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Highlights:

Urban PV solutions utilize city rooftops to address energy challenges.
The Roof-Solar-Max method optimizes photovoltaic panel placement in urban areas.
Significant energy potential aligns with substantial power needs in cities.
Policy insights and grid surplus solutions provide valuable guidance for policymakers.
The research promotes cleaner and more sustainable global energy solutions.
What are the main findings?

• The Roof-Solar-Max method successfully optimizes the placement of photovoltaic (PV) panels
on urban rooftops, significantly increasing energy generation potential.

• The methodology demonstrated that PV energy generation in the urban district studied can
exceed the local electricity demand by more than six times, highlighting the feasibility of surplus
energy contribution to the grid.

What is the implication of the main finding?

• This approach offers a practical and scalable solution for urban planners to maximize the use of
rooftop spaces, facilitating the widespread adoption of renewable energy in cities.

• By utilizing surplus energy through grid integration, the method can contribute to national
energy systems, reduce reliance on non-renewable sources, and promote sustainability.

Abstract: As the world increasingly embraces renewable energy as a sustainable power source,
accurately assessing of solar energy potential becomes paramount. Photovoltaic (PV) systems,
especially those integrated into urban rooftops, offer a promising solution to address the challenges
posed by aging energy grids and rising fossil fuel prices. However, optimizing the placement of
PV panels on rooftops remains a complex task due to factors like building shape, location, and the
surrounding environment. This study introduces the Roof-Solar-Max methodology, which aims to
maximize the placement of PV panels on urban rooftops while avoiding shading and panel overlap.
Leveraging geographic information systems technology and 3D models, this methodology provides
precise estimates of PV generation potential. Key contributions of this research include a roof
categorization model, identification of PV-ready rooftops, optimal spatial distribution of PV panels,
and innovative evaluation technology. Practical implementation in a real urban setting demonstrates
the methodology’s utility for decision making in the planning and development of solar energy
systems in urban areas. The main findings highlight substantial potential for PV energy generation in
the studied urban area, with capacities reaching up to 444.44 kW. Furthermore, implementing PV
systems on residential rooftops has proven to be an effective strategy for reducing CO2 emissions
and addressing climate change, contributing to a cleaner and more sustainable energy mix in urban
environments.
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1. Introduction

Solar energy is increasingly recognized worldwide as a sustainable energy source.
As aging energy grids and rising fossil fuel prices pose challenges, photovoltaic (PV)
generation systems are emerging as a promising solution to address both fossil fuel scarcity
and global climate change [1]. The increasing adoption of renewable energy systems has
driven numerous studies aimed at optimizing PV system designs across various contexts,
from high-rise residential buildings to complex urban structures. For instance, research on
sustainable energy designs in high-rise buildings in China [2] and advanced simulations
for urban PV under partial shading in Europe [3] underscore the adaptability needed for
different environmental conditions. Additionally, performance assessments in hot climates,
such as in Egypt [4], and the potential for PV systems in predominantly hydropower-
driven energy contexts, like Norway [5], expand our understanding of PV integration
across diverse climatic and socioeconomic scenarios. Recent studies in Spain and Algeria
have further explored optimized energy management and the economic feasibility of grid-
connected PV systems in residential and medium-consumption settings, highlighting both
the benefits of energy independence and the need to lower costs [6,7].

As PV systems gain traction in residential and commercial settings, it becomes imper-
ative to accurately assess the solar energy potential available for electricity generation [8].
Building roof structures constitute a significant portion of the global solar energy poten-
tial [9]. Integrating solar panels on rooftops is considered an effective means of harnessing
PV energy [10–12]. Nevertheless, determining the optimal size and layout of these sys-
tems on rooftops presents a challenge due to factors like building shape, location, and the
surrounding environment [13,14]. Current methodologies often overlook these factors,
resulting in imprecise estimations [15]. This study addresses this challenge by proposing
an innovative approach, introducing an algorithm known as Roof-Solar-Max. This algo-
rithm considers solar panel orientation, size, and rooftop shape. By leveraging advanced
Geographic Information Systems (GIS) technology and 3D models, precise and dependable
estimates of PV generation potential on rooftops can be obtained [16,17]. Advances in
the accurate evaluation and optimization of PV systems on urban rooftops have been
significantly enhanced by novel algorithms and reconfiguration techniques. For example,
the “northern goshawk” optimization algorithm has been introduced to adapt PV arrays
to variable conditions, minimizing power losses and improving system efficiency [18].
Similarly, recent simulation and optimization methods applied in different urban contexts
demonstrate the effectiveness of using multi-objective and multivariate techniques to opti-
mize distributed generation integration, thus reducing operational costs and improving
system reliability [19]. Moreover, techniques like path analysis and remote sensing have
been utilized to assess the impact of meteorological variables on vegetation indices, pro-
viding insights for urban planning to maximize green space cooling effects and improve
environmental conditions in cities [20,21]. Few studies have comprehensively considered
all these factors, leading to less accurate estimations [22].

This literature review underscores the increasing interest in utilizing rooftop surfaces
of buildings as an essential resource for estimating PV energy potential and comprehending
the state of PV system development. This understanding holds utmost importance in shap-
ing sustainable planning strategies within a global context marked by aging energy grids
and escalating fossil fuel costs. Remote sensing (RS), referred to as teledetection, emerges
as a versatile technology capturing surface data across diverse temporal and spatial scales,
extending its applicability to various facets of PV system development. In reference [1],
the authors present an extensive literature review, spotlighting the advancements of RS
technology across various stages of PV system development, which encompass PV poten-
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tial estimation, PV array detection, monitoring, fault diagnosis, and other interdisciplinary
domains where RS has showcased its value.

Furthermore, as mentioned in [8], a proposition combines LiDAR (Light Detection
and Ranging) datasets with GIS to assess PV potential. This approach, pivotal for urban
planning and future energy policies, scrutinizes diverse mechanisms to encourage installing
PV systems on publicly accessible rooftops. In the context of [11], an innovative method for
evaluating large-scale rooftop solar energy potential leverages global solar irradiance data
from solar-GIS and building polygons. Moreover, incorporating LiDAR (light detection
and ranging) and advanced wide field sensor 3D (AW3D) measurement data within a GIS
framework refines the estimation process, accounting for rooftop slope and azimuth to
yield precise results.

