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ARTICLE INFO ABSTRACT

Keywords: The integration of photovoltaic generation systems and variable demand can cause instability in the distribution
Multi-mode network, due to power fluctuations and the increase in reactants, particularly in the industrial sector. In response,
Management photovoltaic units have been equipped with local storage systems, which eventually absorb power fluctuations
Photovoltaic di . llati f H duri hi d ther fi . lities th

OPALRT and improve installation performance. However, during this procedure other functionalities that energy storage

could provide are neglected. Consequently, this study provides a multi-mode energy monitoring and manage-
ment model that enables voltage regulation, frequency regulation and reactive power compensation through the
optimal operation of energy storage systems. With this objective, a smoothing control algorithm is developed that
interacts with parameters of the electrical grid at the common connection point and also allows the compensation
of reactive power based on an industrial demand profile. This strategy uses the Long short-term memory neural
network of historical demand data prior to energy consumption with a relatively low RMSE of 1.2e-09. The
results are previously validated in a development environment using a real-time OPAL-RT simulator and tests in
the electrical Microgrid laboratory at the University of Cuenca. This configuration allows establishing a demand
forecasting model that improves the supervision, automation and analysis of daily energy production. A series of
results are provided and analyzed that demonstrate that the new tool allows taking advantage of the provision of
multimode functionalities, achieving optimal voltage regulation and improving power quality by reducing the
total harmonic distortion THD (V) and THD (I) indices by 0.5. % and 2 % respectively.

Energy storage systems
Demand forecast

instability in the electrical system, making the integration of these re-
sources complex. As an alternative to mitigate this impact, energy
storage systems (ESS) can be deployed, which can mitigate the insta-

1. Introduction

1.1. Background and motivation

Electrical demand management is essential to optimize electrical
distribution networks (EDNs) in modern electrical systems. Due to
increasing energy consumption in the industrial sector, it has generated
high energy costs for generation and economic dispatch. This problem is
especially exacerbated during peak hours of the day, due to the usual
working hours of large companies. Every year, industrial demand (DI)
increases due to the economic development of cities [1,2]. Therefore,
the integration of renewable energies (RE), such as photovoltaics (PV) or
wind power (WT) allow the economy to grow in a more sustainable way.
The integration of these systems has managed to create more flexible
and adaptive electrical grid in distributed generation (DG) with micro-
grids (MG). However, the uncertainty of renewable resources can cause
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bility of the electrical system and ensure a stable and sustainable energy
supply. Particularly, this study highlights how leveraging the support of
ESS in a multi-objective manner can facilitate a transition towards smart
grids (SG) and a more efficient future in modern electrical grids.

The intermittency of renewable energy sourse (RES) in the EDNs can
significantly affect power quality. Due to power fluctuations generated
by solar and wind resources where their generation depends on factors
such as wind and solar irradiation [3-8]. Consequently, power vari-
ability with a high rate of change in the power grid can affect the system
voltage and frequency [9-13]. In addition, with the integration of
inverters/converters from renewable sources, the growth of charging
stations for electric vehicles, the gradual increase of electrical machines
and power converters in the industrial sector, has increased the con-
sumption of reactive power from the electrical grid. Which also causes
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Abbreviature

EDNs Electrical distribution networks
ID Industrial demand

RE Renewable energies

RES Renewable energy sources

PV Photovoltaics

WT Wind turbine

ESS Energy storage systems

DG Distributed generation

MG Microgrids

SG Smart grids

BESS Battery energy storage system

HESS Hybrid energy storage systems
EMS Energy management system

CCTI-B  Centro Cientifico, Tecnoldgico y de Investigacién Balzay
MLPNN Multilayer perceptron neural network
MTU Master terminal unit

PSO Particle swarm optimization

LSTM Long short-term memory

DRES Distributed renewable energy sources
SCs Supercapacitors

RF Random forest

RRL Ramp-rate limiter

CI-DRES Converter-interfaced distributed renewable energy sources
SC Supercapacitor

LPF Low pass filter

MA moving average

P-f Active Power (P) - frequency (f) Control
Q-v Reactive Power (Q) — voltage (f) Control
RMSE Root Mean Squared Error

THD(V)
THD(I)

Total harmonic distortion Voltage
Total harmonic distortion Current

Nomenclature

Pr,Q Active and reactive power of industrial demand with
representation of different scenarios

d(P?V)/dt Variation of photovoltaic power in a time t

d(P')/dt Variation of demand power in a time t

PHESS[kW] Active power supplied by ESS

PHESS[kVAr] Reactive power supplied by ESS

AV Voltage regulation
AQ Reactive power regulation
PPV Power output of the PV system
ESC Energy of a supercapacitor
psc Power supercapacitor
SOCS¢  SC state of charge
SOCYR™  VRFB state of charge
SOCY®R  VRFB minimum state of charge
SOCY®  VRFB maximum state of charge
pref Reference power value to the storage system
PR Power VRFB
PL Active power of industrial demand
Qt Reactive power of industrial demand
fi Output of the Forget Gate
i Output of the Input Gate
0y Output of the Output Gate
E‘t Candidate version of the new cell state
C; Cell state at the current time step
h; Output of the LSTM at the current time step
PS™  Active power demand forecast
tLSTM Reactive power demand forecast
QMR Reactive power support from VRFB
pR Active power support from VRFB

voltage imbalances and generation of harmonics that could cause
instability in the electrical system [14-16]. In response to the inter-
mittency of RE, the implementation of ESS has made it possible to
compensate for this intermittency and minimize the impacts on the
electrical grid [3,15,17-19]. These battery-based storage systems can
absorb excess energy during periods of high generation and release it
when generation is low. In this way, greater stability is achieved in the
power grid and voltage variability and the presence of harmonics are
reduced. However, the compensation of reactive power from the de-
mand side has not yet been addressed in a multifunctional way with
power smoothing techniques. Therefore, this research studies the spe-
cific operation of the ESS that integrates a demand forecasting algorithm
that allows smoothing power fluctuations and maintaining the voltage
profile in the EDNs through real or reactive power control.

