perform flight planning us-
ing ground control stations (GCS) while maintaining intermittent or uninterrupted com-
munications. This architecture is beneficial for enabling the deployment of a DTN. For
instance, in [22], a UAV is integrated into a DTN scheme for relaying information from
sensor nodes. In [23], UAV and DTN are utilized for node searching in disaster scenarios.
Furthermore, [24] explores the application of UAVs in search and rescue operations during
hiking incidents.

WSNs present a suitable scenario for developing and implementing efficient data col-
lection algorithms, which involves optimizing some process or resource in a system or
function. The ultimate goal is to use UAVs for data collection in networks covering wide
geographic areas by determining an efficient path regarding energy consumption and the
number of nodes reached. In [25], a method based on heuristic algorithms is presented to
solve the problem of aerial data collection. A testing scenario is proposed, where a network
of UAVs is used, which have two types of communication: air-to-air and air-to-ground,
targeting mobiles and a base station. The mobility of the targets has been used to min-
imize the hop route calculated to the base station using the Dijkstra algorithm. Thus,
air-to-air communication is guaranteed by keeping the distance between pairs of UAVs
within an established communication range. Likewise, air-to-ground communication is
guaranteed by minimizing the altitude of the vehicle.

Wang et al. proposed a framework in [26], which includes network deployment, node
positioning, anchor point search, fast route planning, and data collection. The network
consists of two types of nodes: beacon and unknown. The guide node (beacon) is equipped
with a GPS module, while the location of the unknown nodes is determined using the
signal strength criterion for single-hop transmission. The fastest route is calculated using
planning based on grid division, where a primary route is defined and the distance that
passes through all guide nodes is minimized. Data collection is carried out through the
leader nodes, considering one-hop routing.

In [27], WSN operation and an unmanned aerial system are used to improve data
collection performance. The sensor network is organized based on the principle of groups,
where node clusters are defined, and each cluster assigns a cluster head (CH) to transmit
information to the UAV. The remaining nodes in the cluster are named cluster members.
It operates on the premise that each node can adjust its transmission power, increasing or
reducing its communication range. The network operation efficiency is achieved through
the network partition and rotation process. Network partitioning allows the network to
organize itself autonomously. The CH node is selected by using a weighting scheme based
on the battery percentage and a ratio between the transmitted signal power and the
received signal power between pairs of nodes within the cluster. The candidate CH node
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with the highest weight is selected as the central node of the cluster. UAV flight planning
through the network is defined as the traveling salesman problem, where the obtained path
reduces the distance on a defined path with a starting and ending cluster. The stream is
updated when a CH node triggers a CH rotation. This occurs when the CH node’s battery
is below a set threshold. The selection evaluates the distance the vehicle’s current path
traverses in the coverage area of the candidate node. A greater distance implies minor
changes in the flight plan.

In [28], the authors discuss the challenge of effectively providing data-driven services
supported by the Internet of Things (IoT) due to the lack of network infrastructure in
large areas. It proposes a solution using UAVs as mobile networks to collect data from
IoT devices. The UAVs follow a planned flight path based on the Hilbert Curve algo-
rithm. The approach is validated through experiments, showing advantages over baseline
methods. The research highlights the potential for cost-effective IoT applications in smart
agriculture and public safety.

In [29], the authors discuss a proposed mechanism for autonomous data gathering in
wireless sensor networks (WSNs) using unmanned aerial vehicles (UAVs). The objective
is to train a UAV to collect data from ground sensor nodes distributed in a specific
area. The approach combines deep deterministic gradient descent (DDPG) and Q-learning
algorithms to optimize the UAV’s trajectory and node visit order. Customized reward
functions and simulations are used to evaluate the training performance. The proposed
approach demonstrates effective data collection, and a comparison with a deterministic
optimal solution validates its performance.

3. System Design. The monitoring system is a hybrid UAV-WSN multilevel system (see
Figure 1). The ground level consists of WSN subsystems. Level 2 comprises sensor nodes,
which collect data using specific sensor boards of Level 3. The UAV supports the ground
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nodes

RaspiNode 1 RaspiNode 2 RaspiNode 3
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Boards

FIGURE 1. UAV-assisted WSN data collection
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data collection from Level 1 and relays it to the ground center gateway (Level 0). In the
implementation test, Level 3 is simulated using random variables. This representation is
based on Dragana et al. [30].