In [9], the authors introduce an integer mixed-integer programming (MIP) model
tailored for sizing PV systems on flat rooftops. This model optimizes net present value
(NPV) and generates multi-azimuth layouts while accommodating practical considerations
such as shadow mitigation and rooftop accessibility. Examining the Chinese city of Shen-
zhen’s potential for PV energy in residential buildings concerning electrical consumption,
as addressed in [23], involves an analysis of urban morphology’s influence on solar irra-
diance received by individual buildings. Similarly, ref. [24] focuses on Nanning, China,
providing insights into optimal PV system installation options on various rooftop types
and estimating electricity generation potential alongside performance assessment.

In the realm of deep learning-based methods, ref. [25] introduces an approach for
constructing three-dimensional building models from high-resolution satellite images to
estimate PV potential. This methodology employs two convolutional neural networks
and enhancements to the DeepLabv3+ architecture. In [10], the authors present a method-
ology for assessing solar irradiance resources and PV integration potential in residential
buildings across different climatic zones in China. The findings underscore rooftops as the
primary choice for integrated PV system installation (BIPV). The research in [13] delves
into the design and feasibility evaluation of PV-integrated systems on rooftops and facades,
aiming to meet the energy demand of residential buildings within an academic campus. It
investigates various residential typologies categorized based on constructed area and the
occupants’ historical energy consumption. Within the context of integrating PV systems
into historical urban structures, as explored in [26], potential and limitations are exam-
ined, particularly in the context of smart cities and positive energy districts. The study
extends recommendations and principles for assessing visual impact and selecting suitable
solutions.

In line with [27], efforts concentrate on estimating solar energy potential from satellite
images through deep learning-based segmentation techniques. Various convolutional neu-
ral network architectures are evaluated to enhance accuracy, considering factors such as the
average PV panel inclination. On a different note, ref. [28] introduces a hierarchical geospa-
tial technique founded on open-source data to estimate potential PV energy production
across several cities in Nepal. Meanwhile, ref. [29] provides comprehensive maps illustrat-
ing Lebanon’s solar rooftop footprints and potential. This is accomplished by employing
deep learning-based instance segmentation and a PV panel placement algorithm. A highly
efficient procedure for assessing PV potential on rooftops, offering a spatial resolution of
1 m, is outlined in [29]. This method is applicable at a regional scale, demanding minimal
computational resources. Furthermore, ref. [15] proposes an optimal planning strategy for
distributed PV systems at the municipal level, focusing on high-density cities.

Lastly, ref. [30] introduces an economical approach for assessing PV potential on
rooftops, as demonstrated through a case study on Fernando de Noronha Island, Brazil.
Moreover, ref. [31] devises a method to estimate the spatial distribution of energy generation
potential on rural rooftops, drawing upon publicly accessible satellite images. Despite the
strides made in assessing rooftop PV potential, notable gaps persist, such as the lack of
consideration for diverse user-profiles and rooftop typologies across different buildings.
Current methodologies often oversimplify PV system design without factoring in precise
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rooftop geometries and their impact on system efficiency. Additionally, there exists a dearth
of accurate data regarding the location and capacity of PV energy systems on rooftops,
thereby limiting estimation precision. These gaps underscore the pressing need for more
precise research integrating rooftop morphology and user behavior into PV potential
assessments [32].

Despite advances in assessing the potential for photovoltaic (PV) energy generation
on rooftops, there are significant gaps that still need to be addressed. For instance, many
studies overlook the diversity of user profiles and the specific typologies of rooftops across
different buildings, which can substantially influence the feasibility and efficiency of PV
installations. Studies such as [8,10] highlight the importance of tailoring PV systems to
distinct user needs and structural roof designs; however, these factors remain underex-
plored in many current models. The lack of consideration for these variables can lead to
suboptimal system designs that do not fully leverage the available rooftop space or meet
the diverse needs of users effectively.

Current approaches often simplify the design of PV systems by disregarding the
precise geometry of rooftops and how it affects system efficiency. For example, the work
in [9] presents a general model for rooftop PV design, but does not integrate detailed
geometric factors that influence performance, such as roof angles and shading patterns.
Similarly, refs. [16,31] point out that, while rooftop solar assessments provide essential data
for PV placement, they rarely incorporate comprehensive spatial analysis or adaptability
to different rooftop shapes, which can cause inaccuracies in energy production estimates.
This simplification limits the potential for maximizing energy generation on irregular or
multi-angled rooftops, a limitation that our model seeks to address by integrating geometric
considerations directly into the PV layout optimization process.

Furthermore, there is a shortage of precise data on the exact locations and capacities of
rooftop PV systems, which significantly restricts the accuracy of potential assessments. For
instance, ref. [1,15] discuss the challenges in gathering accurate, high-resolution data on
rooftop PV installations, noting that existing databases are often outdated or lack sufficient
detail. Studies such as [21,27] attempt to map rooftop solar capacities, but the absence of
granular data on PV system specifications and installation sites results in broader estimation
errors. Efforts like those in [29,32] advocate for enhanced data collection frameworks to
capture site-specific details and system configurations, emphasizing the role of advanced
imaging technologies and geospatial tools to improve assessment accuracy. These gaps
underscore the critical need for more precise research that thoroughly integrates roof
morphology and user behavior into PV potential estimation, enabling more reliable and
customized system designs.

This study addresses the knowledge gaps identified in the literature, providing valu-
able contributions to the field of solar energy generation potential assessment through PV
panels in urban environments. Leveraging an innovative methodology backed by prior
research, our work presents the following key contributions:

• Roof Categorization Model: We have developed a roof categorization model that
enables precise classification of urban rooftops into four main orientations: north,
south, east, and west. This detailed characterization lays the foundation for a rigorous
estimation of available rooftop area, essential for installing commercial PV panels.

• Identification of PV-Ready Roofs: Using satellite imagery and advanced image seg-
mentation techniques, our study effectively identifies roofs suitable for PV panel
installation. Furthermore, we accurately calculate the usable area on these roofs,
providing a solid basis for estimating annual solar energy production.