1.2. Literature review

The integration of ESS as power smoothing techniques for RES sys-
tem has been widely studied [6,20-25]. In recent studies, a novel PV
power smoothing method using hybrid energy storage systems (HESS)
and machine-learning is proposed in Ref. [24] to reduce fluctuations and
improve the stability of electrical grids. Similarly, the authors in
Ref. [26] propose a new power smoothing method using SC to reduce
these fluctuations. The method involves two stages: prediction and
correction. In Ref. [27], is proposed ramp-rate limiter (RRL) control
method considers the SC voltage and ensures specific RRL at the
distributed renewable energy sources (DRES) connection point without
exceeding safety limits. In another study, the combined use of SCs and
Battery energy storage system (BESS) is proposed for RRL control in

converter-interfaced distributed renewable energy sources (CI-DRES)
[28]. The results show that when RR Limitation is activated in both ESS
types, the central BESS size can be 40 % smaller with a 50 % reduction in
the BESS converter power. In addition, the long-term impact of power
smoothing techniques on BESS capacity degradation is investigated
[29]. Different filtering-based algorithms and ramp-rate limitation
control schemes are compared. The aging of the BESS is estimated using
a rainflow algorithm. RRL control scheme outperforms moving average
(MA) and low pass filter (LPF) based methods in terms of achieved
smoothing and BESS sizing.

Dimitra Tragianni et al. [30], studied SCs sizing based on compara-
tive study of PV power smoothing methods, comparing two power
smoothing algorithms applied to a PV system with BESS. A sizing
method based on real irradiation measurements is proposed, indicating
the different requirements of each power smoothing method. On the
other hand, in Ref. [25] proposes a novel method for power smoothing
in WT using a fuzzy-logic-based SC system and time-constant fitting,
which addresses the issue of uncertain results and delays in control
response. The method generates active power set-point values for the SC
to compensate for the intermittency of the WT, and the results were
validated through laboratory tests. A two-stage filtering strategy is
proposed in Ref. [31], control state of charge (SoC) in battery systems,
but it still has a delay between input and output. The proposed method,
which combines adaptive moving average control (AMAC) and adaptive
SoC control (ASC), improves battery utilization and smoothness
compared to moving average control (MAC). The effectiveness of the
proposed approach is demonstrated in a field experiment. A control
strategy that uses energy storage to mitigate rapid voltage variations
caused by fluctuations in PV and WT power production has also been
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Table 1
Summary of studies related to power smoothing methods, HESS, Reactive power, and Demand management.
Power smoothing Forecasting Use of HESS Simulador/real- Experimental Reactive power Demand References
methods methods systems time validation compensation management
4 v 4 4 [24,26,27]
4 v v 4 [40]
v v v v v [28,29,46]
v v v [16]
4 v 4 v [47]
v 4 v v [32,48]
v v v [6,20,45]
4 4 v [49]
v v/ v/ v v [12,31,50,
51]
4 v v 4 v [17]
4 v 4 4 v [3,25]
v v v v v [14]
v v v [52]
4 v v 4 4 v v This study

studied [32]. The strategy involves using a rule-based RRL control
strategy to charge/discharge the energy storage and maintain voltage
variations within acceptable limits. The proposed strategy has been
tested and validated through simulation, showing that it effectively re-
duces voltage variations. Whereas in Ref. [33], research has focused on
RE, particularly PV generation. The storage capacity for PV firming can
reach up to 6 kW h for a 600 W system. The storage capacity is analyzed
for a system using dynamic PV reference. Experimental verification of a
static PV-firming control algorithm is done using a 200 W prototype. The
research objectives include integrating batteries into grid-tied power
electronics, designing a control method for battery charging and dis-
charging, and developing algorithms for firming the PV output profile.

The implementation of prediction and forecasting algorithms that
allow optimizing energy management has been highlighted. In Ref. [34]
is reported that the industrial sector accounts for 38 % of global energy
use. Long short-term memory (LSTM) is slightly better than random
forest (RF) for load forecasting. The main goal of forecasting is to opti-
mize energy flow and bring financial savings. Smart meters and smart
grid technology can help with load management and demand response.
The study focused on forecasting the hourly load curve of a meat pro-
cessing factory. A research group in Ref. [35] utilizes a multilayer per-
ceptron neural network (MLPNN) for forecasting solar irradiance,
temperature, and load, and particle swarm optimization (PSO) for
optimal power flow control. The proposed EMS has a forecasting module
for day-ahead prediction and an optimization module for day-ahead
scheduling. The capacity of the PV array is 10 kW, and the battery en-
ergy storage capacity is 80 kW h. The EMS is verified on an experimental
microgrid, and simulation results demonstrate savings in electricity bill
due to optimal energy scheduling. A full-state feedback control strategy
for multi-area hydropower systems is proposed in Ref. [36]. The inte-
gration of redox flow battery (RFB) for non-linear systems is analyzed. In
Ref. [37], is presented a home energy management system with three
effective demand response strategies that are shown to be more effective
than other approaches, improving indicators by approximately 70 %
while only slightly increasing the electricity bill. Some innovative so-
lutions have been proposed in the active control of voltage and fre-
quency in electrical networks. A model predictive controller (MPC)
scheme has been proposed to minimize voltage and frequency fluctua-
tions based on Harris Hawks optimization [38]. Where reduced inertia,
stochastic load variations and their application in non-linear systems
have been favorably evaluated.

[24-34,39,40]Some studies also focus on algorithms that improve
the efficiency of investors through exhaustive tests in real-time simu-
lators. The authors in Ref. [41] present multiple PV systems and battery
energy storage based on bidirectional converter. In which an energy
advance feeding component is used, which improves its performance.
The tests have been validated with the OPAL-RT real-time controller.

Similarly, a hybrid method is proposed, which combines an arithmetic
optimization algorithm and particle swarm optimization to improve the
efficiency of the inverter through a renewed hysteresis current controller
[42]. Real-time simulation allows performance to be analyzed for
various scenarios such as solar insolation variation, load alterations and
unbalanced non-linear loads [16,43,44]. Besides, a study analyzes the
inertia emulation control in which it transforms the behavior of the
inverter as a synchronous generator connected to the grid with a battery
and SC in the event of power imbalances [45].

