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A B S T R A C T   

The integration of photovoltaic generation systems and variable demand can cause instability in the distribution 
network, due to power fluctuations and the increase in reactants, particularly in the industrial sector. In response, 
photovoltaic units have been equipped with local storage systems, which eventually absorb power fluctuations 
and improve installation performance. However, during this procedure other functionalities that energy storage 
could provide are neglected. Consequently, this study provides a multi-mode energy monitoring and manage
ment model that enables voltage regulation, frequency regulation and reactive power compensation through the 
optimal operation of energy storage systems. With this objective, a smoothing control algorithm is developed that 
interacts with parameters of the electrical grid at the common connection point and also allows the compensation 
of reactive power based on an industrial demand profile. This strategy uses the Long short-term memory neural 
network of historical demand data prior to energy consumption with a relatively low RMSE of 1.2e-09. The 
results are previously validated in a development environment using a real-time OPAL-RT simulator and tests in 
the electrical Microgrid laboratory at the University of Cuenca. This configuration allows establishing a demand 
forecasting model that improves the supervision, automation and analysis of daily energy production. A series of 
results are provided and analyzed that demonstrate that the new tool allows taking advantage of the provision of 
multimode functionalities, achieving optimal voltage regulation and improving power quality by reducing the 
total harmonic distortion THD (V) and THD (I) indices by 0.5. % and 2 % respectively.   

1. Introduction 

1.1. Background and motivation 

Electrical demand management is essential to optimize electrical 
distribution networks (EDNs) in modern electrical systems. Due to 
increasing energy consumption in the industrial sector, it has generated 
high energy costs for generation and economic dispatch. This problem is 
especially exacerbated during peak hours of the day, due to the usual 
working hours of large companies. Every year, industrial demand (DI) 
increases due to the economic development of cities [1,2]. Therefore, 
the integration of renewable energies (RE), such as photovoltaics (PV) or 
wind power (WT) allow the economy to grow in a more sustainable way. 
The integration of these systems has managed to create more flexible 
and adaptive electrical grid in distributed generation (DG) with micro
grids (MG). However, the uncertainty of renewable resources can cause 

instability in the electrical system, making the integration of these re
sources complex. As an alternative to mitigate this impact, energy 
storage systems (ESS) can be deployed, which can mitigate the insta
bility of the electrical system and ensure a stable and sustainable energy 
supply. Particularly, this study highlights how leveraging the support of 
ESS in a multi-objective manner can facilitate a transition towards smart 
grids (SG) and a more efficient future in modern electrical grids. 

The intermittency of renewable energy sourse (RES) in the EDNs can 
significantly affect power quality. Due to power fluctuations generated 
by solar and wind resources where their generation depends on factors 
such as wind and solar irradiation [3–8]. Consequently, power vari
ability with a high rate of change in the power grid can affect the system 
voltage and frequency [9–13]. In addition, with the integration of 
inverters/converters from renewable sources, the growth of charging 
stations for electric vehicles, the gradual increase of electrical machines 
and power converters in the industrial sector, has increased the con
sumption of reactive power from the electrical grid. Which also causes 
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voltage imbalances and generation of harmonics that could cause 
instability in the electrical system [14–16]. In response to the inter
mittency of RE, the implementation of ESS has made it possible to 
compensate for this intermittency and minimize the impacts on the 
electrical grid [3,15,17–19]. These battery-based storage systems can 
absorb excess energy during periods of high generation and release it 
when generation is low. In this way, greater stability is achieved in the 
power grid and voltage variability and the presence of harmonics are 
reduced. However, the compensation of reactive power from the de
mand side has not yet been addressed in a multifunctional way with 
power smoothing techniques. Therefore, this research studies the spe
cific operation of the ESS that integrates a demand forecasting algorithm 
that allows smoothing power fluctuations and maintaining the voltage 
profile in the EDNs through real or reactive power control. 

1.2. Literature review 

The integration of ESS as power smoothing techniques for RES sys
tem has been widely studied [6,20–25]. In recent studies, a novel PV 
power smoothing method using hybrid energy storage systems (HESS) 
and machine-learning is proposed in Ref. [24] to reduce fluctuations and 
improve the stability of electrical grids. Similarly, the authors in 
Ref. [26] propose a new power smoothing method using SC to reduce 
these fluctuations. The method involves two stages: prediction and 
correction. In Ref. [27], is proposed ramp-rate limiter (RRL) control 
method considers the SC voltage and ensures specific RRL at the 
distributed renewable energy sources (DRES) connection point without 
exceeding safety limits. In another study, the combined use of SCs and 
Battery energy storage system (BESS) is proposed for RRL control in 

converter-interfaced distributed renewable energy sources (CI-DRES) 
[28]. The results show that when RR Limitation is activated in both ESS 
types, the central BESS size can be 40 % smaller with a 50 % reduction in 
the BESS converter power. In addition, the long-term impact of power 
smoothing techniques on BESS capacity degradation is investigated 
[29]. Different filtering-based algorithms and ramp-rate limitation 
control schemes are compared. The aging of the BESS is estimated using 
a rainflow algorithm. RRL control scheme outperforms moving average 
(MA) and low pass filter (LPF) based methods in terms of achieved 
smoothing and BESS sizing. 

Dimitra Tragianni et al. [30], studied SCs sizing based on compara
tive study of PV power smoothing methods, comparing two power 
smoothing algorithms applied to a PV system with BESS. A sizing 
method based on real irradiation measurements is proposed, indicating 
the different requirements of each power smoothing method. On the 
other hand, in Ref. [25] proposes a novel method for power smoothing 
in WT using a fuzzy-logic-based SC system and time-constant fitting, 
which addresses the issue of uncertain results and delays in control 
response. The method generates active power set-point values for the SC 
to compensate for the intermittency of the WT, and the results were 
validated through laboratory tests. A two-stage filtering strategy is 
proposed in Ref. [31], control state of charge (SoC) in battery systems, 
but it still has a delay between input and output. The proposed method, 
which combines adaptive moving average control (AMAC) and adaptive 
SoC control (ASC), improves battery utilization and smoothness 
compared to moving average control (MAC). The effectiveness of the 
proposed approach is demonstrated in a field experiment. A control 
strategy that uses energy storage to mitigate rapid voltage variations 
caused by fluctuations in PV and WT power production has also been 

