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Abstract: Ecosystem services contribute significantly to human development, with water production
being a crucial component. Climate and land use changes can impact water availability within a
basin. In this context, researching water-related areas is essential for formulating policies to protect
and manage hydrological services. The objective of this study was to estimate water yield in the
sub-basins of the Tabacay and Aguilan rivers under climate change scenarios in 2030, 2040, and 2050,
combined with scenarios of changes in land cover and land use. The InVEST model was employed to
analyze water yield. The results show that crop areas were identified as the lowest water yield in
future scenarios, and forested areas, particularly the region where the Cubilan Protected Forest is
located, contribute the most to water yield in the subbasin. Besides, water yield has increased in the
historic period (2016-2018) due to the conservation and reforestation initiatives carried out by the
Municipal Public Service Company for Drinking Water, Sewerage, and Environmental Sanitation of
the city of Azogues in 2018, the so-called Reciprocal Agreements for Water. Additionally, an increase
in water yield is projected for future scenarios. This study can serve as a basis for decision-makers to
identify areas that should prioritize protection and conservation.

Keywords: ecosystem services; basin water yield; INVEST model; equatorial Andean basins

1. Introduction

Ecosystems are crucial in human development and provide various ecosystem services
(ES) [1]. These services include, among others, some essential resources such as water, air,
and wood, as well as processes such as water purification and quality, carbon sequestration,
and nutrient recycling [2,3]. The provision of fresh water is one of the most essential
global ecosystems. These are crucial in developing society, agriculture, industry, and other
sectors [4—6]. However, ES can be affected by climate change and changes in land cover
and land use.

Numerous studies worldwide have estimated the impacts of climate change and land
use changes on water availability. Positive relationships between precipitation and water
availability have been found in the literature [6-8]. Conversely, some research has shown
negative impacts between water availability and changes in land use, such as changes in
surface water balance, evapotranspiration rates, runoff dynamics, groundwater flow, and
other factors [9-12]. For this reason, it is crucial to estimate its effects through hydrological
modeling to understand the impacts of climate change and changes in land cover and use.
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Modeling hydrological processes within river basins is fundamental to helping decision-
makers and administrators improve water resource management [13]. Hydrological models
can help estimate the amount of water under various conditions, and these estimates can be
made at different spatial scales, from hillside areas to basins [14-16]. However, developing
hydrological models can prove challenging in some areas of the world.

Although hydrological modeling often requires large amounts of data, its accessibility
is challenging [17]. Over the last two decades, with the development of new technologies
and geographic information systems (GIS), it has become possible to develop hydrolog-
ical systems capable of incorporating complex parameters [18]. Within this category of
models, we find the Soil and Water Assessment Tool (SWAT) [19], the Topography Based
Hydrological Model (TOPMODEL) [20], Variable Infiltration Capacity (VIC) [21], Artificial
Intelligence for Ecosystem Services (ARIES) [22], Integrated Valuation of Ecosystem Ser-
vices and Tradeoffs (InVEST) [23], and various additional ones. Although developing these
models has helped simplify data requirements, having the necessary data to implement a
particular model is still challenging.

In this regard, the InVEST model (based on annual precipitation and landscape charac-
teristics) can be run with a reduced data set compared with other hydrological models [24],
achieving good results in different locations where it has been used. Applications of this
model include the study by [18], which determined the water discharge in the Xitiaoxi
River basin and found slight differences compared with the actual discharge of the basin. A
study in the UK by [25] validated the model’s performance in water production and found
differences of less than 10% between actual and modeled performance. On the other hand,
the studies by [26,27], which were carried out in Altai Prefecture (China) and the alpine
region of the Qinghai-Tibet Plateau (QTP), show a decreased water yield in the first study
area and an increase in water production in the second study area due to changes in land
use and climatic trends. The study by [28] found that the water retention in the forests of
North Korea is lower than that in the forests of South Korea.

In North America, the study by [29] developed in 749 basins found a relatively poor
performance compared with real-world conditions due to the study area’s cryospheric
variables, which, when included, significantly improved predictions. In Latin America,
the study developed by [30] evaluated the performance of water production in 224 basins
in southern Chile, finding that the annual estimates showed good agreement between
the observed and modeled values. Another study [31], developed in southern Ecuador,
allowed a classification according to the importance of water production.