1.3. Challenges

Some studies have been presented that integrate the double func-
tionality of active and reactive power compensation based on power
smoothing algorithms [3,14-19]. A study discusses the contribution of
clients that allow them to receive economic benefits for providing
voltage regulation services through coordinated control of real and
reactive power [14]. Active and reactive power flow has also been
implemented through a low pass filter (LPF) [15,17]. These studies
summarize the importance of applying adaptive techniques to mitigate
power fluctuations based on filters, ESS sizing and optimization, state of
charge (SoC) control and predictive models. However, the compensation
of reactive power and how the voltage at the point of common coupling
(PCQ) influences is not specifically analyzed. Nor has management been
addressed from the demand side, particularly with the reactive power
consumed from the grid by the industrial sector and improving the
quality of energy in PCC.

After reviewing the current literature, some points of interest in the
research have been identified that have not been fully addressed.
Whereby, Table 1 presents the key characteristics of the existing liter-
ature on PV systems in comparison with the proposed study.

1.4. Contribution and paper organization

Unlike to existing literature, we propose in this paper a multi-mode
monitoring and energy management strategy for PV-storage systems
that aims at leveraging power fluctuations and excess PV energy for
compensation of active reactive power in the electrical grid. It also in-
tegrates an energy pre-dispatch strategy through a prediction model that
allows optimal energy management. In addition, the proposed strategies
allow for a notable improvement in power quality in PCC with adequate
control of the ESS.

The following points establish the contribution of this article:

- A multimode control method is formulated that allows P-f and Q-V
regulation through hybrid storage systems in PV systems based on
smoothing techniques.
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(a) - Monitoring the parameters of the electrical grid allows stabilizing the
PV Power (kW) T T e . . . .
P Scenario 1 voltage level on PCC, significantly improving power quality with
- optimal management of reactive power.
- The experimental tests support the discussion of the results in a real-
E time simulation environment and energy laboratory tests.
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S PL Scenario 2 b
—_— PL Scenario 3
—_— PL Scenario 4
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o

--------- P, Scenario 5 The remainder of this paper is organized as follows: Section 2 pre-

sents the problem formulation and methodology, Section 3 System

Power kW/kVAr
N
=]

0 i
0:00 6:00

23:59 modeling through mathematical formulation, Section 4 outlines the
multimode management model proposed, Section 5 presents the case
(b) study including results and discussions. Finally, section 6 presents the
40 PV Power (kW) ! T conclusions.
i: % ———Q, Scenario 1 |
x ——Q__ Scenario 2 2. Problem statement and methodology
E 20 —QL Scenario 3 i
@ |——Q Scenario4 Let us consider an industrial demand profile defined by an active and
ng_ L) — Q, Scenario 5 \ . 1 reactive power consumption (i.e. Pj, Q;, respectively) with different
0 ) . = scenarios during working day hours generally around 8:00 to 18:00,
0:00 6:00 12:00 18:00 2359 which is connected to a microgrid at a point of common connection that
Time (h) integrates a PV system and ESS. As seen in Fig. 1 (a) and Fig. 1 (b), the
R (c) electrical distribution requires active and reactive power support to
R 05 y T T balance demand with generation. This is not completely stocked by the
2 ; PV generation system. Therefore, it is important to establish demand
:.(% prediction techniques that allow optimizing energy management.
g 0 Besides, in Fig. 1 (c) the percentage of power fluctuation (kW/min)
u_3_ PV Fluctuations (%) caused by the variation of PV generation d(P*V)/dt, variation of demand
5| Load Fluctuations (%) d(P")/dt, and the result in the power grid have been calculated. These
g 05 — Grid Fluctuations (%) ) ‘ abrupt changes in generation and demand steps can cause instability in
& 500 6:00 12:00 18:00 23:59 the electrical grid [12]. Both, for the variation in the grid frequency
Time (h) (active power) or voltage variations (reactive power) [47,48]. Hence, a
novel control method is generated to mitigate active power fluctuations
Fig. 1. PV power and industrial demand profiles in different scenarios. (a) and reactive power compensation through ESS optimization.

Active Power required. (b) Reactive Power required. (c) Power fluctuations. The control methodology is based on the P-f and Q-V control stra-

tegies as seen in Fig. 2. Frequency control is regulated through active

- An energy pre-dispatch strategy is established for industrial demand power control, so Af is significantly reduced when the rate of change of
profiles under different scenarios using the LSTM neural network. power is reduced [12]. That is, AP is controlled using smoothing tech-
- A substantial reduction in energy fluctuations and a better balance niques, which allows its variability to be reduced over time PHESS (kw)

between energy production and demand is demonstrated with the

[4,6,53]. On the other hand, voltage regulation AV at the coupling point
compensation of active and reactive power in the grid.

can be controlled by regulating the reactive power AQ injection to keep
it within given limits Vi and Vi , respectively [3,14,17]. In this case,
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Q-V Droop Characteristics
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Power fluctuations mitigation Reactive power compensation #
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i HESS S 5 Multi-mode i
1 P7P°°[KkW,KVAr] control algorithm i

Fig. 2. Methodology for multimode control based on P-f and Q-V Droop Characteristics through of power fluctuations mitigation and reactive power compensation.
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the new methodology proposes the compensation of reactive power
through the storage systems PHESS (kvar). In this way, the workflow of
the multimode algorithm is proposed, which will be explained in detail
in the following sections.

3. System modelling

The purpose of mathematical modeling is to closely simulate real-
world conditions, considering the practical limitations of the labora-
tory equipment (as presented in the case study later in this document).
Experimental tests will be conducted to validate the efficiency, preci-
sion, and reliability of the components. The mathematical models will
serve as the foundation for computational simulations, enabling the
programming of the newly proposed control system. This control system
will be integrated with the main control system of the laboratory to
transmit reference commands.