Abbreviature 

EDNs Electrical distribution networks 
ID Industrial demand 
RE Renewable energies 
RES Renewable energy sources 
PV Photovoltaics 
WT Wind turbine 
ESS Energy storage systems 
DG Distributed generation 
MG Microgrids 
SG Smart grids 
BESS Battery energy storage system 
HESS Hybrid energy storage systems 
EMS Energy management system 
CCTI-B Centro Científico, Tecnológico y de Investigación Balzay 
MLPNN Multilayer perceptron neural network 
MTU Master terminal unit 
PSO Particle swarm optimization 
LSTM Long short-term memory 
DRES Distributed renewable energy sources 
SCs Supercapacitors 
RF Random forest 
RRL Ramp-rate limiter 
CI-DRES Converter-interfaced distributed renewable energy sources 
SC Supercapacitor 
LPF Low pass filter 
MA moving average 
P-f Active Power (P) – frequency (f) Control 
Q-v Reactive Power (Q) – voltage (f) Control 
RMSE Root Mean Squared Error 
THD(V) Total harmonic distortion Voltage 
THD(I) Total harmonic distortion Current 

Nomenclature 
PL,QL Active and reactive power of industrial demand with 

representation of different scenarios 
d(PPV)/dt Variation of photovoltaic power in a time t 
d(PL)/dt Variation of demand power in a time t 
PHESS

t [kW] Active power supplied by ESS 
PHESS

t [kVAr] Reactive power supplied by ESS 
ΔV Voltage regulation 
ΔQ Reactive power regulation 
PPV

t Power output of the PV system 
ESC

t Energy of a supercapacitor 
PSC

t Power supercapacitor 
SOCSC

t SC state of charge 
SOCVRFB

t VRFB state of charge 
SOCVR

t VRFB minimum state of charge 

SOCVR
t VRFB maximum state of charge 

Pref
t Reference power value to the storage system 

PVR
t Power VRFB 

PL
t Active power of industrial demand 

QL
t Reactive power of industrial demand 

ft Output of the Forget Gate 
it Output of the Input Gate 
ot Output of the Output Gate 
C̃t Candidate version of the new cell state 
Ct Cell state at the current time step 
ht Output of the LSTM at the current time step 
PLSTM

t Active power demand forecast 
QLSTM

t Reactive power demand forecast 
QVR

t Reactive power support from VRFB 
PVR

t Active power support from VRFB  
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studied [32]. The strategy involves using a rule-based RRL control 
strategy to charge/discharge the energy storage and maintain voltage 
variations within acceptable limits. The proposed strategy has been 
tested and validated through simulation, showing that it effectively re
duces voltage variations. Whereas in Ref. [33], research has focused on 
RE, particularly PV generation. The storage capacity for PV firming can 
reach up to 6 kW h for a 600 W system. The storage capacity is analyzed 
for a system using dynamic PV reference. Experimental verification of a 
static PV-firming control algorithm is done using a 200 W prototype. The 
research objectives include integrating batteries into grid-tied power 
electronics, designing a control method for battery charging and dis
charging, and developing algorithms for firming the PV output profile. 

The implementation of prediction and forecasting algorithms that 
allow optimizing energy management has been highlighted. In Ref. [34] 
is reported that the industrial sector accounts for 38 % of global energy 
use. Long short-term memory (LSTM) is slightly better than random 
forest (RF) for load forecasting. The main goal of forecasting is to opti
mize energy flow and bring financial savings. Smart meters and smart 
grid technology can help with load management and demand response. 
The study focused on forecasting the hourly load curve of a meat pro
cessing factory. A research group in Ref. [35] utilizes a multilayer per
ceptron neural network (MLPNN) for forecasting solar irradiance, 
temperature, and load, and particle swarm optimization (PSO) for 
optimal power flow control. The proposed EMS has a forecasting module 
for day-ahead prediction and an optimization module for day-ahead 
scheduling. The capacity of the PV array is 10 kW, and the battery en
ergy storage capacity is 80 kW h. The EMS is verified on an experimental 
microgrid, and simulation results demonstrate savings in electricity bill 
due to optimal energy scheduling. A full-state feedback control strategy 
for multi-area hydropower systems is proposed in Ref. [36]. The inte
gration of redox flow battery (RFB) for non-linear systems is analyzed. In 
Ref. [37], is presented a home energy management system with three 
effective demand response strategies that are shown to be more effective 
than other approaches, improving indicators by approximately 70 % 
while only slightly increasing the electricity bill. Some innovative so
lutions have been proposed in the active control of voltage and fre
quency in electrical networks. A model predictive controller (MPC) 
scheme has been proposed to minimize voltage and frequency fluctua
tions based on Harris Hawks optimization [38]. Where reduced inertia, 
stochastic load variations and their application in non-linear systems 
have been favorably evaluated. 

[24–34,39,40]Some studies also focus on algorithms that improve 
the efficiency of investors through exhaustive tests in real-time simu
lators. The authors in Ref. [41] present multiple PV systems and battery 
energy storage based on bidirectional converter. In which an energy 
advance feeding component is used, which improves its performance. 
The tests have been validated with the OPAL-RT real-time controller. 

Similarly, a hybrid method is proposed, which combines an arithmetic 
optimization algorithm and particle swarm optimization to improve the 
efficiency of the inverter through a renewed hysteresis current controller 
[42]. Real-time simulation allows performance to be analyzed for 
various scenarios such as solar insolation variation, load alterations and 
unbalanced non-linear loads [16,43,44]. Besides, a study analyzes the 
inertia emulation control in which it transforms the behavior of the 
inverter as a synchronous generator connected to the grid with a battery 
and SC in the event of power imbalances [45]. 

1.3. Challenges 

Some studies have been presented that integrate the double func
tionality of active and reactive power compensation based on power 
smoothing algorithms [3,14–19]. A study discusses the contribution of 
clients that allow them to receive economic benefits for providing 
voltage regulation services through coordinated control of real and 
reactive power [14]. Active and reactive power flow has also been 
implemented through a low pass filter (LPF) [15,17]. These studies 
summarize the importance of applying adaptive techniques to mitigate 
power fluctuations based on filters, ESS sizing and optimization, state of 
charge (SoC) control and predictive models. However, the compensation 
of reactive power and how the voltage at the point of common coupling 
(PCC) influences is not specifically analyzed. Nor has management been 
addressed from the demand side, particularly with the reactive power 
consumed from the grid by the industrial sector and improving the 
quality of energy in PCC. 