The UAV described in Section 3.1 (UAV configuration) has been used to implement
the platform, which requires an autonomous landing system (Section 3.2); it is needed
to analyze different network metrics when the UAV lands at each waypoint. Section 3.3
presents the implementation of different algorithms to perform the flight process, while
Section 3.4 shows the simplified network topology.

3.1. UAV configuration. The UAV used in this study is a buildable drone with a
controller compatible with Ardupilot and PX4. The vehicle is a quadcopter in an X
configuration. The flight controller used is PixRaptor, which is a generic version of the
open hardware controller Pixhawk 1. A Raspberry Pi 3B is used to control the drone.
Table 1 presents the main components of the assembled drone.

TABLE 1. Drone component specifications

Elements Product
Frame Carbon HJ-H4 reptile
Flight controller PixRaptor
GPS+Compass Ublox M8N
Gimbal Tarot T-2D
Drone camera Turnigy HD Wifi
Raspberry Pi 3 Model B, 1 GB RAM
Raspberry Pi Camera | Module version 2

After the UAV has been prepared for flight, the dronekit platform was used to develop
the application for the drone, which includes two processes: the flight process (Section 3.3)
and the autonomous landing process (Section 3.2). The autonomous landing is achieved
using the OpenCV Library.

3.2. Autonomous landing process. The single board computer (SBC) is used to ac-
quire, process, and analyze digital images to extract information and produce objective
data, which provides positioning feedback when the UAV descends.

The first capture device considered was the version 2 camera module of the Raspberry
Pi board, as it is optimized for exclusive use with this type of board. The second option
was the camera Turnigy HD Wifi Action camera due to its compatibility with the drone’s
gimbal. The Raspberry Pi camera module has a fixed lens that does not generate distor-
tion in the captures, while the camera Turnigy HD camera has a wide-angle lens that can
distort the captures.

Radial distortion causes straight lines to appear curved as they move away from the
central focus of the image, while tangential distortion causes certain areas of the image
to appear closer than others due to misalignment of the image captured with the capture
plane.

The pinhole camera model, which uses intrinsic and extrinsic parameters to map a 3D
scene onto a 2D image [31, 32], is represented by Equation (1).

m' = A[R|t'] M’ (1)
where A represents the matrix of intrinsic parameters, R}f represents the matrix of ex-
trinsic parameters or rotation-translation matrix, and M represents a point in the scene.
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The intrinsic parameter matrix in Equation (2) does not depend on the scene and can
be evaluated once and can be reused for different scenes. The parameters that make up
this matrix are

o (fu, fy): focal lengths expressed in pixels
e (c;,cy): center point of image

e 0 e
A=10 f, ¢ (2)
0 0 1

The extrinsic parameter matrix describes camera movement in a static scene or the
movement of an object in front of a fixed camera. As a result, it acts as a dictionary that
translates the coordinates of a point M in a scene (X, Y, Z) to a point m in the camera’s
coordinate system (z,y).

OpenCV provides functions that determine the intrinsic parameter matrix and the
vector of radial and tangential distortion coefficients for any camera compatible with the
library. This process requires several test images to extract the camera’s characteristics,
which are captured from different locations and orientations with the static camera. At
least ten images are required to obtain a reliable intrinsic coefficient matrix [33].

The images used in this calibration process require a reference element that facili-
tates the extraction of characteristics. Checkerboard patterns are commonly used for
this purpose. Placing the calibration board in different arrangements makes it possible to
determine the points with greater distortion associated with a specific objective. Figure
2 shows some reference positions for capturing calibration images. These poses describe
the location of the marker within the captured frame (position) relative to the capture
device (depth) and relative to the capture plane (tilt).

Position Depth Inclination

4 —
&

Position Depth

Eﬁ ; Camera

FIGURE 2. Reference postures for the capture of calibration images

Figure 3 shows some captures of the calibration board, with modifications in its position,
depth, and inclination. The vertices of the checkerboard are obtained and repositioned to
approximate the shape of the reference pattern and calibrate the distorted image. This
allows for an estimate of the distortion present in a specific area to be obtained. OpenCV
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F1GURE 3. Calibration board

uses a model based on the work reported in [32] to obtain the intrinsic matrix and the
distortion vector.