3.1. Photovoltaic system

PV generation can be calculated according to (1) as a function of
weather parameters [54,55].
jrad
PPV =PV PV, (ISP") [1+a(r 1) | weeTuE e}
Wt

/‘LPV

where yFV represents the rated capacity of the PV system, ¥ denotes the

PV derating factor in percentage, I}V corresponds to the generated PV
current, I} signifies the reverse saturation diode current, af, represents
the power temperature coefficient, T5Y represents the cell temperature,
and TE" represents the cell temperature under standard test conditions.
The T2V values were obtained by measuring with a pyrometer in the
laboratory to ensure a more realistic model. In order to ensure the output
power of the PV system and prevent any indeterminacy, it is necessary to
adhere to the constraints imposed by Eq. (2) [54].

EY#0aby (e —Tg') <1; Vte TUE (2
3.2. Supercapacitor

1
Efczicsc.(vfc)z; VteTUE 3)

The energy stored in a supercapacitor can be determined using (3)
[56]:

The efficiency of the supercapacitor, denoted as 75, is determined by
the ratio of the useful power, PS¢, to the total power. The total power
accounts for losses and the real power, PSC. On the other hand, the state
of charge is directly correlated to the equipment’s voltage and can be
determined using Eq. (4) [57].

VSC _ Vmin
C _ . =
SOC =4 —yman VL ETUE )]

t t

where V™%; ymin denote the upper and lower voltage limits of the
supercapacitor, respectively, observed during its real-time operation. On
the other hand, the set of constraints (5) bind variables related to the
supercapacitor following rated values [57].

VI < V36 < VIR < ¢ < IS Yt e T,Ve € CUE 5)

ct et

where If’t’ma" and I”°5™ represent the maximum permissible charge and
discharge currents for the SC, respectively.

Renewable Energy 230 (2024) 120820
3.3. Vanadium redox flow battery

The Vanadium Redox Flow Battery (VRFB) is an electrochemical ESS
that utilizes liquid electrolytes for storing electrical energy. It comprises
multiple interconnected electrochemical cells arranged in a series
configuration, forming a stack. This specific arrangement is critical for
establishing an operational voltage that is suitable for the battery and its
associated power electronics. VRFBs store energy through reversible
chemical reactions occurring within the electrochemical cells. During
the charging process, these reactions alter the ionic state of the elec-
trolyte, leading to a fraction of the electrolyte attaining a higher positive
charge compared to the remainder. The resulting electrolyte solutions
are known as the positive and negative electrolytes, respectively, and
are stored separately in dedicated tanks. Upon discharging, these re-
actions are reversed, allowing the release of electrical energy for utili-
zation by end users. Continuous circulation of the electrolyte solutions
through the stack is maintained during operation. The electrochemical
reactions taking place within the stack produce a direct current (DC)
output, which can be harnessed for a wide range of applications. VRFBs
are capable to undergo regular deep discharges, reaching a charge level
of 0 %, without incurring any damage to its integrity. Nevertheless,
similar to other electrochemical batteries, the output power and ca-
pacity of the VRFBs may be influenced by temperature and other
operational factors [58].

This paper aims to streamline the model to accurately represent a
real-world system while accommodating long-term simulations. To
achieve this, established and extensively validated models from the
references [59,60] have been taken into account. Hence, the output
voltage of the VRFB is computed using (6).

VREB k VRFB VREB , Cells Stack  pSpecific (VRFB 7Stack
vy :VfﬁngB(SOCt T 7”t,\E/RFB)+It$IC2FB'RVp):;gw(Tt sI:_t‘?)gFB)?VtGT

1]

U
©

where V3k represents the stack voltage, I3k, denotes the stack cur-

rent, and Rf,";;éﬁc is the specific resistance of the VRFB, as shown in (6). It

can be observed that the V5, is dependent on the SOC in the VRFB,
temperature, and the number of cells. The stack voltage can be deter-
mined by calculating the Nernst equation. To simplify the calculation,
the Nernst equation can be defined as a relationship between the open-
circuit voltage and the SOC of the VRFB, as said (7) [61].

\ 2
vt ey o { V0G| 0D L e
t, t, ,50% ’
F (1 - (socr™=)*)

U

[1]

)

where ;%% . represents the number of cells in the stack, V9%, <., sig-

nifies the open-circuit voltage of a reference cell measured at a 50 %
state of charge, i denotes the molar gas constant (8.314 J/(mol*K)),
TY/RFE represents the process temperature in Kelvin (K), and F represents
the Faraday constant (96,485 As/mol). The SOCYRFB is defined as the
ratio of the currently stored energy to the total energy capacity of the
VREFB (ECeclY). If the initial SOC/®™ is known, its change can be pre-
dicted using the following Eq. (8) [61]:

SOC/R™® = SOC™™ + ASOC!*™S0C)%™

tn—t
n VS%’;’B IS%B
VRFB t e, . =
= SOCt + / Wdt, Vte TUE (8)
t t VRFB

Bk =Ly — ks Ve € TUE 9
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Fig. 3. Schematic representation of the proposed multimode model.

IStack

The current flowing through the stack, denoted as I{iy,

calculated by applying Kirchhoff’s first law as

ystem
where If VRFB

by the inverter,

, can be

represents the charging or discharging current provided
I’é&’CRFB denotes the current feeding auxiliary components
such as the two pumps, battery controller, installed sensors, and actu-
ators. The inverter governs the battery charging and discharging pro-
cess. Depending on the power setpoint, the inverter defines the applied
DC current system.

The cell stack consists of 12 modules, with minimum and maximum
voltages set at 42.7 Vdc and 62.82 Vdc, respectively [62,63]. Once the
upper voltage limit is reached, the inverter initiates a current reduction
by employing a simple power control loop. The current is limited within
the technical specification of the VRFB to +200 A-DC on the 48 Vdc bus.

3.4. Utility grid

The mathematical depiction of the electrical grid involves an infinite
power generator connected in parallel to the power bus. In order to
convey the energy exchanges with the proposed system, the following
constraints are stated.