• Optimal Spatial Distribution of PV Panels: We introduce an innovative approach for
the optimal distribution of PV panels on identified rooftops. This method considers
space constraints based on the dimensions of commercial panels, thereby maximizing
the efficiency of solar energy generation at each location.

• Innovation in Evaluation Technology: Our primary innovation lies in integrating
image segmentation technology with precise methods for calculating the potential
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PV panel installation area. This combination offers an advanced and accurate tool for
assessing the solar energy potential in urban environments.

• Practical Application in a Real Urban Setting: We verify the feasibility of our method
by implementing it in a real-world urban environment. These practical applications
demonstrate the utility of our approach in real-world scenarios and its ability to guide
the planning and expansion of solar energy systems in urban areas.

In summary, this study significantly contributes to advancing the assessment of PV
energy generation potential in urban environments. Our comprehensive and accurate
methodology, supported by cutting-edge technology and innovative calculation methods,
positions itself as a valuable tool for decision-making in the planning and development of
solar energy systems in urban areas, effectively addressing previously identified knowledge
gaps in the literature. The remainder of this paper is organized as follows: Section 2
addresses the problem statement, Section 3 presents the implementation of the Roof-Solar-
Max algorithm, Section 4 details the case study, Section 5 discusses the results and provides
a discussion, and Section 6 concludes the paper.

2. Problem Statement

This study aims to optimize the arrangement of PV panels on urban rooftops to
maximize electricity production. The methodology is divided into four interconnected
stages, as shown in Figure 1. In the first phase, contiguous rooftop segments are identified,
considering their various orientations. To achieve this, a combination of QGIS (Version
3.38.0 “Grenoble”) and a custom MATLAB (From version 2015b onwards) program is
employed. Using QGIS, high-resolution orthophotographs are imported and georeferenced
to ensure that rooftop data align accurately with real-world coordinates. The georeferencing
process employs QGIS’s built-in tools, using control points to match the imagery with
known geographic locations. Rooftop areas are then defined and segmented manually
based on orientation (north, south, east, and west), without the use of pre-built algorithms
or plugins.

Subsequently, a custom image processing routine in MATLAB is developed, which
includes filters such as grayscale conversion and edge-smoothing techniques. This enables
the identification of rooftops and the precise delineation of the contours of each rooftop
segment. No existing MATLAB functions from the literature were used; instead, the
routines were specifically designed for this study. Key parameters, such as edge detection
thresholds and smoothing factors, were carefully adjusted to ensure accurate rooftop
boundary detection.

Once rooftops are identified, suitable areas for PV panel installation are determined.
Solar irradiance is uniformly distributed across the rooftop area; hence, a finite set of
potential panel locations is determined. This calculation is based on area, angles, and
georeferenced locations to find the optimal arrangement of each panel and the maximum
number that can make up PV arrays on each rooftop. To illustrate the applicability of
this methodology, a case study based in an urban district in a high-altitude equatorial city
is used.

With the suitable areas defined, annual solar irradiance is calculated using real data
from a nearby meteorological station. These data, obtained from the Micro-Grid Laboratory
at the University of Cuenca, Ecuador [33], include solar irradiance records for the year 2022,
with a 1 s resolution, averaged to an hourly scale.

Finally, an innovative algorithm is developed to address the complexity of irregular
polygons that may appear in the structure of urban rooftops. The algorithm adapts to any
geometric configuration and aims to find the optimal orientation and ideal location for PV
panel placement. Unlike previous approaches, this algorithm is guided by three essential
criteria:

• Comprehensive coverage: Each panel must remain within the limits of the rooftop
polygon, avoiding uncovered areas.

• Geometric compatibility: Each panel must fit the corresponding rooftop segment.
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• No overlap: Adjacent panels must not overlap, ensuring a realistic and feasible de-
sign of PV installations. Conflict zone parameters are also incorporated to prevent
interference in the panel placement within an array.
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Figure 1. Graphic representation of the integrated four-stage methodology, which involves identi-
fying roofs and their segments, determining suitable areas for photovoltaic (PV) panel installation,
calculating annual solar irradiation, and applying an innovative algorithm tailored for irregular
polygonal structures.

3. Implementation of the Roof-Solar-Max Algorithm

The Roof-Solar-Max algorithm, designed to optimize the placement of photovoltaic
panels on rooftops, aims to determine the ideal geospatial arrangement of PV panels on
rooftops to maximize their electricity generation. Its operation is explained in detail below:

3.1. Roof-Solar-Max Algorithm Flowchart

Figure 2 provides an overview of the proposed method. The process begins by defining
different geographical zones on the rooftops based on their orientation: north, south, east,
and west.

Subsequently, data from the variables defining each rooftop polygon (identification
number, area, latitude, and longitude) are separately extracted for each geographical area
and its geospatial characteristics. The physical dimensions (height and width) of the PV
panel and its electrical variables (voltage, current, and power) are established. Using
geospatial visualization functions, the proposed Roof-Solar-Max algorithm visualizes each
geographical area and delineates the corresponding rooftop polygons using geospatial
visualization functions. Calculations are then performed to determine the optimal number
of PV solar panels that can fit within each geographical area, and the results are visualized.



Smart Cities 2024, 7 3804

After processing all geographical areas, the program aggregates and computes the
data to obtain general information about the arrangement of PV panels on each rooftop.
The algorithm also ensures that the number of panels is even, simplifying the configuration
of panel arrays in series and parallel to maximize installed power in each case. Finally,
voltage, current, and power values are calculated for the PV panel array using specific
functions and divisible options based on the number of panels calculated per rooftop.
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3.2. Optimal Placement of Photovoltaic Panels

This section provides a detailed explanation of the computational implementation
of the Roof-Solar-Max algorithm, designed to optimize the arrangement of PV panels
within geographic polygons. Through calculations and geometric transformations, the
algorithm aims to find the best placement for the panels, maximizing their effective area of
occupancy and avoiding overlaps. It also includes functions to aggregate data and search for
divisible options for the PV panel array’s layout and configuration. This approach has the
potential to enhance the efficiency of solar system distribution in rooftop spaces, thereby
maximizing solar energy harvest. A key preprocessing step in the algorithm involves
converting geographic coordinates (latitude, longitude) into a local Cartesian coordinate
system using the East-North-Up (ENU) projection based on the WGS 84 reference ellipsoid.
This transformation is implemented with the “geodetic2enu” function from MATLAB’s
Mapping Toolbox, ensuring precise geometric calculations in meters. The origin of the
ENU system is defined as the first point in the dataset, allowing all transformations and
calculations to be performed in a localized frame of reference. This ensures the accuracy
required for defining polygon boundaries, optimizing panel placements, and avoiding
overlaps. The pseudocode of the algorithm is presented below:

1. Definition of Calculation Function: A central function is established to process geo-
referenced coordinates of polygons (which will later accommodate the PV panels)
on rooftops. Its objective is to optimize the geometric division of the found areas to
ensure the proper distribution of PV panels on the rooftops.