The landing pad chosen for this work is an ArUco marker. OpenCV uses functions
developed by the Garrido y Jurado library [34] to detect these markers. Figure 4 shows
a 6 x 6 ArUco marker with the identifier (ID) 5.

FIGURE 4. ArUco marker 6 x 6, N =5

3.3. Flight process. The natural consequence of modifying the UAV’s speed is its spa-
tial movement. The orientation of a UAV relative to its center of mass is defined using
three angles: pitch, roll, and yaw. Figure 5 illustrates the location of these angles on a
quadcopter in X configuration, with the front of the vehicle being the nose.

yaw C

FIGURE 5. Pitch, roll and yaw angles in a quadcopter

Two coordinate systems can be used to describe the position and movement of the UAV
in space.
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e XYZ: The body coordinate system of the quadcopter is defined with respect to the
vehicle. The X axis is aligned with the longitudinal axis of the drone and points
towards its nose, the Y axis is aligned with the lateral axis of the drone and points
towards its right side, and the Z axis is aligned with the vertical axis of the drone
and points downwards. This coordinate system moves and rotates together with the
vehicle.

e North-East-Down (NED ): The ground coordinate system is defined with respect
to a fixed reference point on the ground [35]. This coordinate system is used as a
reference frame to describe the position and movement of the UAV with respect to
the ground.

Figure 6 illustrates the two coordinate systems.

FIGURE 6. Coordinate system XYZ and NED

In this work, the flight process consists of a series of algorithms that are designed to
perform specific procedures, including the deployment of a flight plan that can traverse
the entire sensor network, visit each node, and return to the take-off place. The flight
plan includes landing at each node to collect data, and the algorithms ensure the safety
of the UAV during the flight.

First, a data collection algorithm is defined to establish the vehicle’s flight plan through
the network. The nodes within the network can be identified using a network identifier
or by recognizing the associated ArUco marker. However, these markers must be defined
and programmed into the flight controller firmware in advance.

The vehicle uses the information provided by the compass and the GPS module to
navigate towards the set waypoints. A waypoint is defined bygeographic coordinates,
which specify the latitude and longitude values of the location. Therefore, to define the
UAV flight plan, it is necessary to have the reference information of the waypoints to be
reached.

Algorithm 1 describes the sequence of processes that the flight controller or autopilot
must follow to reach the location of the nodes, collect data, and return to the starting
point. Initially, the algorithm obtains the vehicle’s current location (Algorithm 1, line 1),
which is taken as the launch point, or HOME location. Next, for a specific node with-
in the list of waypoints or node locations (ListWayPoints), the vehicle must complete
the Armed and Takeoff process (Algorithm 1, line 3). Upon reaching a defined altitude
(FlightHeight), the autopilot uses the geographical coordinates of a waypoint to start its
route using the function DriveVehicle (Algorithm 1, line 4). The vehicle must not carry
out another process until it reaches the location of interest. Due to the GPS’s precision,
it is impossible to reference an exact point, and hence a margin of error is allowed (Way-
pointMarginError) when estimating the distance between the vehicle’s current location
point and the target waypoint (Algorithm 1, lines 5 to 9).

Once the vehicle reaches a waypoint, complementary algorithms are started to ensure
precision landing and data collection in a node (Algorithm 1, line 11). This process is
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Algorithm 1: Data collection
Data: FlightHeight, WaypointList, WaypointMarginError
HOME = CurrentLocation()
for Waypoint in WaypointList do
ArmedAndTakeoff(FlightHeight)
GuideTheVehicle(Waypoint)
while TRUE do
dist = GetDistance(CurrentLocation, Waypoint)
if dist <= WaypointMarginError then
| exit
end
end
Next algorithm ...
end
13 ArmedAndTakeoff(FlightHeight)
14 GuideTheVehicle(HOME)
15 Landing()
16 DisarmVehicle()

© 0N O W=

[
= o

=
[\V]

performed for each waypoint. When all waypoints are visited, the UAV starts the Arming
and Takeoff process, uses the waypoint HOME to return to the takeoff place (function
Land), and then performs the Disarm function (Algorithm 1, lines 13 to 16).