After reviewing the current literature, some points of interest in the 
research have been identified that have not been fully addressed. 
Whereby, Table 1 presents the key characteristics of the existing liter
ature on PV systems in comparison with the proposed study. 

1.4. Contribution and paper organization 

Unlike to existing literature, we propose in this paper a multi-mode 
monitoring and energy management strategy for PV-storage systems 
that aims at leveraging power fluctuations and excess PV energy for 
compensation of active reactive power in the electrical grid. It also in
tegrates an energy pre-dispatch strategy through a prediction model that 
allows optimal energy management. In addition, the proposed strategies 
allow for a notable improvement in power quality in PCC with adequate 
control of the ESS. 

The following points establish the contribution of this article:  

⁃ A multimode control method is formulated that allows P-f and Q-V 
regulation through hybrid storage systems in PV systems based on 
smoothing techniques. 

Table 1 
Summary of studies related to power smoothing methods, HESS, Reactive power, and Demand management.  

Power smoothing 
methods 

Forecasting 
methods 

Use of HESS 
systems 

Simulador/real- 
time 

Experimental 
validation 

Reactive power 
compensation 

Demand 
management 

References 

✓  ✓ ✓ ✓   [24,26,27] 
✓ ✓ ✓ ✓    [40] 
✓ ✓ ✓  ✓  ✓ [28,29,46]  

✓  ✓  ✓  [16] 
✓  ✓ ✓  ✓  [47]   

✓ ✓  ✓ ✓ [32,48] 
✓  ✓ ✓    [6,20,45]    

✓ ✓ ✓  [49] 
✓  ✓ ✓ ✓  ✓ [12,31,50, 

51] 
✓ ✓ ✓ ✓  ✓  [17] 
✓  ✓ ✓ ✓ ✓  [3,25] 
✓ ✓  ✓  ✓ ✓ [14]  

✓  ✓   ✓ [52] 
✓ ✓ ✓ ✓ ✓ ✓ ✓ This study  

D. Benavides et al.                                                                                                                                                                                                                              



Renewable Energy 230 (2024) 120820

4

⁃ An energy pre-dispatch strategy is established for industrial demand 
profiles under different scenarios using the LSTM neural network.  

⁃ A substantial reduction in energy fluctuations and a better balance 
between energy production and demand is demonstrated with the 
compensation of active and reactive power in the grid.  

⁃ Monitoring the parameters of the electrical grid allows stabilizing the 
voltage level on PCC, significantly improving power quality with 
optimal management of reactive power.  

⁃ The experimental tests support the discussion of the results in a real- 
time simulation environment and energy laboratory tests. 

The remainder of this paper is organized as follows: Section 2 pre
sents the problem formulation and methodology, Section 3 System 
modeling through mathematical formulation, Section 4 outlines the 
multimode management model proposed, Section 5 presents the case 
study including results and discussions. Finally, section 6 presents the 
conclusions. 

2. Problem statement and methodology 

Let us consider an industrial demand profile defined by an active and 
reactive power consumption (i.e. PL, QL, respectively) with different 
scenarios during working day hours generally around 8:00 to 18:00, 
which is connected to a microgrid at a point of common connection that 
integrates a PV system and ESS. As seen in Fig. 1 (a) and Fig. 1 (b), the 
electrical distribution requires active and reactive power support to 
balance demand with generation. This is not completely stocked by the 
PV generation system. Therefore, it is important to establish demand 
prediction techniques that allow optimizing energy management. 

Besides, in Fig. 1 (c) the percentage of power fluctuation (kW/min) 
caused by the variation of PV generation d(PPV)/dt, variation of demand 
d(PL)/dt, and the result in the power grid have been calculated. These 
abrupt changes in generation and demand steps can cause instability in 
the electrical grid [12]. Both, for the variation in the grid frequency 
(active power) or voltage variations (reactive power) [47,48]. Hence, a 
novel control method is generated to mitigate active power fluctuations 
and reactive power compensation through ESS optimization. 

The control methodology is based on the P-f and Q-V control stra
tegies as seen in Fig. 2. Frequency control is regulated through active 
power control, so Δf is significantly reduced when the rate of change of 
power is reduced [12]. That is, ΔP is controlled using smoothing tech
niques, which allows its variability to be reduced over time PHESS

t (kW)

[4,6,53]. On the other hand, voltage regulation ΔV at the coupling point 
can be controlled by regulating the reactive power ΔQ injection to keep 
it within given limits Vmax and Vmin , respectively [3,14,17]. In this case, 

Fig. 1. PV power and industrial demand profiles in different scenarios. (a) 
Active Power required. (b) Reactive Power required. (c) Power fluctuations. 

Fig. 2. Methodology for multimode control based on P-f and Q-V Droop Characteristics through of power fluctuations mitigation and reactive power compensation.  
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the new methodology proposes the compensation of reactive power 
through the storage systems PHESS

t (kvar). In this way, the workflow of 
the multimode algorithm is proposed, which will be explained in detail 
in the following sections. 

3. System modelling 

The purpose of mathematical modeling is to closely simulate real- 
world conditions, considering the practical limitations of the labora
tory equipment (as presented in the case study later in this document). 
Experimental tests will be conducted to validate the efficiency, preci
sion, and reliability of the components. The mathematical models will 
serve as the foundation for computational simulations, enabling the 
programming of the newly proposed control system. This control system 
will be integrated with the main control system of the laboratory to 
transmit reference commands. 

3.1. Photovoltaic system 

PV generation can be calculated according to (1) as a function of 
weather parameters [54,55]. 

PPV
t = γPV

t .λPV .

(
IPV
T,t

IPV
S,t

)

.
[
1+ αPV

pw .
(
TPV

C − TPV
S
)]
; ∀t∈T ∪ Ξ (1)  

where γPV
t represents the rated capacity of the PV system, λPV denotes the 

PV derating factor in percentage, IPV
T,t corresponds to the generated PV 

current, IPV
S,t signifies the reverse saturation diode current, αPV

pw represents 
the power temperature coefficient, TPV

C represents the cell temperature, 
and TPV

S represents the cell temperature under standard test conditions. 
The TPV

C values were obtained by measuring with a pyrometer in the 
laboratory to ensure a more realistic model. In order to ensure the output 
power of the PV system and prevent any indeterminacy, it is necessary to 
adhere to the constraints imposed by Eq. (2) [54]. 