The maximum power limit that the prosumer can procure from the
utility grid is subject to the capacity of the grid and the policies of each
electric distribution company. Conversely, the following indicates the
maximum power limit that the prosumer can export to the utility grid as
shown in (10) [371:

0 < PEIb < 7Gdbp adb ( < pods < ¢Gdsp Gds, Y e TUER (10)

Simultaneous bidirectional energy flow between the utility grid and
the prosumer is not allowed, as expressed in (11) [37].

0 404 <15 Vee TUE

(1)

During outages or grid failures, it is necessary to terminate the power
flow between the grid and the prosumer. These constraints are defined
as follows:

7940 =09 = 0; ¥t € T,Yc € CUE 12)
Gdb _ : : Gds _
where 77 = 1 when the grid supplies power to the prosumer, 7" =1

when the prosumer supplies power to the grid, p,°® represents the
maximum power flow from the grid to the prosumer, p,°® represents the
maximum power flow from the prosumer to the grid, and O refers to the
outage scenario matrix.

4. Multi-mode management model

This section presents the multimode management model proposed
for the grid-connected PV system. On which the use of storage systems is

based with a demand prediction strategy. This model is divided into
three specific subsections in the analysis of the electrical grid. (a)
Obtaining electrical parameters and magnitudes, (b) Demand fore-
casting algorithm, (c¢) Multi-mode operation of ESS as seen in the
following Fig. 3.

4.1. Acquisition architecture for electrical parameters and magnitudes

A Master Terminal Unit (MTU) that has a real-time database with a
Hot-StandBy configuration integrates the hardware architecture of the
SCADA communications system. The control and automation of the
microgrid is carried out by the remote terminal units (RTUs) through the
PLCs (Programmer Logic Controller) to each of the application pro-
gramming interfaces (APIs) of the PV and ESS systems for the control
and capture of data [62]. Likewise, network analyzers are responsible
for monitoring the electrical parameters and magnitudes of the electrical
grid and loads. In parallel, the control of the algorithm is executed in
MATLAB through Modbus TCP/IP communication of the same register
and writing of variables. In addition, the controller tests are validated
through the OPAL-RT real-time simulator, which integrates the
modeling of the microgrid previously to obtain the parameters and ad-
justments. Where the regulation of frequency, voltage at the coupling
point and response of the controller in reference power to the ESS is
specifically analyzed. The following Fig. 4 presents the configuration of
the OPAL-RT real-time simulator and the Microgrid communications
architectural scheme.

Controller tests

G,

7 MATLAB - sontrol

OPAL-RT |

TECHNOLOGIES }

MTU
OPC Server

Real-Time Simulation

stations @ RTUs

............................ Modbus
I]I]D”[I I]|:||]|:||:| N PLCs TCP/IP
11 11

APIs
Pvz/]j HZJESS

Inverter Inverter

Network
analyzer
L

LOADs

Fig. 4. Real-time simulator configuration and Microgrid communications
architectural scheme.
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Table 2
LSTM model configuration parameters.

Description Setting

Train-Test Data Split
Data Normalization

Train Percentage: 70 %
Range normalization method applied

LSTM Model Number of Input Features: Determined by Size of
Architecture Normalized Training Data

Number of Hidden 100
Units

Sequence Length 1

Layers Sequence Input Layer, LSTM Layer, Fully Connected,

Regression Layer

Training Configuration =~ Optimization Algorithm: Adam

Maximum Epochs 100
Mini-Batch Size 64
Model Training Training performed using specified layers and options
Prediction Number of Predictions: 500

Configuration
Prediction Loop Iteration over test data to make predictions
Denormalization Manual denormalization of predictions using the original

data range

4.2. Demand forecasting algorithm

The Long Short-Term Memory (LSTM) neural network is a special-
ized architecture designed for processing temporal sequences. In the
context of predicting industrial demand, this network can be mathe-
matically structured as follows: a temporal sequence of industrial de-
mand data (P, and Q;), denoted as xi, Xz, ...X;, where t represents the
current time step. The goal is to predict future demand y,.; based on
previous observations. Below, each component of an LSTM cell, which is
the basic unit of this network, is explained.

To begin, the forget gate f; determines which information from the
previous state C;_; should be discarded (f; ~ 0) or retained (f; ~ 1). This
decision is based on the concatenation of the previous hidden state h;_1
and the current input x;, passed through a sigmoid function ¢ as repre-
sented in Eq (13). Next, the input gate i, decides what new information
should be added to the state cell. Like the forget gate, it is calculated
using a sigmoid function applied to the concatenation of h;_; and x;, as
shown in (14). The output gate o, determines which part of the current
state cell C, will be used to compute the output. It is calculated using a

Scenario 1

Scenario 2
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sigmoid function and the concatenation of h,_; and x;, as shown in (15)
[64-66].

The state cell is updated with a new candidate C, calculated using the
hyperbolic tangent function tan h. This candidate reflects the new in-
formation that could be added to the state cell, as represented in (16).
The state cell is updated by considering both the forget gate and the
input gate. C, represents the updated state cell in (17). Finally, the
output h,, which is the prediction at time step t, is calculated by
considering the output gate and the updated state cell, as seen in (18). In
summary, an LSTM cell processes information over time, allowing the
network to capture long-term dependencies in temporal sequences, such
as observations of industrial demand over time. This learning process
enables the network to make accurate predictions about future indus-
trial demand [67-69].

fo=0(Wr.[he1,x] +by) (13)
i, =o(Wi.[he 1, %] +b;) 14
00 =06(W,.[h_1,%] +b,) (15)
C. =tan h(Wg.[h._1, %]+ bc) 16)
C.=f.Coq +1.C, a7)
h, = o,.tan h(C,) (18)

where, the Forget Gate f; regulates the amount of past information C;_;
to discard, while the Input Gate i, governs the integration of new in-
formation C, into the cell state C. Simultaneously, the Output Gate o,
determines the contribution of the cell state to the output. The Cell
Memory Candidate C, represents a potential new state for the memory
cell, and the Cell Memory C; is the updated state, combining forgotten
and new information. The Hidden State h, is the output, reflecting the
current cell state modulated by the Output Gate. These parameters are
better summarized in Table 2.