The precision error of the GPS module and the MarginErrorWP introduced in Al-
gorithm 1, combined with the height above the ground at which the vehicle is located,
do not guarantee that the marker on the platform landing gear platform is within the
camera’s field of view. The camera’s detection area depends on the field of view, which
is determined by the vehicle’s height. The detection area encompasses the entire surface
that can be captured by the camera.

The first complementary algorithm performs the marker localization process using a
search area defined by the detection areas. Figure 7 illustrates an example of a location
area. This process is governed by distance and velocity vectors that map the entire area
until the marker is detected.

Detection area
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FI1GURE 7. Location area
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A UAV establishes its course relative to North (0°) according to the point of interest,
pointing in the direction of the waypoint in question. However, the marker’s orientation
on the landing pad may not be the same as the vehicle’s heading when advancing to
the location. To correct the vehicle’s heading, features of the ArUco marker are used to
estimate a heading angle that aligns the vehicle with the marker.

The camera’s resolution determines the dimension (in pixels) of a captured frame.
OpenCV uses a two-axis reference system, XY, with its origin located in the upper left
corner of the data frame. Figure 8 shows a detected marker, its orientation relative to
the data frame (), and the orientation of the data frame relative to the NED reference
frame. When an ArUco marker is detected, its orientation is indicated by the upper left
or guide vertex.

N

Ps3(x3,y3)

Detection area

FiGURE 8. Marker orientation relative to data frame and NED frame

The marker’s orientation relative to the data frame (f) can be determined using the
angle of inclination of the line (P;, Py, «). The value of « can be obtained using Equation
(3). After obtaining «,  can be determined by adjusting the inclination angle based on
its sign and the position of the guide vertex relative to the other vertices.

« = arctan (u) (3)

Lo — 1

The position of the guide vertex can be determined by comparing the distances between
each vertex and the origin. Algorithm 2 presents the procedure followed to calculate (.
Initially, the algorithm finds the vertex closest to the origin (minposition) by determining
the index of the smallest distance in the list of vertex-origin distances, ListDistOr (Algo-
rithm 2, line 1). Then, evaluate the sign of a and the position of the vertex closest to the
origin to obtain by adding 90° or 270°, depending on the quadrant in which the vertex
is located (Algorithm 2, lines 2 to 14). The angle 6 is the yaw angle required to align the
vehicle and the marker, and its value is the sum of the vehicle’s current heading and f.

The descent of the vehicle is predominantly affected by wind speed. Velocity vectors
are computed to approach and descend the vehicle towards the marker. To calculate these
vectors, the central point (p) of the capture, a tolerance window or subarea with a width
of 2 x m pixels, and four approximation bands (f) are defined, as illustrated in Figure
9. The tolerance window ensures that a range of variation is maintained when position-
ing the marker’s center. The UAV descends to a minimum landing height, initiating an
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Algorithm 2: Calculation of 3

Data: o, VODistList
1 minposition = index(min(VODistList))
2 if a < 0 then

3 if minposition == 1 || minposition == J then
4 | =90+«
5 end
6 if minposition == 2 || minposition == 3 then
7 | =270+ «
8 end
9 else
10 if minposition == 1 || minposition == 2 then
11 | =270+ «
12 end
13 if minposition == 3 || minposition == J then
14 | 6=90+a
15 end
16 end
(0,0) x
A
Y : f
Lopromepy )
f ].? f hres
(pz, pYy)
...................... (px L m) -
7 ;
Y
- vres >

FIGURE 9. Tolerance window

autonomous landing process controlled entirely by the autopilot. The marker’s size deter-
mines the minimum landing height.