A notable advantage of the In'VEST model is its minimal data requirements, which facil-
itates its use when extensive data are scarce. This adaptability is particularly advantageous
for challenging terrain, such as the mountainous regions of the Andean paramos, where
complex topography and difficult access present obstacles to establishing hydrometeoro-
logical stations to measure the numerous variables required for many hydrological models.

In the Andean region, the paramo provide water to large cities, such as Quito and Bo-
gotd [32]. However, water availability is influenced by various factors such as precipitation,
temperature, soil permeability, slopes, and vegetation, among others [18]. Although there
is high water production in the Andean region due to the near-constant rainfall and low
consumption by vegetation, urban growth and changing land use and land cover have
contributed to changes in water production and availability in these regions [31].

The purpose of this study is to evaluate water production in the sub-basins of the
Tabacay and Aguildn rivers (Cafar Province, Southern Ecuador) using the InVEST model,
taking into account the land use change in the years 2014, 2016, 2018, 2030, 2040, and
2050 and climate change for two representative concentration pathways (RCP): 4.5 and
8.5 scenarios in 2030, 2040, and 2050. The results will significantly help decision-makers
and strengthen policies to protect water sources in the study area.
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2. Materials and Methods
2.1. Study Zone

The study zone includes the Tabacay and Aguilan river sub-basins, which are located
in southern Ecuador in the Cafiar Province (Figure 1). Its total area is 86.55 km?, and its
altitude range is between 2480 and 3760 m above sea level. The climate in the study zone
is characterized by relatively low temperatures (average temperature between 9-11 °C),
which is typical in the Andean region. The average annual precipitation varies between
1115 mm in the upper part (Llaucay) and 876 mm in the lower part (Guapan). The sub-
basins of the Tabacay and Aguilan rivers supply water to the city of Azogues, so slight
changes in the sub-basins may result in a reduction in water supply. In addition, the study
area is characterized by unsustainable land use (agriculture on steep slopes) [33], which
disrupts the sector’s land and water resources.

78°52'30"W 78°51°0"W 78°49'30"W 78°48'0"W 78°46'30"W
N
14 »
=3 <3
2 E
& &
” ®
3] | 3
- 2
& &
» »
2] 2
3 B
& <
Altitude (m.a.s.l.)
%%
3| 2480 Q
(:r) g
o &
E Study zone
77, =
0 125 _ M Azogues city
s Km
78°5230"W 78°510"W 78°49'30"W 78°480"W 78°46'30"W

Figure 1. Study area localization: Tabacay and Aguilan river subbasins.

For this reason, and to protect water and other natural resources, the “Municipal
Rules on the Conservation, Restoration of Water Sources, Water Recharge Zones, Sensitive
Ecosystems, and Other Priority Protected Areas of Biodiversity, Environmental Services
and Natural Heritage of the Canton of Azogues” apply to the study area. In addition,
the Municipal Public Service Company for Drinking Water, Sewerage and Environmen-
tal Sanitation (EMAPAL-EP) uses the Reciprocal Water Agreements (ARAs, its Spanish
acronym) as a protection tool. ARAs aim to provide agricultural technical assistance and
financial compensation to landowners in the watersheds’ upper areas, designated as water
recharge areas. In exchange, the owners must allocate parts of their land as conserva-
tion areas. This initiative secures spaces dedicated to conservation and encourages good
agricultural and livestock production practices in these areas, contributing to the region’s
sustainable development.

2.2. InVEST Model

The InVEST model V3.14.0 is a tool that can be used to examine how changes in
ecosystems can lead to changing benefits for people. The INVEST model included various
modules to quantify, map, and evaluate the benefits of marine, freshwater, and terrestrial
ecosystems. The different modules of the model can be divided into four main categories:
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support services, final ecosystem services, tools to facilitate the analysis of ecosystem
services, and support tools [24]. This study used the “water yield production” module,
which is located in the “ecosystem services” category.

InVEST—Water Yield Module

This module uses a grid map and the principle of water balance [annual precipitation
(P) minus actual evapotranspiration (AET)] to determine the annual amount of water
(Y) in each pixel (x). The model makes no distinction between surface and groundwater
and assumes that at the end of the year, all water that falls into the basin, except what
evaporates, leaves it (Equation (1)).