Scenario 3
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Fig. 5. PV generation profiles and industrial demand with support from the grid (Samples — 15 min).
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Fig. 6. Industrial demand prediction for active power (P) and reactive power (Q) using LSTM. (a), (b), and (c) depict the predictions for active power, while (d), (e),
and (f) illustrate the corresponding predictions for reactive power. Each sample in the figures (a) and (d) corresponds to a 15-min interval in real time.

4.3. Multi-mode operation of energy storage systems

The multimode management model uses the PV power smoothing
algorithm to mitigate the fluctuations generated. In this configuration,
SC-based ESSs are used where to obtain the system reference power as
described below:

[PRY, — AL X Tax] > P > [PPY, + AL X T (20)

Where the SC power P5C is assigned as the difference between the P

and the PV power P!V if the value of d(iv) exceeds 10 %/min of the

nominal power of the PV installation ryay [8]. Otherwise, the value is

PV
pref _ PPV jf d(P") > fmax : VEE€TUE zero and does not require use of the SC [26].
psc _ dt 19) In the second strategy, VRFB is used as a demand contribution system
! . d(pf") _ with the storage of excess active power from the grid when P?V > PL. On
0 if dr | < Tmaxi vte TUE the other hand, it prioritizes the contribution of active and reactive
Scenario 1 Scenario 2 Scenario 3
15 '5 20
= ) i = =
<10 i < < 10 fid il |
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5. Il i | | s 5 o lhil lhm -
2 ol il Bl w7 2 : ill"" 4
o !,l I o a -10
5
" " i"
6:00 9:00 12:00 15:00 18:00 6:00 9:00 12:00 15:00 18:00 6:00 9:00 12:00 15:00 18:00
Samples Samples Samples
Scenario 4 ~ Scenario 5
20 -
z BlP , charge
> 10 .
< P . discharge
P ref
<0 - Bl Q __ discharge
o ! ref
; -----
€ 0l grid
A L e Qgrid
6:00 9:00 12:00 15:.00 18:00 6:00 9:00 12:00 15:00 18:00
Samples Samples

Fig. 7. Energy pre-dispatch strategy with demand forecast (Samples — 15 min).
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Table 3
Energy pre-dispatch strategy with demand forecast.
Hour PV Energy Demand (P) Demand (Q) VRFB/Grid VRFB/Grid
[kWh] [kWh] [kVAr] (P) [kWh] (Q) [kVAr]

0:00 0,04 0,06 0,00 -0,02 0,00
1:00 0,05 0,06 0,00 0,00 0,00
2:00 0,05 0,06 0,00 —0,01 0,00
3:00 0,05 0,06 0,00 -0,01 0,00
4:00 0,03 0,06 0,00 —0,03 0,00
5:00 0,05 0,06 0,00 —0,01 0,00
6:00 0,04 0,06 0,00 —0,02 0,00
7:00 0,24 0,06 0,00 0,19 0,00
8:00 0,16 0,06 0,00 0,10 0,00
9:00 1,89 0,13 0,11 1,76 —-0,11
10:00 2,70 3,53 0,07 —0,82 —0,07
11:00 2,74 3,75 0,04 —1,01 —0,04
12:00 4,37 3,90 0,17 0,46 —0,17
13:00 5,27 4,40 0,47 0,87 —0,47
14:00 3,89 3,32 0,03 0,57 —0,03
15:00 2,64 0,25 0,11 2,40 —0,11
16:00 7,18 4,22 0,76 2,96 —0,76
17:00 2,61 4,39 0,50 —-1,78 —0,50
18:00 0,74 3,69 0,44 —2,95 —0,44
19:00 0,07 0,13 0,00 —0,06 0,00
20:00 0,03 0,06 0,00 —0,02 0,00
21:00 0,02 0,06 0,00 —0,04 0,00
22:00 0,06 0,06 0,00 0,00 0,00
23:00 0,04 0,06 0,00 -0,02 0,00

power to the demand directly when P- > PPV,

The active power generated by the PV system is delivered directly to
the grid as with the reference power of the HESS. The energy manage-
ment performed by the controllers makes possible to balance the power
flow between sources and demand.

PPV 4+ PYR 4 PSS, If PPV > P and SOC'® < SOCYR(k) < SOCY®

PV 4+ PSS If PPV > P and SOCR(k) < SOCY®
PR + PS4, If PPV < PL and SOC® < SOCY®(k) < sOC®
PP If PPV < P! and SOC'®(k) < SOCY®

SC Scope

s VtETUE
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VR If SOC'® < SOC'R(k) < SOCY®
QL = & R v () ' VteTUE

Gds. 1¢ QO VR VR VR 22
Q. If SOC™® < SOC, (k) < SOC!

Charge and discharge control for VRFBs is prioritized for reactive
compensation as follows: P{® = —P{" If P}¥ > P} and Q; = 0. Likewise
with Q'* = Qr If QF > 0.

The following Fig. 5 presents the energy values required for the
dispatch of demand under different generation and demand profiles. PV
generation is obtained gradually from 6:00 to 18:00 based on a scenario
of five representative days. On the other hand, the power of industrial
demand corresponds to working hours generally from 8:00 to 18:00. In
this case, an analysis is required for the dispatch of active and reactive
power for demand Grid support allows energy to be regulated in case of
excess generation and supplemented in case of power shortage.

5. Results and discussion

This section presents the results of the proposed methodology based
on the demand forecast, the multimode operation of the control algo-
rithm and Testing and validation of the Controller in real-time Simulator
and experimental validation in case study.

5.1. Demand forecasting algorithm
The predictions for P™ and Q-™ have been generated using LSTM
with an impressively low RMSE of 1.2e-09. The model achieved this
accuracy within a training time of 00:01:32, utilizing 32,615 samples
over 5 epochs. The graphical representation in Fig. 6 illustrates a rapid
decline in loss to very low values, accompanied by a simultaneous peak
in accuracy.