IPV
S,t ∕=0 αPV

pw .
(
TPV

C − TPV
S
)
<1; ∀t∈T ∪ Ξ (2)  

3.2. Supercapacitor 

ESC
t =

1
2
.CSC.(VSC

t
)2
; ∀t∈T ∪ Ξ (3) 

The energy stored in a supercapacitor can be determined using (3) 
[56]: 

The efficiency of the supercapacitor, denoted as ηSC
t , is determined by 

the ratio of the useful power, PSC
t , to the total power. The total power 

accounts for losses and the real power, PSC
t . On the other hand, the state 

of charge is directly correlated to the equipment’s voltage and can be 
determined using Eq. (4) [57]. 

SOCSC
t =

VSC
t − Vmin

t
Vmax

t − Vmin
t

; ∀t ∈ T ∪ Ξ (4)  

where Vmax
c,t ; Vmin

c,t denote the upper and lower voltage limits of the 
supercapacitor, respectively, observed during its real-time operation. On 
the other hand, the set of constraints (5) bind variables related to the 
supercapacitor following rated values [57]. 

Vmin
c,t <VSC

c,t < Vmax
c,t ICh,max

c,t < ISC
c,t < IDis,max

c,t ; ∀t ∈ T, ∀c ∈ C ∪ Ξ (5)  

where ICh,max
c,t and IDis,max

c,t represent the maximum permissible charge and 
discharge currents for the SC, respectively. 

3.3. Vanadium redox flow battery 

The Vanadium Redox Flow Battery (VRFB) is an electrochemical ESS 
that utilizes liquid electrolytes for storing electrical energy. It comprises 
multiple interconnected electrochemical cells arranged in a series 
configuration, forming a stack. This specific arrangement is critical for 
establishing an operational voltage that is suitable for the battery and its 
associated power electronics. VRFBs store energy through reversible 
chemical reactions occurring within the electrochemical cells. During 
the charging process, these reactions alter the ionic state of the elec
trolyte, leading to a fraction of the electrolyte attaining a higher positive 
charge compared to the remainder. The resulting electrolyte solutions 
are known as the positive and negative electrolytes, respectively, and 
are stored separately in dedicated tanks. Upon discharging, these re
actions are reversed, allowing the release of electrical energy for utili
zation by end users. Continuous circulation of the electrolyte solutions 
through the stack is maintained during operation. The electrochemical 
reactions taking place within the stack produce a direct current (DC) 
output, which can be harnessed for a wide range of applications. VRFBs 
are capable to undergo regular deep discharges, reaching a charge level 
of 0 %, without incurring any damage to its integrity. Nevertheless, 
similar to other electrochemical batteries, the output power and ca
pacity of the VRFBs may be influenced by temperature and other 
operational factors [58]. 

This paper aims to streamline the model to accurately represent a 
real-world system while accommodating long-term simulations. To 
achieve this, established and extensively validated models from the 
references [59,60] have been taken into account. Hence, the output 
voltage of the VRFB is computed using (6). 

VVRFB
t =VStack

t,VRFB

(
SOCVRFB

t ,TVRFB
t ,ηCells

t,VRFB

)
+IStack

t,VRFB.R
Specific
VRFB

(
TVRFB

t ,IStack
t,VRFB

)
;∀t∈T

∪Ξ
(6)  

where VStack
t,VRFB represents the stack voltage, IStack

t,VRFB denotes the stack cur

rent, and RSpecific
VRFB is the specific resistance of the VRFB, as shown in (6). It 

can be observed that the VStack
t,VRFB is dependent on the SOC in the VRFB, 

temperature, and the number of cells. The stack voltage can be deter
mined by calculating the Nernst equation. To simplify the calculation, 
the Nernst equation can be defined as a relationship between the open- 
circuit voltage and the SOC of the VRFB, as said (7) [61]. 

VStack
t,VRFB = ηCells

t,VRFB •

{

VSOC
VRFB,50% +

R.TVRFB
t

F
ln

[ (
SOCVRFB

t
)2

(
1 −

(
SOCVRFB

t
)2
)

]}

; ∀t∈T

∪ Ξ
(7)  

where ηCells
t,VRFB represents the number of cells in the stack, VSOC

VRFB,50% sig
nifies the open-circuit voltage of a reference cell measured at a 50 % 
state of charge, R denotes the molar gas constant (8.314 J/(mol*K)), 
TVRFB

t represents the process temperature in Kelvin (K), and F represents 
the Faraday constant (96,485 As/mol). The SOCVRFB

t is defined as the 
ratio of the currently stored energy to the total energy capacity of the 
VRFB (ECapacity

t,VRFB ). If the initial SOCVRFB
t is known, its change can be pre

dicted using the following Eq. (8) [61]: 

SOCVRFB
t,n = SOCVRFB

t + ΔSOCVRFB
t,n− t SOCVRFB

t,n

= SOCVRFB
t +

∫ tn

t

VStack
t,VRFB.IStack

t,VRFB

ECapacity
t,VRFB

dt; ∀t ∈ T ∪ Ξ (8)  

IStack
t,VRFB = ISystem

t,VRFB − IAux
t,VRFB; ∀t ∈ T ∪ Ξ (9) 
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The current flowing through the stack, denoted as IStack
t,VRFB, can be 

calculated by applying Kirchhoff’s first law as 
where ISystem

t,VRFB represents the charging or discharging current provided 
by the inverter, IAux

t,VRFB denotes the current feeding auxiliary components 
such as the two pumps, battery controller, installed sensors, and actu
ators. The inverter governs the battery charging and discharging pro
cess. Depending on the power setpoint, the inverter defines the applied 
DC current system. 

The cell stack consists of 12 modules, with minimum and maximum 
voltages set at 42.7 Vdc and 62.82 Vdc, respectively [62,63]. Once the 
upper voltage limit is reached, the inverter initiates a current reduction 
by employing a simple power control loop. The current is limited within 
the technical specification of the VRFB to ±200 A-DC on the 48 Vdc bus. 