2. Processing of Rooftop Polygon Coordinates: Geographic coordinates are converted
to local East, North, Up (ENU) coordinates. Polygon objects are created from these
coordinates for further analysis.

3. Calculation of Rooftop Polygon Boundaries: Polygon boundaries in terms of minimum
and maximum ENU coordinates are determined, which are essential for the optimal
placement of PV panels.
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4. Search for the Best Angle: The angle that maximizes the placement of PV panels
without overlaps is sought, evaluating rotation matrices.

5. Iteration over Rooftop Polygon Vertices and PV Panel Calculation: A sweep is per-
formed within the polygon’s vertices, identifying suitable points for PV panel place-
ment that meet the established conditions. Rotated PV panels are then evaluated, and
those without overlaps are counted.

6. Update of the Best Solution: The maximum number of non-overlapping PV panels
and the corresponding angle are recorded.

7. Final Iteration and Visualization: Rotation transformations are applied to the PV
panels and checked if they meet the placement criteria.

8. Coordinate Conversion and Storage: Rotated PV panels are converted to geographic
coordinates and stored in a data structure.

9. Calculations and Storage of Final Results: The quantity of PV panels placed on each
rooftop polygon is stored for energy analysis.

10. Search for Optimal Divisible Options: A function that searches for the optimal array
layout based on the number of PV panels, voltage, and current for inverter sizing is
provided.

The algorithm’s pseudocode is presented in Appendix A for a more detailed under-
standing and potential practical implementation.

4. Case Study

The data collection methods and criteria for selecting the study area were carefully
designed to ensure the accuracy and relevance of our findings. To identify and delineate
usable areas on the rooftops of the urban district, a high-resolution orthophoto was acquired
from the city council’s public website. Using QGIS, the orthophoto was georeferenced, and
rooftop segments were identified based on their orientation (north, south, east, and west).
A custom MATLAB routine was then used for image processing, applying color filtering
and grayscale techniques to delineate rooftop contours and create polygons for analysis
precisely. This approach did not rely on pre-built algorithms, emphasizing reproducibility
through custom-developed methods.

The duration of the data collection process spanned the entire year of 2022. This year
was chosen specifically because the nearby Micro-Grid Laboratory provided a comprehen-
sive and consistent set of solar irradiance data, with measurements taken at 1 s intervals
and averaged hourly. These high-resolution data were crucial for accurately modeling the
solar energy potential of the rooftops. However, a key challenge was obtaining satellite
images of sufficient quality to ensure precise rooftop identification, an issue we managed
by using the best available data sources.

The study area was strategically selected for its proximity to the Micro-Grid Labo-
ratory and the availability of high-quality meteorological data since 2017. Additionally,
transformer ID 33443 was chosen because it provided complete and reliable billing and
energy consumption records for all connected households, obtained from the utility com-
pany’s website. These records included real data on energy usage and installed power,
allowing for a robust comparison between energy demand and the solar energy potential.

To mitigate potential biases, we ensured that the sample included a diverse range of
residential rooftops, representative of the typical urban architecture in the region. This di-
versity enhances the applicability of our results to other similar urban areas. By integrating
accurate meteorological and electrical data, our methodology offers a comprehensive and
practical framework for urban energy planning, providing valuable insights for implement-
ing sustainable energy solutions.

4.1. Study Area Description

The city of Cuenca is in the Azuay province of Ecuador at latitude 2◦53′00′′ South
and longitude 79◦00′00′′ West, situated at an average altitude of 2500 m above sea level.
The selected study area is an urban district with consumers from a medium to high
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socioeconomic stratum (high demand). The selected district is situated near the Micro-Grid
Laboratory at the University of Cuenca, where there is a meteorological station, and its
records will serve as input for the proposed methodology.

4.2. Solar Irradiance Levels in the Study Area

Solar irradiance in Cuenca is significantly high due to its proximity to the Earth’s
equator. The average annual global horizontal solar irradiation is high (see Figure 3). This
provides excellent potential for PV generation in the region. Figure 4 presents an overlay
of daily solar irradiance curves throughout 2022 observed in Cuenca. Each color in the
figure represents the solar production of a single day, with the overlay combining 365
curves to highlight the high variability of the solar resource in this Andean mountainous
region. The figure highlights two distinct solar irradiance profiles: Type I, which represents
periods of low variability with relatively stable irradiance levels, and Type II, indicating
periods of high variability with significant fluctuations in daily solar irradiance. These
profiles provide a comprehensive view of the dynamic nature of solar resources at the study
site, underscoring how irradiance levels can shift substantially over short periods. This
understanding is critical for readers, as the energy performance calculations in subsequent
sections rely on an annual energy analysis that, while offering a broader overview, may
mask the effects of short-term PV output variability. The irradiance data recorded over
2022 will serve as the input for the energy calculations within the proposed methodology,
establishing a realistic foundation based on the actual solar resource variability at the site.
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4.3. Electrical Infrastructure in the Study District

Figure 5 illustrates the map of the chosen study district, delineating its boundaries
and the electrical supply infrastructure. Within this context, a distribution transformer is
identifiable and linked to a specific primary feeder owned by the distribution company
responsible for supplying electricity within the city. This publicly accessible information,
available at [35], served as the basis for an extensive examination of the number of sub-
scribers connected to this transformer. Additionally, monthly consumption data for each
subscriber were consulted to acquire precise and dependable information to underpin this
analysis. This initial procedure is of paramount importance, ensuring that the subsequent
calculation process accurately reflects real-world conditions.
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Figure 5. Selected urban district for study and existing distribution system. Illustration compiled
from information sourced from [35].