3.4. Network topology and protocol. Figure 10 depicts a simplified diagram of the
sensor network. This experiment focuses on the cluster head of a set of nodes and assumes
that the aggregation has been completed, as described in the work proposed by [36]. Path
planning is not within the scope of this work; a static scenario is used for the experiment,
and path planning is built statically. The network topology comprises three components:
RaspiUAV, Server, and RaspiNodes.

e Server: The DTN node is the endpoint or receiver of the data collected by the UAV.
The server location is defined as the HOMFE or take-off point of the UAV.
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192.168.0.1
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192.168.0.11

192.168.0.2

192.168.0:19 Node ID: 3 Neddo D 4
Node ID: 1 pde 3 .

Server spiNode RaspiNode 2

FIGURE 10. System schematic

e Static node: It is an SBC board, Raspberry Pi, used as a cluster head for the WSN
network. This element establishes communication with the mobile node through a
wireless link to transmit data. Additionally, an ArUco marker is associated with each
static node, which is used by the artificial vision and flight algorithms to achieve a
landing.

e Mobile node: The server is a crucial element in the system and acts as a relay for
the other nodes in the network. It executes artificial vision algorithms to search and
detect the marker and facilitate the landing of the UAV. A Raspberry Pi 3B board
is attached to the frame of the RaspiUAV to enable wireless communication with
other nodes. The network access point is configured as 192.168.0.0/24.

A DTN network transmits the data from the static nodes (cluster heads) to the server.
The UAV departs from the server and visits each network node to collect and store the
data onboard. Once the UAV has visited all the nodes, it returns to the starting point
and forwards the collected data to the server. Figure 11 illustrates the scenario where the
experiment was conducted.

FIGURE 11. Scenario
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The DTN is deployed using the project interplanetary overlay network (ION) DTN
project. ION-DTN (https://sourceforge.net/projects/ion-dtn/) is an open-source imple-
mentation of the DTN architecture described in Internet RFC 4838. Data transmission
between a static node and the UAV begins when the vehicle executes all flight algorithms
for the specific node. The ION-DTN configuration requires defining of contacts with the
mobile node.

The DTN nodes are deployed using Docker on Ubuntu and Raspbian Buster operating
systems. In the experiment, a computer with an Intel Core i7 processor and 8 GB RAM
is used as the server, and a Raspberry Pi 3B+ with 2 GB RAM is used as the mobile
node. Contacts are established based on the transfer route, and the IP protocol is used
as the transport protocol under port 4556. A static routing group is defined for the static
nodes to transfer the data through mobile node or mule.

4. Results.

4.1. Marker detection. Although the Raspberry Pi camera module has not distortion,
the Turnigy camera has a wider field of view, capturing a larger detection area than
the Raspberry Pi camera at the same distance. To reduce the distortion of the Turnigy
camera’s capture, several tests were performed using the method described in the previous
section. Figure 12 illustrates the capture before and after the distortion correction process
for the Turnigy camera. It is worth noting that the distortion correction process reduces
the image’s vertical resolution and introduces a percentage of error at the edges of the
image.

FIGURE 12. Distorted image when captured (left); image after removing
distortion (right)

Several tests were conducted in different scenarios to analyze the performance of the
capture devices mentioned in Section 3.2.

One test involved placing the capture device at different heights relative to markers of
different sizes to determine the maximum detection height per marker size. The results
show that the Raspberry Pi module can detect a marker at a higher altitude than the
Turnigy camera, as shown in Figure 13.

Another test involved determining the minimum distance required for successful detec-
tion based on marker size. This distance determines the minimum landing height. Due
to its wide-angle lens, the Turnigy camera allows successful marker detection at a shorter
distance than the camera module. This distance influences the precision of the landing
since the vehicle’s movements at low altitudes allow for a better approach to the marker.
Figure 14 illustrates the minimum distance required for successful detection by marker
size.

Furthermore, tests were conducted to analyze the influence of lighting on detection.
Both natural and artificial lighting scenarios were tested, and the results showed that
natural light affects the detection in the Raspberry Pi module, resulting in intermittent
detection in consecutive frames, as shown in Figure 15. This behavior occurs for all marker
sizes and is not observed when the Turnigy camera is used.
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FIGURE 15. Intermittence in the detection of the marker in consecutive
frames caused by the influence of direct natural light on the marker

The Turnigy camera was selected thanks to the results obtained in the marker detection.
Figure 16 shows the detection of a 20 cm marker using this device.
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FIGURE 16. Marker detection ArUco using the Turnigy camera in an en-
vironment with direct artificial lighting

4.2. Flight algorithms. Tests were conducted using Algorithm 1 with five and seven
route points (waypoints) defined. The vehicle initiates the landing process when the dis-
tance between the UAV’s current location and reference points is within the allowable
margin of error. The margin of error was set to 45 cm. If the distance is less than 45
cm, the vehicle remains in flight and cannot perform any other processes. The tests were
performed with a backup pilot who controlled the vehicle using radio control, and the
pilot could switch off the control provided by the SBC board at any time if an error or
problem occurred during the test.