3.4. Utility grid 

The mathematical depiction of the electrical grid involves an infinite 
power generator connected in parallel to the power bus. In order to 
convey the energy exchanges with the proposed system, the following 
constraints are stated. 

The maximum power limit that the prosumer can procure from the 
utility grid is subject to the capacity of the grid and the policies of each 
electric distribution company. Conversely, the following indicates the 
maximum power limit that the prosumer can export to the utility grid as 
shown in (10) [37]: 

0≤PGd,b
t ≤ τGd,b

t pt
Gdb 0 ≤ PGd,s

t ≤ τGd,s
t pt

Gds; ∀t ∈ T ∪ Ξ (10) 

Simultaneous bidirectional energy flow between the utility grid and 
the prosumer is not allowed, as expressed in (11) [37]. 

τGd,b
t + τGd,s

t ≤ 1; ∀t ∈ T ∪ Ξ (11) 

During outages or grid failures, it is necessary to terminate the power 
flow between the grid and the prosumer. These constraints are defined 
as follows: 

τGd,b
c,t =O τGd,s

c,t = O; ∀t ∈ T, ∀c ∈ C ∪ Ξ (12)  

where τGd,b
t = 1 when the grid supplies power to the prosumer, τGd,s

t = 1 
when the prosumer supplies power to the grid, pt

Gdb represents the 
maximum power flow from the grid to the prosumer, pt

Gds represents the 
maximum power flow from the prosumer to the grid, and 0 refers to the 
outage scenario matrix. 

4. Multi-mode management model 

This section presents the multimode management model proposed 
for the grid-connected PV system. On which the use of storage systems is 

based with a demand prediction strategy. This model is divided into 
three specific subsections in the analysis of the electrical grid. (a) 
Obtaining electrical parameters and magnitudes, (b) Demand fore
casting algorithm, (c) Multi-mode operation of ESS as seen in the 
following Fig. 3. 

4.1. Acquisition architecture for electrical parameters and magnitudes 

A Master Terminal Unit (MTU) that has a real-time database with a 
Hot-StandBy configuration integrates the hardware architecture of the 
SCADA communications system. The control and automation of the 
microgrid is carried out by the remote terminal units (RTUs) through the 
PLCs (Programmer Logic Controller) to each of the application pro
gramming interfaces (APIs) of the PV and ESS systems for the control 
and capture of data [62]. Likewise, network analyzers are responsible 
for monitoring the electrical parameters and magnitudes of the electrical 
grid and loads. In parallel, the control of the algorithm is executed in 
MATLAB through Modbus TCP/IP communication of the same register 
and writing of variables. In addition, the controller tests are validated 
through the OPAL-RT real-time simulator, which integrates the 
modeling of the microgrid previously to obtain the parameters and ad
justments. Where the regulation of frequency, voltage at the coupling 
point and response of the controller in reference power to the ESS is 
specifically analyzed. The following Fig. 4 presents the configuration of 
the OPAL-RT real-time simulator and the Microgrid communications 
architectural scheme. 

Fig. 3. Schematic representation of the proposed multimode model.  

Fig. 4. Real-time simulator configuration and Microgrid communications 
architectural scheme. 
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4.2. Demand forecasting algorithm 

The Long Short-Term Memory (LSTM) neural network is a special
ized architecture designed for processing temporal sequences. In the 
context of predicting industrial demand, this network can be mathe
matically structured as follows: a temporal sequence of industrial de
mand data (PL and QL), denoted as x1, x2,…xt, where t represents the 
current time step. The goal is to predict future demand ŷt+1 based on 
previous observations. Below, each component of an LSTM cell, which is 
the basic unit of this network, is explained. 

To begin, the forget gate ft determines which information from the 
previous state Ct− 1 should be discarded (ft ≈ 0) or retained (ft ≈ 1). This 
decision is based on the concatenation of the previous hidden state ht− 1 
and the current input xt , passed through a sigmoid function σ as repre
sented in Eq (13). Next, the input gate it decides what new information 
should be added to the state cell. Like the forget gate, it is calculated 
using a sigmoid function applied to the concatenation of ht− 1 and xt, as 
shown in (14). The output gate ot determines which part of the current 
state cell Ct will be used to compute the output. It is calculated using a 

sigmoid function and the concatenation of ht− 1 and xt , as shown in (15) 
[64–66]. 

The state cell is updated with a new candidate ̃Ct calculated using the 
hyperbolic tangent function tan h. This candidate reflects the new in
formation that could be added to the state cell, as represented in (16). 
The state cell is updated by considering both the forget gate and the 
input gate. Ct represents the updated state cell in (17). Finally, the 
output ht, which is the prediction at time step t, is calculated by 
considering the output gate and the updated state cell, as seen in (18). In 
summary, an LSTM cell processes information over time, allowing the 
network to capture long-term dependencies in temporal sequences, such 
as observations of industrial demand over time. This learning process 
enables the network to make accurate predictions about future indus
trial demand [67–69]. 

ft = σ
(
Wf .[ht− 1, xt ] + bf

)
(13)  

it = σ(Wi.[ht− 1, xt ] + bi) (14)  

ot = σ(Wo.[ht− 1, xt ] + bo) (15)  

C̃t = tan h(WC.[ht− 1, xt ] + bC) (16)  

Ct = ft .Ct− 1 + it .C̃t (17)  

ht = ot .tan h(Ct) (18)  

where, the Forget Gate ft regulates the amount of past information Ct− 1 
to discard, while the Input Gate it governs the integration of new in
formation C̃t into the cell state Ct. Simultaneously, the Output Gate ot 
determines the contribution of the cell state to the output. The Cell 
Memory Candidate C̃t represents a potential new state for the memory 
cell, and the Cell Memory Ct is the updated state, combining forgotten 
and new information. The Hidden State ht is the output, reflecting the 
current cell state modulated by the Output Gate. These parameters are 
better summarized in Table 2. 

Table 2 
LSTM model configuration parameters.  