4.4. Energy Consumption in the Study District

Based on the data from [35], it was determined that the distribution transformer was
supplying a total of 23 consumers. Figure 6 presents a sample of actual consumption
records from residential users within the considered district. In our study, we have access
to the annual records of each of the remaining 22 consumers obtained from the public
information source.
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4.5. Identification of Usable Rooftop Areas

To identify and delineate usable areas on the rooftops of the urban district, an or-
thophoto of the area of interest was acquired from the city council’s public website [36],
as shown in Figure 7. This figure illustrates each of the steps taken to identify rooftops
and the areas available for PV panel installation. In Figure 7a, the original orthophoto
of the district is displayed. Subsequently, through image processing (color filtering and
grayscale usage), it was possible to highlight the rooftops of the residential area, as seen in
Figure 7b. Next, a MATLAB routine was implemented to delineate and create polygons
over the identified rooftops. Georeferencing of the image allowed for the determination of
rooftop orientations (north, south, east, and west) and their respective areas, categorizing
them into four categories represented by different colors: rooftops facing north were shown
in green, south-facing rooftops in yellow, east-facing rooftops in blue, and west-facing
rooftops in orange (see Figure 7c).
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4.6. Validation of Rooftop Areas

Furthermore, an examination of the resulting image of the study district was con-
ducted, where 23 residences belonging to the previously mentioned distribution trans-
former were manually selected. This process was carried out using the open-source GIS
tool QGIS. It allowed for the verification of rooftop areas and validation of accuracy using
OpenStreetMap, following the methodology employed by [28].

4.7. Selection of Photovoltaic Panel Models

This study considers two commercial PV panel models: the A-250P and the A-335P
GS, whose main specifications are detailed in Table 1. These models were chosen based
on their availability in the Micro-Grid laboratory, for which there is a six-year historical
performance record.

Table 1. Main specifications of the two PV modules considered in this study.

PV Module Specification A-250P A-335P GS

Efficiency (%) 15.35 17.26

Area [m2] 1.62 1.94

Dimensions (height, wide) [m] 1.645 × 0.99 1.956 × 0.992

Maximum Power Voltage
(Vmp) [V] 30.35 37.7

Open Circuit Voltage (Voc) [V] 37.62 46.5

Maximum Power Current
(Imp) [A] 8.45 8.89

Short Circuit Current (Isc) [A] 8.79 9.51

Maximum Power (Pmax) [W] 250 335
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4.8. Application of the Algorithm and Energy Balance Calculation

With all the primary information generated up to this point, the algorithm proposed
in Section 3 was applied to achieve a spatial and realistic distribution of PV panels on the
various identified rooftops. Additionally, it provides an estimate of energy production
from these panels. Finally, by comparing the generation data with the consumption of each
building, a net energy balance calculation could be performed.

5. Results and Discussion
5.1. Case 1: Distribution of A-250P PV Panels on Rooftops in the Urban District

Figure 8 illustrates the outcome of applying the Roof-Solar-Max algorithm to achieve
an optimal distribution of A-250P PV panels on rooftops. The algorithm provides georef-
erenced positions for the polygons constituting each of the PV arrays correctly placed on
the rooftop. PV panels (colored in red) are distributed in four orientations: green for north,
yellow for south, blue for east, and orange for west. This color notation is also applied in
Figures 9 and 10. Considering the cardinal orientation of panels on rooftops allows for
more reliable numerical results when assessing the PV energy potential from each of them.
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Figure 8. Optimal distribution of A-250P PV panels on rooftops using the proposed application
(case 1).
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Figure 9. Detailed view of the 23 rooftops identified by the algorithm and optimal distribution of
a-250P PV panels (case 1).
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Figure 10. Detailed view of the 23 rooftops identified by the algorithm and optimal distribution of
A-335P GS PV panels (case 2).

Figure 9 provides a close-up view of the results generated by the proposed algorithm.
In the illustration, each of the 23 analyzed rooftops is assigned a code to facilitate reference
in the calculations presented in the subsequent sections. It is important to note that the
Roof-Solar-Max algorithm ensures that no PV panel extends beyond the rooftop’s polygon
area or overlaps with other PV panels, thus ensuring a realistic distribution and maximizing
the utilization of the available area.

Considering the capacity of each of the 1574 panels organized by the algorithm, this
distribution achieved a PV solar potential of 393.5 kW in the studied district. Table 2
provides a detailed summary that includes the number of PV panels used per rooftop, the
percentage of area utilized, and the total installed PV power. This breakdown highlights
the effectiveness of the PV panel arrangement in harnessing solar potential in the district.

Table 2. Comparison of results between PV panels A-250P and A-335P GS: number of panels, area
used, and installed power.

Roof
Roof Area

[m2]

Number of PV Solar Panels
[u]

Percentage of Usable
Area Used by PV Panels

[%]

Installed Solar PV Power
[kW]

A-250P
(Case 1)

A-335P GS
(Case 2)

A-250P
(Case 1)

A-335P GS
(Case 2)

A-250P
(Case 1)

A-335P GS
(Case 2)

(a) 91 38 32 68.01 68.23 9.5 10.7
(b) 121 50 42 67.3 67.35 12.5 14.1
(c) 274 102 80 60.62 56.65 25.5 26.8
(d) 359 128 102 58.07 55.13 32 34.2
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Table 2. Cont.