(21)

Controller tests in real-time simulator

SC_scope

i . SM Plant

SM_plant

Tests in Microgrids laboratory

Point Common
Connection

3
: =
Ts system: 5e-5
i Ts control: 1e-4

Fig. 8. Case study with real-time controller test OPAL-RT and microgrid laboratory tests.
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h, = PIS™ | QIs™

5.2. Multi-mode operation of energy storage systems

Fig. 7 shows the predispatch values PS¢ = P — P! based on the
prediction using LSTM, where the Q is prioritized for the demand, which
will significantly improve the voltage in PCC. Likewise, when excess PV
generation P > 0 is available, it is stored in the VRFBs to discharge when
P < 0 is required. In this configuration, the inverters deliver active and
reactive power for the discharge of the VRFBs and active power only for
the load. The reference power is generated as the active power required

_PESS Real-time (kW)

1.8 |——P (kW)

ref

0.8} Power fluctuations
06l Mitigation
0.5 1 1.5 2 25

Time (s) %10°

from the grid at the connection point with the demand values. The
strategy of generating a pre-dispatch allows improving the accumulation
of energy for the required hours. Table 3 shows the values of the energy
pre-dispatch strategy with demand forecast required for Scenario 2.

5.3. Testing and validation of the controller in real-time simulator

The programming of the controller was carried out in the OPAL-RT
real-time simulator with the microgrid models developed in Simulink/
MATLAB with the real power profiles obtained from the SCADA system
datalogger and validated in RT-LAB platform. This configuration
allowed the controller parameters to be adjusted to validate the results

Ess Real time (kW)
_Pref(kW)
d(pfY)
2>
dt max

2 25 3 3.5 4 4.5
Time (s) %10°

Fig. 10. Controller response with Reference power for ESS validated tests with OPAL RT and Simulink/MATLAB.
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Fig. 11. Controller response in OPAL-RT real time simulator: (a) Variable PV power without smoothing. (b) THD Voltage measurement without power smoothing. (c)
THD Current measurement without power smoothing. (e) Variable PV power with smoothing. (b) THD Voltage measurement with power smoothing. (¢) THD Current

measurement with power smoothing.

in the PCC. Fig. 8 shows the equipment used during development. In
which the OPAL-RT real-time simulator is integrated through a LAN
connection to the Local Host. The architecture of the OPAL-RT real-time
simulation equipment is made up of the FPGA (Field Programmable Gate
Array) that integrates an Intel® Xeon® E3 computer with 4 cores, 3.7
GHz, 16 GB of RAM, 250 GB SSD. This device is responsible for executing
the SM Plant subsystem block. While the computer displays the output
signals of the SC Scope subsystem independent of the simulation
calculation, the characteristics of this device have an Intel(R) Core (TM)
i7-10700 CPU processor, 2.90 GHz with 16 Gb RAM. The program runs
in Flixed step with the ode5 Dormand-Prince method which evaluates
the function six times to calculate the fourth and fifth order solutions
and considers the lower one as the error of the solution. In this case, the
Computation Burden is subdivided into two processing subsystems and
another monitoring subsystem. This reduces the total time involved in
the simulated system. Subsystem step size = 0.000050 s (State updated
at each local step). In the simulation, a system operation time Ts system
= 5e-5 s and switching frequency 20 kHz is indicated, which guarantees
its operation in a real value environment [43,70]. Likewise, a Ts control
= le-4 s is assigned for the Voltage Source Converters (VSC) devices
integrated into the DC/AC power converters.

In addition, Fig. 9 presents the results of the configuration of the RT-
LAB platform, where two different input profiles are analyzed without
the smoothing control Fig. 9(a—c) and considering the smoothing control
Fig. 9(d—e). A variable input solar irradiation profile produces fluctua-
tions in response of the PV system of 1-2.5 kW, with which voltage
disturbances can be observed in the PCC waveform. Likewise, the cur-
rent injected in EDNs depends directly on the PV power. On the other
hand, considering the support of the ESS in PCC allows maintaining
voltage regulation and improving current variability. In this case, the
power is filtered by the smoothing method at a given ramp rate. The
difference between the real-time power value and that of the filter is
absorbed directly by ESS.

In the second phase, the response time of the controller is validated
prior to the reference power signal as indicated in (19). As seen in

Fig. 10, the real-time Pggg value is directly coupled to the P, reference
value. During the ramp rate of less than ryax < +10% of the PV power.
The power adjustment is executed practically in the order of millisec-
onds. The models used from the Simulink/MATLAB blocks execute the
solution of the non-linear systems for the storage systems. The experi-
mental validation of the model shows a maximum error of 5 % for the

batteries and 2 % for the SCs.

5.4. Analysis of energy quality indices

Power quality indicators are used to measure the amount of distor-
tion that occurs in the PCC compared to the original signal value. An
analysis of the Total Harmonic Distortion (THD) is also presented where
the effect of power fluctuations on the voltage THD (V) and current
THD (I) are analyzed in Fig. 11 (a) and Fig. 11 (b) respectively. It is
considered the THD is defined as the root mean square (RMS) value of
the total harmonics of the signal, divided by the RMS value of its

fundamental signal Iy = /I3 + I3 + ... + I2. Where I RMS value of the

fundamental current (similarly for voltage). A reduction in THD(V) <
0.5 % and THD (I) < 2 % can be seen in Fig. 11(e) and Fig. 11 (f),
respectively. The contribution of the ESS lies in the P-f control through
power smoothing and Q-V in the reactive power compensation. Thus,
improving the regulation in the PCC of the electrical grid.