Description Setting 

Train-Test Data Split Train Percentage: 70 % 
Data Normalization Range normalization method applied 
LSTM Model 

Architecture 
Number of Input Features: Determined by Size of 
Normalized Training Data 

Number of Hidden 
Units 

100 

Sequence Length 1 
Layers Sequence Input Layer, LSTM Layer, Fully Connected, 

Regression Layer 
Training Configuration Optimization Algorithm: Adam 
Maximum Epochs 100 
Mini-Batch Size 64 
Model Training Training performed using specified layers and options 
Prediction 

Configuration 
Number of Predictions: 500 

Prediction Loop Iteration over test data to make predictions 
Denormalization Manual denormalization of predictions using the original 

data range  

Fig. 5. PV generation profiles and industrial demand with support from the grid (Samples – 15 min).  

D. Benavides et al.                                                                                                                                                                                                                              



Renewable Energy 230 (2024) 120820

8

4.3. Multi-mode operation of energy storage systems 

The multimode management model uses the PV power smoothing 
algorithm to mitigate the fluctuations generated. In this configuration, 
SC-based ESSs are used where to obtain the system reference power as 
described below: 

PSC
t =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Pref
t − PPV

t if
⃒
⃒
⃒
⃒
d
(
PPV

t

)

dt

⃒
⃒
⃒
⃒ ≥ rmax ; ∀t ∈ T ∪ Ξ

0 if
⃒
⃒
⃒
⃒
d(PPV

t
)

dt

⃒
⃒
⃒
⃒ < rmax ; ∀t ∈ T ∪ Ξ

(19)  

[
PPV

t-Δt − Δt × rmax
]
> Pref

t >
[
PPV

t-Δt +Δt × rmax
]

(20)  

Where the SC power PSC
t is assigned as the difference between the Pref

t 

and the PV power PPV
t if the value of 

⃒
⃒
⃒
⃒
d(PPV

t )

dt

⃒
⃒
⃒
⃒ exceeds 10 %/min of the 

nominal power of the PV installation rmax [8]. Otherwise, the value is 
zero and does not require use of the SC [26]. 

In the second strategy, VRFB is used as a demand contribution system 
with the storage of excess active power from the grid when PPV

t > PL
t . On 

the other hand, it prioritizes the contribution of active and reactive 

Fig. 6. Industrial demand prediction for active power (P) and reactive power (Q) using LSTM. (a), (b), and (c) depict the predictions for active power, while (d), (e), 
and (f) illustrate the corresponding predictions for reactive power. Each sample in the figures (a) and (d) corresponds to a 15-min interval in real time. 

Fig. 7. Energy pre-dispatch strategy with demand forecast (Samples – 15 min).  
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power to the demand directly when PL
t > PPV

t . 
The active power generated by the PV system is delivered directly to 

the grid as with the reference power of the HESS. The energy manage
ment performed by the controllers makes possible to balance the power 
flow between sources and demand.   

QL
t =

⎧
⎨

⎩

QVR
t ; If SOCVR

t < SOCVR
t (k) < SOCVR

t

QGd,s
t ; If SOCVR

t ≤ SOC
VR

t (k) ≤ SOCVR
t

; ∀t∈T ∪ Ξ (22) 

Charge and discharge control for VRFBs is prioritized for reactive 
compensation as follows: PVR

t = − PPV
t If PPV

t > PL
t and QL

t = 0. Likewise 
with QVR

t = QL
t If QL

t > 0. 
The following Fig. 5 presents the energy values required for the 

dispatch of demand under different generation and demand profiles. PV 
generation is obtained gradually from 6:00 to 18:00 based on a scenario 
of five representative days. On the other hand, the power of industrial 
demand corresponds to working hours generally from 8:00 to 18:00. In 
this case, an analysis is required for the dispatch of active and reactive 
power for demand Grid support allows energy to be regulated in case of 
excess generation and supplemented in case of power shortage. 

5. Results and discussion 

This section presents the results of the proposed methodology based 
on the demand forecast, the multimode operation of the control algo
rithm and Testing and validation of the Controller in real-time Simulator 
and experimental validation in case study. 

5.1. Demand forecasting algorithm 

The predictions for PLSTM
t and QLSTM

t have been generated using LSTM 
with an impressively low RMSE of 1.2e-09. The model achieved this 
accuracy within a training time of 00:01:32, utilizing 32,615 samples 
over 5 epochs. The graphical representation in Fig. 6 illustrates a rapid 
decline in loss to very low values, accompanied by a simultaneous peak 
in accuracy. 

Table 3 
Energy pre-dispatch strategy with demand forecast.  

Hour PV Energy 
[kWh] 

Demand (P) 
[kWh] 

Demand (Q) 
[kVAr] 

VRFB/Grid 
(P) [kWh] 

VRFB/Grid 
(Q) [kVAr] 

0:00 0,04 0,06 0,00 − 0,02 0,00 
1:00 0,05 0,06 0,00 0,00 0,00 
2:00 0,05 0,06 0,00 − 0,01 0,00 
3:00 0,05 0,06 0,00 − 0,01 0,00 
4:00 0,03 0,06 0,00 − 0,03 0,00 
5:00 0,05 0,06 0,00 − 0,01 0,00 
6:00 0,04 0,06 0,00 ¡0,02 0,00 
7:00 0,24 0,06 0,00 0,19 0,00 
8:00 0,16 0,06 0,00 0,10 0,00 
9:00 1,89 0,13 0,11 1,76 ¡0,11 
10:00 2,70 3,53 0,07 ¡0,82 ¡0,07 
11:00 2,74 3,75 0,04 ¡1,01 ¡0,04 
12:00 4,37 3,90 0,17 0,46 ¡0,17 
13:00 5,27 4,40 0,47 0,87 ¡0,47 
14:00 3,89 3,32 0,03 0,57 ¡0,03 
15:00 2,64 0,25 0,11 2,40 ¡0,11 
16:00 7,18 4,22 0,76 2,96 ¡0,76 
17:00 2,61 4,39 0,50 ¡1,78 ¡0,50 
18:00 0,74 3,69 0,44 ¡2,95 ¡0,44 
19:00 0,07 0,13 0,00 − 0,06 0,00 
20:00 0,03 0,06 0,00 − 0,02 0,00 
21:00 0,02 0,06 0,00 − 0,04 0,00 
22:00 0,06 0,06 0,00 0,00 0,00 
23:00 0,04 0,06 0,00 − 0,02 0,00  

Fig. 8. Case study with real-time controller test OPAL-RT and microgrid laboratory tests.  