Roof
Roof Area

[m2]

Number of PV Solar Panels
[u]

Percentage of Usable
Area Used by PV Panels

[%]

Installed Solar PV Power
[kW]

A-250P
(Case 1)

A-335P GS
(Case 2)

A-250P
(Case 1)

A-335P GS
(Case 2)

A-250P
(Case 1)

A-335P GS
(Case 2)

(e) 190 66 56 56.57 57.19 16.5 18.8
(f) 684 364 298 86.67 84.54 91 99.8
(g) 102 36 32 57.48 60.87 9 10.7
(h) 160 56 42 57.00 50.93 14 14.1
(i) 119 42 34 57.48 55.44 10.5 11.4
(j) 231 66 50 46.53 42.00 16.5 16.8
(k) 245 88 70 58.49 55.44 22 23.5
(l) 89 24 18 43.92 39.24 6 6

(m) 59 18 14 49.68 46.04 4.5 4.7
(n) 72 22 14 49.76 37.73 5.5 4.7
(o) 573 224 170 63.66 57.57 56 57
(p) 155 46 30 48.33 37.56 11.5 10.1
(q) 44 8 6 29.61 26.46 2 2
(r) 73 14 10 31.23 26.58 3.5 3.4
(s) 288 102 80 57.68 53.90 25.5 26.8
(t) 56 14 10 40.71 34.65 3.5 3.4
(u) 84 30 24 58.16 55.44 7.5 8
(v) 55 16 10 47.38 35.28 4 33.4
(w) 70 20 12 46.53 33.26 5 4

Total 4194 1574 1236 60.80 57.17 393.5 444.4

5.2. Case 2: Distribution of A-335P GS PV Panels on Urban Rooftops

In order to assess the effectiveness of the proposal when using a slightly larger com-
mercial panel model, the Roof-Solar-Max algorithm was executed with the data of the
A-335P GS PV panel.

Figure 10 presents the optimal distribution of PV panels achieved using the algorithm
in this case study. The results demonstrate that, in this instance, panel distribution re-
spected the predefined polygons and their boundaries on each of the 23 rooftops while
avoiding panel overlap. In total, the proposed algorithm effectively distributed a total of
1236 panels, resulting in a total installed power of 444.4 kW. Furthermore, Table 2 provides
a comparative summary that encompasses the number of PV panels used, the percentage
of rooftop area utilized for PV panel placement, and the total installed power per rooftop.
This comparative presentation highlights the differences between the case studies, offering
a clear view of the specific outcomes for each.

In Figure 11, a detailed comparison of the results obtained using the Roof-Solar-Max
algorithm is presented between the PV panel models A-250P and A-335P GS. Figure 11a
displays the number of PV panels to be placed on each rooftop, Figure 11b illustrates the
percentage of rooftop area utilized for PV panel placement, Figure 11c highlights the total
installed power capacity on the rooftops, and finally, Figure 11d presents the PV power per
square meter installed on the rooftops. These four components of Figure 11 provide a clear
visualization of the differences between the two models and their impact on the number of
panels and the total installed power capacity in the study area.
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percentage, (c) installed nominal power per rooftop, and (d) installed nominal power per square
meter of rooftop.

5.3. Comparison of Methodology and Algorithm Results

During the literature review, studies such as [19,20,26] were identified, which address
the installation of PV panels on rooftops while considering the surface area. However, these
approaches often align the panels at the top of the roof without considering the optimal
rotation angle. In contrast, our proposal aims to maximize the placement of PV panels by
finding this optimal angle, resulting in a higher installed capacity and more significant PV
energy production.

With the methodology we propose (see Figure 12), a total of 1575 PV panels were
installed for case 1, and 1236 for case 2 (see Figure 12a). This translates to average installed
capacities of 393.5 kW and 444.4 kW, respectively (see Figure 12b). In contrast, applying
the methodology proposed in [30] resulted in 1166 PV panels for case 1 and 1004 for case
2, with average installed capacities of 291.5 kW and 336.34 kW, respectively. The study
in [30] employed the ArcGIS Solar Radiation toolset, a widely recognized method in urban
PV modeling applications. This toolset was calibrated using the diffuse proportion and
atmospheric transmissivity values derived from the Global Solar Atlas, ensuring reliable
annual irradiation modeling even in the absence of ground-based meteorological data, as
demonstrated for Fernando de Noronha Island. This demonstrates the effectiveness of our
methodology, as it provides comparable results while offering an innovative and flexible
framework for PV placement optimization.
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Furthermore, when analyzing the same solar profile, our methodology yielded an
annual energy generation of 521.214 MWh compared to the 366.902 MWh obtained by the
existing method, confirming the higher efficiency of our proposal (see Figure 13).
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Figure 13. Comparison of energy production between proposed and existing methodologies.

Despite the demonstrated effectiveness of our methodology, several limitations should
be noted. Firstly, our analysis relies on freely available satellite images, which, while useful,
are limited in quality and resolution. This can hinder the precise identification of usable
rooftop areas, introducing a margin of error in surface delineation and, consequently, in the
energy generation potential calculation.

Secondly, the images used are in 2D, which prevents the assessment of building heights
and the shadows cast by surrounding structures and the panels themselves. This limitation
affects our ability to account for the impact of shading on energy efficiency.
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Additionally, our program currently lacks the capability to accurately identify the ma-
terial of each rooftop or assess its structural robustness to support the weight of PV panels.
Satellite imagery does not provide detailed information about roof construction materials
or structural integrity, posing a challenge for ensuring safe and suitable installation.

Another limitation lies in the algorithm’s performance when dealing with irregu-
lar rooftop geometries. While the methodology effectively identifies and categorizes
rooftop polygons and optimizes panel placement at a district-wide scale, it may leave
certain rooftop areas underutilized, particularly in irregularly shaped rooftops: see roofs
in Figure 9m,q,t,v and Figure 10m,n,q,t,v. The algorithm balances maximizing the usable
area with practical constraints such as geometric compatibility, avoiding overlaps, and
maintaining energy efficiency, but this may result in some low-utilization rooftops. Future
refinements could involve a secondary optimization step that identifies rooftops with
a low “Roof Area Percentage Used” and applies more detailed adjustments to improve
panel coverage in these cases. This refinement step could achieve results closer to manual
placement, enhancing the overall utilization of complex rooftops.

Lastly, our methodology focuses on optimizing the rotation angle of the panels on
the rooftop to maximize the number of panels that can be installed without exceeding the
roof boundaries. However, it does not address the optimization of the tilt angle of the
panels, which is crucial for maximizing solar energy capture. Optimizing the tilt angle
could further enhance energy generation, but falls outside the scope of this study.