The experiments to evaluate the orientation algorithm focused on taking off the vehicle
from the marker, correcting the course, and landing. Table 2 presents ten target yaw
values (marker orientations) and the corresponding yaw correction angle yaw calculated
using Algorithm 2 for each case. The average error between the target bearing angle and
the calculated yaw is 4.3°. The yaw correction on the vehicle is correctly achieved by
setting an 8° tolerance margin.

TABLE 2. Heading correction error

Marker orientation [°] | Calculated yaw [°] | Error [°]
50 57 7
24 29 b}
345 349 4
130 134 4
176 178 2
212 217 )
232 239 7
278 282 4
20 22 2
355 358 3

A single waypoint flight plan was deployed to measure the influence of the position error
on the UAV’s landing. The waypoint referred to a marker placed on the ground, and the
vehicle took off from a nearby location, headed to the reference location, and landed.
Multiple tests were carried out, measuring the distance between the precise location of
the reference point and the center of the camera of the vehicle landing site. The results of
twelve tests are presented in Figure 17. As shown in the figure, one of these landings was
less than 1 m from the benchmark, while most were less than 2 m. The mean distance
from the benchmark was 143.2 cm, with a standard error of 0.1 m and a mean square
error of 0.34 m.
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F1GURE 17. Landing the vehicle with LAND mode

The same process was carried out using complementary flight algorithms. The error
distance is defined as the distance between the camera’s center and the marker. Figure
18 shows the results of twelve landings, out of which nine landings had an error distance
of less than 50 cm. Figure 19 shows the landing with the shortest error distance obtained
during the development of the tests, which was 3 cm. The average error distance for all the
tests was 22.86 cm, with a standard error of 6.3 cm and a mean square error of 21 cm. The
landing height that produced the best results was 50 cm. A lower height caused erratic
flight, which was caused, in this case, by an error in the flight controller’s barometer.
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F1GURE 18. Landing using precision landing system
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FIGURE 19. Precision landing

4.3. Data collection. The performance tests of ION-DTN were carried out using three
DTN nodes, as shown in Figure 11. The separation between mobile and static nodes was
not greater than 6 meters in the two scenarios considered:

e Scenario 1: Transmitting information from node 2 to the server (node HOME)
through the UAV (node 1) was tested.
e Scenario 2: Transmission of information from node 2 to node 1.

In the experiments, the network data traffic was captured to calculate the maximum
delivery time, maximum throughput, and delivery probability to analyze the performance
of ION-DTN.

The delivery time was analyzed by sending files of varying sizes in Scenario 1, where
the nodes were spaced three meters apart. The tests were conducted within the commu-
nication range of the nodes and without disconnection from any of them. Table 3 presents
the delivery time interval, file size, and number of packets sent. The delivery time interval
refers to the time taken for end-to-end data transmission.

TABLE 3. Delivery time in function of file size

File size [MB] | Delivery time [s] | Number of packets
0.1 2.84 260
0.3 6.37 546
0.5 8.33 595
1.5 24.64 1529
3 40.57 2861
4 59.36 2927

The results demonstrate that the delivery time increases as the file size increases. Figure
20 shows the average delay in packet delivery by file size.

The throughput analysis was conducted in the second scenario with no node discon-
nection time. Three separation distances between nodes were considered. Figures 21 and
22 show the achieved throughput in data transmission for different separation distances
between nodes. When the separation distance is zero, i.e., the vehicle has completed the
landing process, the data transmission takes place in less than one second, as shown in
Figure 21. On the other hand, when the vehicle is in flight with a separation distance of
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3 and 6 meters, the transmission of information takes up to 4 seconds due to the retrans-
missions that occur, as shown in Figure 22. Furthermore, it is observed that the maximum
achievable throughput decreases as the separation between nodes increases.