PL
t =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

PPV
t + PVR

t + PGd,s
t ; If PPV

t ≥ PL
t and SOCVR

t < SOCVR
t (k) < SOCVR

t

PPV
t + PGd,s

t ; If PPV
t ≥ PL

t and SOCVR
t (k) ≤ SOCVR

t

PVR
t + PGd,b

t ; If PPV
t < PL

t and SOCVR
t < SOCVR

t (k) < SOCVR
t

PGd,b
t ; If PPV

t < PL
t and SOCVR

t (k) ≤ SOCVR
t

; ∀t∈T ∪ Ξ (21)   
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ht =PLSTM
t + QLSTM

t  

5.2. Multi-mode operation of energy storage systems 

Fig. 7 shows the predispatch values PGd
t = PPV

t − PL
t based on the 

prediction using LSTM, where the Q is prioritized for the demand, which 
will significantly improve the voltage in PCC. Likewise, when excess PV 
generation P > 0 is available, it is stored in the VRFBs to discharge when 
P < 0 is required. In this configuration, the inverters deliver active and 
reactive power for the discharge of the VRFBs and active power only for 
the load. The reference power is generated as the active power required 

from the grid at the connection point with the demand values. The 
strategy of generating a pre-dispatch allows improving the accumulation 
of energy for the required hours. Table 3 shows the values of the energy 
pre-dispatch strategy with demand forecast required for Scenario 2. 

5.3. Testing and validation of the controller in real-time simulator 

The programming of the controller was carried out in the OPAL-RT 
real-time simulator with the microgrid models developed in Simulink/ 
MATLAB with the real power profiles obtained from the SCADA system 
datalogger and validated in RT-LAB platform. This configuration 
allowed the controller parameters to be adjusted to validate the results 

Fig. 9. Controller response in OPAL-RT real time simulator: (a) Variable PV power without smoothing. (b) Three-phase voltage measurement without power 
smoothing. (c) Three-phase Current measurement without power smoothing. (e) Variable PV power with smoothing. (b) Three-phase voltage measurement with 
power smoothing. (c) Three-phase Current measurement with power smoothing. 

Fig. 10. Controller response with Reference power for ESS validated tests with OPAL RT and Simulink/MATLAB.  
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in the PCC. Fig. 8 shows the equipment used during development. In 
which the OPAL-RT real-time simulator is integrated through a LAN 
connection to the Local Host. The architecture of the OPAL-RT real-time 
simulation equipment is made up of the FPGA (Field Programmable Gate 
Array) that integrates an Intel® Xeon® E3 computer with 4 cores, 3.7 
GHz, 16 GB of RAM, 250 GB SSD. This device is responsible for executing 
the SM Plant subsystem block. While the computer displays the output 
signals of the SC Scope subsystem independent of the simulation 
calculation, the characteristics of this device have an Intel(R) Core (TM) 
i7-10700 CPU processor, 2.90 GHz with 16 Gb RAM. The program runs 
in Flixed step with the ode5 Dormand-Prince method which evaluates 
the function six times to calculate the fourth and fifth order solutions 
and considers the lower one as the error of the solution. In this case, the 
Computation Burden is subdivided into two processing subsystems and 
another monitoring subsystem. This reduces the total time involved in 
the simulated system. Subsystem step size = 0.000050 s (State updated 
at each local step). In the simulation, a system operation time Ts system 
= 5e-5 s and switching frequency 20 kHz is indicated, which guarantees 
its operation in a real value environment [43,70]. Likewise, a Ts control 
= 1e-4 s is assigned for the Voltage Source Converters (VSC) devices 
integrated into the DC/AC power converters. 

In addition, Fig. 9 presents the results of the configuration of the RT- 
LAB platform, where two different input profiles are analyzed without 
the smoothing control Fig. 9(a–c) and considering the smoothing control 
Fig. 9(d–e). A variable input solar irradiation profile produces fluctua
tions in response of the PV system of 1–2.5 kW, with which voltage 
disturbances can be observed in the PCC waveform. Likewise, the cur
rent injected in EDNs depends directly on the PV power. On the other 
hand, considering the support of the ESS in PCC allows maintaining 
voltage regulation and improving current variability. In this case, the 
power is filtered by the smoothing method at a given ramp rate. The 
difference between the real-time power value and that of the filter is 
absorbed directly by ESS. 

In the second phase, the response time of the controller is validated 
prior to the reference power signal as indicated in (19). As seen in 

Fig. 10, the real-time PESS value is directly coupled to the Pref reference 
value. During the ramp rate of less than rmax ≤ ±10% of the PV power. 
The power adjustment is executed practically in the order of millisec
onds. The models used from the Simulink/MATLAB blocks execute the 
solution of the non-linear systems for the storage systems. The experi
mental validation of the model shows a maximum error of 5 % for the 
batteries and 2 % for the SCs. 

5.4. Analysis of energy quality indices 

Power quality indicators are used to measure the amount of distor
tion that occurs in the PCC compared to the original signal value. An 
analysis of the Total Harmonic Distortion (THD) is also presented where 
the effect of power fluctuations on the voltage THD (V) and current 
THD (I) are analyzed in Fig. 11 (a) and Fig. 11 (b) respectively. It is 
considered the THD is defined as the root mean square (RMS) value of 
the total harmonics of the signal, divided by the RMS value of its 

fundamental signal IH =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

I2
2 + I2

3 + … + I2
n

√

. Where IF RMS value of the 
fundamental current (similarly for voltage). A reduction in THD(V) <
0.5 % and THD (I) < 2 % can be seen in Fig. 11(e) and Fig. 11 (f), 
respectively. The contribution of the ESS lies in the P-f control through 
power smoothing and Q-V in the reactive power compensation. Thus, 
improving the regulation in the PCC of the electrical grid. 