These limitations highlight the need for future work that incorporates high-resolution
data or three-dimensional models, such as those obtained through LiDAR, to improve the
accuracy of usable surface evaluations and optimize both the placement and tilt of solar
panels. Additionally, improvements to the algorithm’s adaptability to irregular rooftop
geometries could significantly enhance its utility and precision, especially when applied to
individual buildings within urban districts.

5.4. Annual Net Energy Balance of Residential PV Systems

The proposed algorithm optimizes the distribution of a finite number of commercial
PV panels per rooftop, providing the immediate nominal capacity to be installed on each
rooftop (Figure 11c). Given the absence of height data for each rooftop, it was not feasible to
calculate an optimal tilt angle for each PV panel. Therefore, we utilized historical irradiance
data from a nearby meteorological station, which featured PV panels installed at a fixed
tilt angle of 5 degrees facing north. This approach ensured consistent energy potential
calculations. With this information and the consumption records of each user residing in the
buildings, the proposed methodology calculated the annual net energy balance. The results
of this calculation are presented in Figure 14a details the annual monthly consumption of
the set of buildings within the district under study, while Figure 14b displays the annual
total consumption per building. These data were then compared with the maximum energy
that can be extracted from the PV panels installed in the study area, calculated based on
historical irradiance data recorded at a nearby meteorological station, as shown in Figure 15.

Effective rooftop optimization leads to energy overproduction, indicating the need
to consider a change in the initial transformer and the possibility of feeding excess energy
back into the distribution grid for economic benefits. The algorithm results in an annual
PV energy potential generated by the PV panels on the rooftops of the study district that
exceeds local demand, surpassing it by more than 6.7 times the total electricity requirement,
meeting the maximum energy demand for each building.

The total nominal power of the PV panels in the proposed cases for the network of
all buildings is 393.5 kW (case 1) and 444.4 kW (case 2), with an average annual energy
production of 521.214 MWh. However, since the system has been designed to extract the
maximum amount of energy with the placement of PV panels, there is an annual surplus of
443.5 MWh on average compared to the measured annual residential energy consumption,
which can be injected into the grid to supply additional households.
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Figure 14. Expected household energy balance: (a) monthly energy consumption for all buildings
and (b) annual energy consumption per building.
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Despite the encouraging results, it is essential to recognize that implementing large-
scale PV systems in residential environments presents technical, economic, and regulatory
challenges. Appropriate policies and financing are needed to promote the adoption of PV
energy, and it is crucial to involve the community and the government in the transition to
sustainable and accessible solutions. The study also highlights the importance of consider-
ing aspects such as excess production stored in batteries, installation costs, net gains, and
payback time as part of a more comprehensive analysis of the feasibility of large-scale solar
projects in similar contexts.

6. Conclusions

This study successfully introduced the Roof-Solar-Max method, designed to optimize
the placement of PV panels in urban environments to maximize solar energy production.
This work reached several key conclusions: The Roof-Solar-Max method demonstrated its
effectiveness by enabling an efficient distribution of PV panels on urban rooftops while
ensuring maximum energy production and avoiding overlap and shadows. This approach
is globally applicable and relies on globally available solar irradiance data and building
polygons. However, it is important to acknowledge the limitations of using freely available
satellite imagery, as quality and resolution can vary. This variability may affect the precision
of rooftop material identification, structural assessments, and energy production estimates.
Additionally, while the algorithm effectively optimizes panel placement at a district-wide
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scale, its performance on rooftops with irregular geometries may result in certain areas
being underutilized. Future refinements could include a secondary optimization step
to improve coverage on low-utilization rooftops and achieve results closer to manual
placement. Future studies should consider employing higher-resolution data sources, such
as LiDAR or 3D models, to enhance the accuracy of these calculations and further improve
the algorithm’s adaptability to complex rooftop shape.

Significant potential for PV energy generation in the study area has been identified,
reaching up to 44.44 kW in case 2. This highlights the viability of PV energy as an important
and practical source of electricity in urban settings. The implementation of PV systems
on residential rooftops has proven to be an effective strategy for reducing CO2 emissions
and addressing climate change. While effective, our method does not incorporate tilt angle
optimization, which could further enhance energy capture. Future research should explore
combined optimization techniques for both tilt and rotation angles, addressing variations
in solar incidence and shading.

In light of the findings from this study, significant implications emerge for policy-
makers aiming to facilitate the transition to sustainable energy systems in urban areas.
The Roof-Solar-Max methodology offers a robust framework for maximizing PV energy
generation on rooftops, an insight that is directly applicable to policy decisions in urban
planning, renewable energy integration, and carbon reduction strategies. Policymakers
could leverage these findings to enact guidelines that encourage or mandate the installation
of PV systems on residential and commercial rooftops, especially in high-density urban
areas where rooftop space is abundant yet underutilized. For instance, local governments
could implement incentive programs, such as tax reductions or subsidies, for building
owners who incorporate PV installations based on optimized layouts like those outlined
in this study. Furthermore, the data-driven approach of Roof-Solar-Max, which utilizes
real-time GIS and solar irradiance data, can underpin zoning regulations that promote
sustainable rooftop designs and dictate specific spatial requirements for PV panels to max-
imize energy production and economic viability. The research underscores the value of
using empirical data to inform decisions regarding the scale and placement of renewable
energy systems, which could influence regional energy policies aimed at reducing depen-
dency on fossil fuels and enhancing grid resilience. Additionally, by demonstrating the
feasibility of surplus energy generation and its potential to feed back into the distribution
grid, the study offers a clear framework for developing policies around energy-sharing
programs or grid-interactive residential PV systems, which could be particularly valuable
in urban districts. Policymakers can adopt these insights to shape effective regulations
that incentivize solar investments, streamline permitting processes, and set standardized
criteria for rooftop PV systems. Moreover, the method’s adaptability to different urban
contexts is promising, but it should be tailored for unique urban environments with specific
architectural and climatic conditions. Extending the model to include variable demand
patterns and fluctuating electricity prices could enhance its practical utility. The exploration
of surplus energy generation on the studied rooftops opens the possibility of injecting this
excess energy into the electrical grid, which could translate into economic benefits and
promote greater diversification of energy sources.