The delivery probability was analyzed in Scenario 1, with modification made to the
disconnection time of the Node 1 (server). The disconnection time refers to when the
server is not connected to the mobile node because the mobile node is collecting data
from a node outside the wireless communication range of the server. Table 4 shows the
disconnection times of 1 minute, 3 minutes, and 10 minutes, the delivery time interval,
and the number of packets sent for each of the three transmissions per disconnection time.

Different file sizes were sent in each test, and the results showed that the delivery time
increased as the file size increased. However, the delivery time interval was less than the
time obtained in the average delay experiments. The transmission was made directly from
the mobile node, which stored the packets sent from the static node. Additionally, all
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TABLE 4. Delivery time interval with disconnection

Disconnection time [min| | Test | Time interval [s] | Number of packets
1 0.34 260
1 2 1.26 295
3 3.63 1529
1 0.85 260
3 2 1.57 546
3 8.95 2861
1 1.16 546
10 2 1.65 295
3 4.47 1529

the files sent arrived at the server without any error, setting the delivery probability to 1,
thus verifying that the DTN store and forward process worked correctly in the proposed
scenario.

The source code for this project is available on https://github.com /fabianastudillo/uav-
dtn.

5. Conclusions. In conclusion, the development of applications for systems utilizing
unmanned aerial vehicles (UAVs) is accompanied by challenges related to hardware vari-
ability, particularly regarding sensor and actuator compatibility with firmware loaded in
the controller. This study addressed these challenges by designing a landing algorithm
that employs a camera to capture marker images, extract environmental information, and
utilize features for precise vehicle control during the landing process. The success of mark-
er detection, a crucial aspect of the landing control system, is influenced by factors such as
illumination and detection height, which depend on the capture device’s characteristics.

Artificial vision algorithms offer numerous advantages for UAV developing processes,
despite the additional power consumption associated with their use. However, integrating
artificial vision algorithms into the landing process can potentially enhance precision
and reduce energy consumption during information transmission, making it a promising
solution.
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To mitigate the impact of wind speed and HDOP (horizontal dilution of precision)
on flight algorithm performance, it is essential to conduct meticulous sensor calibration
and optimize autopilot parameters. Through careful analysis and fine-tuning of algorithm
parameters during isolated tests, significant improvements have been achieved in marker
detection, orientation correction, and the determination of minimum landing height. The
flight algorithms have demonstrated favorable results with minimal errors, with the orien-
tation correction algorithm exhibiting an average error of 4.3° and the landing algorithm
maintaining an average distance of 22.86 cm between the camera center and the marker.

Regarding the DTN, the performance analysis of ION-DTN has showcased the fea-
sibility of the data collection process using store and forward mechanism, regardless of
the disconnection time from the server. Landing has emerged as the optimal strategy for
reducing UAV battery consumption and achieving shorter transmission times at higher
data rates.

Despite active development and support from professionals and companies, drones still
face limitations, primarily in battery power consumption. The duration and capacity of
the battery can vary significantly, with increased size, peripherals, and capacity leading
to higher power requirements for vehicle control and lift. Hence, carefully considering the
drone’s total weight and battery capacity is crucial during its design and configuration.

Future research directions in this field could focus on the following aspects.

1) Improvement of flight algorithm performance under adverse conditions: In-
vestigating advanced calibration methods and adaptive autopilot algorithms to enhance
the resilience of UAV systems against environmental factors like wind speed and HDOP
would lead to more reliable and accurate flight operations.

2) Exploration of alternative networking protocols: While DTN networks have
demonstrated potential for UAV data transmission, exploring alternative networking
protocols that can offer efficient and reliable communication in challenging environ-
ments, such as mesh networks or hybrid communication systems, could further opti-
mize data collection and transmission processes.

By addressing these research directions, the development and utilization of UAV sys-
tems can continue to progress, enabling a wide range of applications in various fields, in-
cluding aerial photography, surveillance, infrastructure inspection, delivery services, and
disaster response.
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