5.5. Experimental validation in case study 

In the experimental validation, the CCTI-B microgrid laboratory has 
been considered (See Fig. 8) [62]. As presented in Fig. 12(a–c), an in
dustrial demand profile (kW) is previously assigned. The PV power 
values (30 kW) are obtained from the SCADA system with which the ESS 
configuration of the SC (0.4 kW h) and VRFB (100 kW h) directly receive 
the reference values from the inverters through ModBus communica
tion. The Psc power values absorb and deliver energy to grid minimizing 
power fluctuations with rmax ≤ 10%. That is to say, a low ΔP is 

Fig. 11. Controller response in OPAL-RT real time simulator: (a) Variable PV power without smoothing. (b) THD Voltage measurement without power smoothing. (c) 
THD Current measurement without power smoothing. (e) Variable PV power with smoothing. (b) THD Voltage measurement with power smoothing. (c) THD Current 
measurement with power smoothing. 
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maintained, so the P-f control strategies are applied to maintain 
adequate levels of the grid frequency and avoid its instability. On the 
other hand, Fig. 12 (d) plots the reactive power of industrial demand 

(kvar). This power is compensated directly by VRFB as a priority in the 
multimode method. However, it also takes advantage of the support for 
the demand in active power, that is, covering the demand in PL

t > PPV
t 

Fig. 12. Result of experimental validation in case study: (a) PV power and industrial demand profile active power. (b) SC power supplied and received from the grid. 
(c) VRFB active power supplied and received from the grid. (d) PV power and industrial demand profile reactive power. (e) VRFB reactive power supplied and 
received from the grid. (f) SC SOC and VRFB SOC (%). 

Fig. 13. Results of the energy monitoring and management algorithm of the ESS operating modes.  
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(See Fig. 12 (e)). Finally, Fig. 12 (f) presents the state of charge of the 
ESS systems. In this case, the SCs respond only to sudden changes in the 
steps in the power grid and VRFB contribute active power and reactive 
power compensation. Which integrates the regulation of voltage in PCC 
through the Q-V control strategy. 

The results of the operation models based on the ESS are detailed 
below. 

Case 1. Active and reactive power support with Load fluctuation: in this 
activity there is an increase in the load in active and reactive power, 
which is managed by the PV power and VRFB, as there are no PV 
Power fluctuations the use is not required of SC. 
Case 2. Active and reactive power support with PV fluctuation: if PV 
fluctuations occur, the SCs absorb the excess energy and deliver 
energy to the grid if the ramp limit is exceeded. On the other hand, if 
active and reactive power is required from the load, the VRFBs fulfill 
this function. It is important to clarify that when charging VRFBs, 

only delivery of active or reactive power at the same time or 
discharge of active or reactive power is allowed. That is, it does not 
allow charging with active power and discharging reactive power at 
the same time, due to the flow of the inverter with the grid. There
fore, this limitation has also been considered in the algorithm. 
Case 3: Active power support with PV fluctuation: The operation of the 
SC allows the control of PV fluctuations, consequently, the SCs only 
interact with the grid if there is an increase in the ramp rate 
exceeding the maximum pre-established value (rmax ≥ ±10%). In 
different values its operation is null. Besides, if there is no reactive 
load from the demand, the VRFBs take advantage of the surplus 
energy for future operations. 
Case 4: Active and reactive power support with PV and Load Fluctuation. 
When power variations occur in the load with active and reactive 
power, the VRFBs have functionality combined with the energy 
requirement. On the other hand, SCs allow their hydride interaction 

Fig. 14. Voltage regulation adjustment in PCC three-phase voltage measurement.  

Fig. 15. Normal distribution function as voltage regulation in PCC: (a) Analysis without controller (b) Analysis with controller of the proposed method. (c) Empirical 
cumulative distribution function. 
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if required. In Fig. 13. The different types of operations indicated 
above are graphed. 

After the application of the management algorithm, the results are 
analyzed in the PCC based on the compensation of active and reactive 
power. Fig. 14 shows the voltage values of the three-phase system (R-S- 
T) with respect to the neutral measured directly at the PCC. Two sce
narios based on PV production without ESS integration in the grid and 
with ESS coupling of the proposed multimode method have been 
considered. As can be seen, the reactive power compensation at the 
coupling point significantly improves voltage regulation by reducing the 
ΔV. In addition, during working hours from 6:00 to 18:00, VRFB’s 
reactive compensation offers optimal regulation around 127 Vac. 

Fig. 15 presents the fitting results in the PCC with the average voltage 
measurements through the normal distribution function. Fig. 15 (a) 
shows the voltage drop over the number of events over 3× 104 and a 
voltage drop range 4 V from the nominal value. On the other hand, in 
Fig. 15 (b) the measurement of events with the proposed controller 
improves significantly in a 2 V range in PCC with the grid. Finally, the 
Empirical cumulative distribution function of the Δ Voltage PCC does 
not support ESS (-4 V–4 V) and with ESS support (-2 V–4 V) respectively. 

6. Conclusions 

This paper presents an innovative multi-mode prediction and opti
mization strategy to mitigate power fluctuations in a photovoltaic sys
tem with vanadium redox flow battery storage and supercapacitors. The 
proposed system allows multimode operation through P-f and Q-V 
control strategies that regulate power fluctuations and allow reactive 
power compensation. In this way, the optimization of energy dispatch 
processes, frequency regulation, regulation of power fluctuations, 
voltage regulation in the PCC, compensation of reactive power and 
reduction of THD indices are covered. The implementation of a multi
mode monitoring and management model successfully tackles the 
intermittent nature of photovoltaic resources, enhancing the distribu
tion grid’s stability. 

The results showcase the effectiveness of various components, 
starting with the LSTM-based demand forecasting algorithm, demon
strating impressive precision with an RMSE of 1.2e-09. The multimode 
operation of ESS is highlighted, emphasizing a pre-dispatch strategy that 
prioritizes demand and utilizes VRFB batteries to store and release en
ergy as needed. This is evident in the pre-dispatch values for different 
hours, optimizing energy accumulation. 

Using the proposed method, a reduction of THD (V) < 0.5 % and THD 
(I) < 2 % has been achieved for grid-connected PV systems. Which al
lows us to offer advantages to reduce the impact of the integration of 
renewable energies progressively. 

Encouraging outcomes are observed in real-time simulator valida
tion and experimental validation in the microgrid laboratory. Real-time 
validation underscores the importance of smoothing control, revealing 
that without it, solar power fluctuations lead to significant disturbances, 
while with smoothing control, voltage regulation is maintained, and 
current variability is improved. 

CRediT authorship contribution statement 

Darío Benavides: Visualization, Supervision, Software, Resources, 
Writing - Original Draft, Writing - Review & Editing, Project adminis
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