5.5. Experimental validation in case study

In the experimental validation, the CCTI-B microgrid laboratory has
been considered (See Fig. 8) [62]. As presented in Fig. 12(a—c), an in-
dustrial demand profile (kW) is previously assigned. The PV power
values (30 kW) are obtained from the SCADA system with which the ESS
configuration of the SC (0.4 kW h) and VRFB (100 kW h) directly receive
the reference values from the inverters through ModBus communica-
tion. The Psc power values absorb and deliver energy to grid minimizing
power fluctuations with rp.x < 10%. That is to say, a low AP is

11



D. Benavides et al.

(a)

PPV PV Power (kW)

Renewable Energy 230 (2024) 120820

(d) PPV PV Power (kW)

40 . 40 g -
—=—PF 1D (kW) — Qt D (kVAN)
30| | < 30
= A SBona oiftsy <
5 20| 520
2 v
o [
o 10| g 10
a8
0 0 =0 | !
6:00 8:00 10:00 12:00 14:00 16:00 18:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00
Time (s Time (s) PPV PV Power (kW)
(b) PPV PV Power (kW) (e) e

40 55C 56 40 A P QYR VRFB (kVA)
= ' o Z30 ——PYRVRFB (kW)
2 2| <
g =20
o —

g 0 5 10
o =
L
20 : : : . i [ , i
6:00 8:00 10:00 12:00 14:00 16:00 18:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00
Time (s). . Time (s) VR
(©) PPV PV Power (kW) o SOC™ (%)

401 | T ——PYR VRFB (kW) i —80C¢ (%) 100
<%0 WINPT 1 K844 3z
L ~
=20+ 4 [T
= 8]
) € 842 )
310 %) 3
@, G 84 @

. : : . . : . -20
SO0 ROG 0 A0 ke et A P800 00 1000 1200 1400 1600 18:00
Time (s) Time (s)
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maintained, so the P-f control strategies are applied to maintain
adequate levels of the grid frequency and avoid its instability. On the
other hand, Fig. 12 (d) plots the reactive power of industrial demand
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Fig. 13. Results of the energy monitoring and management algorithm of the ESS operating modes.

12

(kvar). This power is compensated directly by VRFB as a priority in the
multimode method. However, it also takes advantage of the support for
the demand in active power, that is, covering the demand in P} > PPV
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(See Fig. 12 (e)). Finally, Fig. 12 (f) presents the state of charge of the
ESS systems. In this case, the SCs respond only to sudden changes in the
steps in the power grid and VRFB contribute active power and reactive
power compensation. Which integrates the regulation of voltage in PCC
through the Q-V control strategy.

The results of the operation models based on the ESS are detailed
below.

Case 1. Active and reactive power support with Load fluctuation: in this
activity there is an increase in the load in active and reactive power,
which is managed by the PV power and VRFB, as there are no PV
Power fluctuations the use is not required of SC.

Case 2. Active and reactive power support with PV fluctuation: if PV
fluctuations occur, the SCs absorb the excess energy and deliver
energy to the grid if the ramp limit is exceeded. On the other hand, if
active and reactive power is required from the load, the VRFBs fulfill
this function. It is important to clarify that when charging VRFBs,

13

only delivery of active or reactive power at the same time or
discharge of active or reactive power is allowed. That is, it does not
allow charging with active power and discharging reactive power at
the same time, due to the flow of the inverter with the grid. There-
fore, this limitation has also been considered in the algorithm.

Case 3: Active power support with PV fluctuation: The operation of the
SC allows the control of PV fluctuations, consequently, the SCs only
interact with the grid if there is an increase in the ramp rate
exceeding the maximum pre-established value (rmg > +10%). In
different values its operation is null. Besides, if there is no reactive
load from the demand, the VRFBs take advantage of the surplus
energy for future operations.

Case 4: Active and reactive power support with PV and Load Fluctuation.
When power variations occur in the load with active and reactive
power, the VRFBs have functionality combined with the energy
requirement. On the other hand, SCs allow their hydride interaction



D. Benavides et al.

if required. In Fig. 13. The different types of operations indicated
above are graphed.

After the application of the management algorithm, the results are
analyzed in the PCC based on the compensation of active and reactive
power. Fig. 14 shows the voltage values of the three-phase system (R-S-
T) with respect to the neutral measured directly at the PCC. Two sce-
narios based on PV production without ESS integration in the grid and
with ESS coupling of the proposed multimode method have been
considered. As can be seen, the reactive power compensation at the
coupling point significantly improves voltage regulation by reducing the
AV. In addition, during working hours from 6:00 to 18:00, VRFB’s
reactive compensation offers optimal regulation around 127 Vac.

Fig. 15 presents the fitting results in the PCC with the average voltage
measurements through the normal distribution function. Fig. 15 (a)
shows the voltage drop over the number of events over 3x 10* and a
voltage drop range 4 V from the nominal value. On the other hand, in
Fig. 15 (b) the measurement of events with the proposed controller
improves significantly in a 2 V range in PCC with the grid. Finally, the
Empirical cumulative distribution function of the A Voltage PCC does
not support ESS (-4 V-4 V) and with ESS support (-2 V-4 V) respectively.

6. Conclusions

This paper presents an innovative multi-mode prediction and opti-
mization strategy to mitigate power fluctuations in a photovoltaic sys-
tem with vanadium redox flow battery storage and supercapacitors. The
proposed system allows multimode operation through P-f and Q-V
control strategies that regulate power fluctuations and allow reactive
power compensation. In this way, the optimization of energy dispatch
processes, frequency regulation, regulation of power fluctuations,
voltage regulation in the PCC, compensation of reactive power and
reduction of THD indices are covered. The implementation of a multi-
mode monitoring and management model successfully tackles the
intermittent nature of photovoltaic resources, enhancing the distribu-
tion grid’s stability.

The results showcase the effectiveness of various components,
starting with the LSTM-based demand forecasting algorithm, demon-
strating impressive precision with an RMSE of 1.2e-09. The multimode
operation of ESS is highlighted, emphasizing a pre-dispatch strategy that
prioritizes demand and utilizes VRFB batteries to store and release en-
ergy as needed. This is evident in the pre-dispatch values for different
hours, optimizing energy accumulation.

Using the proposed method, a reduction of THD (V) < 0.5 % and THD
(I) < 2 % has been achieved for grid-connected PV systems. Which al-
lows us to offer advantages to reduce the impact of the integration of
renewable energies progressively.

Encouraging outcomes are observed in real-time simulator valida-
tion and experimental validation in the microgrid laboratory. Real-time
validation underscores the importance of smoothing control, revealing
that without it, solar power fluctuations lead to significant disturbances,
while with smoothing control, voltage regulation is maintained, and
current variability is improved.
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