In considering the long-term impact of these findings, it becomes clear that this re-
search can serve as a foundation for sustainable policy evolution, adapting to technological
advances and future energy needs. To maximize the practical applications of Roof-Solar-
Max, policymakers are encouraged to foster collaboration with essential stakeholders—such
as community leaders, energy providers, and research institutions—to create an inclusive
framework that promotes feedback and shared responsibility in PV implementation efforts.
By involving communities, governments can enhance public support, while partnerships
with research organizations and private sectors can drive the incorporation of emerging
technologies, thus ensuring that policies remain forward-looking and resilient. Future stud-
ies could extend this work by developing adaptive PV designs tailored to variable seasonal
demand or by exploring advanced energy storage solutions for managing surplus genera-
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tion. Such continuous improvements would enhance both the Roof-Solar-Max methodology
and the data-informed policies it supports, ensuring that urban energy strategies contribute
to lasting sustainability and economic resilience across cities and regions.

This research also holds broader implications for sustainable urban development
and energy policy. By maximizing solar energy production on rooftops, cities can reduce
greenhouse gas emissions and harness economic opportunities from feeding excess energy
into the grid, supporting the global transition toward renewable energy. The model can be
adapted to address variable demand patterns, fluctuations in electricity prices, and other
factors such as shading for future research. Improving the quality of energy generated by
grid-connected PV systems is also a potential area for enhancement.
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Nomenclature

Acronyms
AW3D Advance wide Field Sensor 3D
BIPV Building Integrated Photovoltaics
CCTIB Centro Científico, Tecnológico y de Investigación Balzay
ENU East-North-Up
FPN Feature Pyramid Network
GIS Geographic Information System
GRASS Geographic Resources Analysis Support System
LiDAR Light Detection and Ranging
LOD3 Level of Detail 3
MIP Mixed Integer Programming
PSPNet Pyramid Scence Parsing Network
PV Photovoltaic
QGIS Quantum GIS
RS Remote Sensing
VPN Net Present Value
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Latin letters
E Energy
GWh Gigawatt-hour
I Current
kVA Kilovolt-ampere
kW Kilowatt
kWh Kilowatt-hour
m Meter
m2 Square meter
No. Number
P Power
V Voltage
W Watts
Symbols
◦C Degrees Celsius
$ Dollar
% Percentage
Symbology
widthPV Width of photovoltaic panels
heightPV Height of photovoltaic panels
lonp Longitude of the polygon
latp Latitude of the polygon
Idp Polygon identification
areap Area of the polygon
xmeter Polygon coordinates in meters (x-axis)
ymeter Polygon coordinates in meters (y-axis)
xmin Minimum x-coordinate of the polygon
xmax Maximum x-coordinate of the polygon
ymin Minimum y-coordinate of the polygon
ymax Maximum y-coordinate of the polygon
θ Initial angle of PV
θnew Optimal angle of PV
x Number of x-coordinates within the polygon
y Number of y-coordinates within the polygon
xPV x-coordinates of the PV panel
yPV y-coordinates of the PV panel
Rθ PV panel rotation angle
xPVrotated Rotated x-coordinates of the PV panel
yPVrotated Rotated y-coordinates of the PV panel
numPV Number of PV panels
maxPV Maximum number of PV panels
latPVnew New latitude of the PV panel
lonPV new New longitude of the PV panel
IdPV PV panel identification based on the polygon
areap Usable area of the polygon

Appendix A. Pseudocode for the Roof-Solar-Max Algorithm

This appendix contains the pseudocode for the Roof-Solar-Max algorithm, which
was developed to optimize the distribution of PV panels on rooftops, ensuring maximum
energy production and efficient use of rooftop space. The pseudocode provides a high-
level overview of the steps involved in the algorithm, making it easier to understand and
replicate the methodology used in this study.
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Pseudocode
Calculation function to determine the optimal angle for maximizing the number of photovoltaic panels on each roof

1. Input Data
1.1. Constant data: widthPV , heightPV , lonp, latp, Idp, areap
2. Conversion of georeferenced units for the roof polygons in the four orientations (north, south, east, and west)
2.1. Given

(
lonp, latp

)
coordinates of a roof polygon, convert them to (xmeter, ymeter)

3. Calculate the limits of the roof polygon
3.1. (xmin, xmax, ymin, ymax) = (min(xmeter), max(xmeter), min(ymeter), max(ymeter))
4. Search for the best rotation angle (θ new) for the PV panels
4.1. Iterate over angles (θ) between 0 and 180 degrees to find the best angle for the most PV panels
4.2. Iterate over points within the polygon limits
4.2.1. x = (xmin : widthPV : xmax − widthPV)
4.2.2. y = (ymin : heightPV : ymax − heightPV)
4.3. Define the coordinates of the vertices of the PV panel within the vector xPV
4.3.1. xPV =

[
x x + widthPV x + widthPV x

]
4.3.2. yPV =

[
y y y + heightPV y + heightPV

]
4.4. Rotate the vertices of the PV panel using the rotation matrix

4.4.1. Rθ =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
4.4.2.

[
xPVrotated yPVrotated

]
= Rθ ∗

[
xPV
yPV

]
4.5. Check if the number of PV panels found is greater than the current maximum
4.5.1. If numPV > maxPV
4.5.2. maxPV = numPV
4.5.3. θnew = θ

4.5.4. End

4.5.5. Rθnew =

[
cos(θnew) −sin(θnew)
sin(θnew) cos(θnew)

]
4.6. Rotate the vertices of the PV panel with the best angle

4.7.
[
xPVrotated yPVrotated

]
= Rθnew ∗

[
xPV
yPV

]
4.8. Check if the rotated panel PV is completely inside the roof polygon
4.9. If all

(
xPVrotated , yPVrotated

)
inside the roof polygon (xmeter, ymeter)

4.10. Convert coordinates from meters to original geodetic coordinates
4.10.1.(latPVnew , lonPV new) = convert_coordinates

(
xPVrotated , yPVrotated

)
4.11. Draw the panel PV in the original geodetic coordinates
4.11.1.draw(latPVnew , lonPV new, ‘red′)
4.11.2.numPV = numPV + 1
4.12. End
5. Output information
5.1. IdPV , areap, numPV , latPVnew , lonPV new
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