AET
Y(x) = <1 — (X)>P(x) (1)
%)

The relationship between AET x) /P x) (Equation (2)) is based on the methodology
developed by [34] and later adapted by [35,36].

x1 1/ wx
AET(x) PET x) PET ) @
=1+ — |1+ 2

P(x) Pix) Prx) ?

where PET x) represents potential evapotranspiration and wy is a nonphysical parameter
that describes the inherent characteristics of both soil and climate.
The PET x) can be calculated using Equation (3).

PET(X) = KC(X) ETO(X) (3)

where Kc(x) represents the evapotranspiration coefficient for the vegetation linked to a
particular land cover and land use (LULC).
The nonphysical parameter wy is calculated with Equation (4).

PAWC )

+1.25 ()
Px)

wyx=7

where PAWC y is the water capacity available to the plant at pixel x and Z is a seasonality
parameter that represents the depth and distribution of seasonal rainfall.

For more details describing the water production module of the InVEST model,
see [24].

2.3. Input Data for the Model

The data required by the InNVEST model to run the water production module are
the average yearly precipitation (P, mm), average yearly reference evapotranspiration
(ETo, mm), land cover and land use, available water fraction for plants (PAWC) and root
restriction layer depth (mm), watershed profiles (which is explained later—Figure 2), a
table with biophysical attributes, and the Z-parameter.

2.3.1. Precipitation (Current Data)

The current rainfall data (2014, 2016, and 2018) were obtained from the meteorological
gauges of the Catholic University of Cuenca and EMAPAL-EP. The Kriging interpola-
tion [37] was carried out to obtain spatial rainfall throughout the study area.
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Figure 2. Variables required for the INVEST Water Yield Model: (a) precipitation (2014), (b) pre-
cipitation (2016), (c) precipitation (2018), (d) precipitation (RCP 4.5—2030), (e) precipitation (RCP
4.5—2040), (f) precipitation (RCP 4.5—2050), (g) precipitation (RCP 8.5—2030), (h) precipitation (RCP
8.5—2040), (i) precipitation (RCP 8.5—2050), (j) plant available water capacity, (k) soil depth, (1) land
use and cover (2014), (m) land use and cover (2016), (n) land use and cover (2018), (o) land use
and cover—trend scenario (2030), (p) land use and cover—trend scenario (2040), (q) land use and
cover—trend scenario (2050), (r) land use and cover—pessimistic scenario (2030), (s) land use and

cover—pessimistic scenario (2040), (t) land use and cover—pessimistic scenario (2050).
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2.3.2. Precipitation (Future Data)

The Ecuador Regional Climate Model (RCM-EC) evaluated the future precipitation
data. This model was developed by the Ministry of Environment, Water, and Ecological
Transition (MAATE, its Spanish acronym) as part of the Third National Communication on
Climate Change (TCN) [38]. The model was developed by downscaling an ensemble of
global climate models (GCMs) using the Weather Research and Forecasting (WRF) model at
10 km resolution for Ecuador [39]. The base period for its development was 1981-2005, and
the future is 2011-2100 for two RCP 4.5 and 8.5 scenarios. This study used the two scenarios
to represent climate conditions in 2030, 2040, and 2050. The RCP 4.5 scenario, which reflects
a stabilization path where CO, emissions peak around 2040 and then decline, suggests
moderate mitigation efforts, while the RCP 8.5 scenario represents a high emissions scenario
where no significant emissions reductions come [40]. Other studies at the national scale
and in nearby catchments have also used the same scenarios to analyze the impacts of
climate change [41-43]. This same approach has allowed for a shared analysis of the effects
of climate change on water resources.

Since this data type may have significant systematic biases compared with the ob-
served data, bias correction was performed using the Quantile Delta Mapping (QDM)
method. This method preserves the relative changes in quantiles projected by the climate
model and corrects for possible systematic biases in the quantiles of the modeled data con-
cerning the observed values (Appendix A). According to the literature, the QDM correction
is based on four steps [44]. Quantile Delta Mapping (QDM) is an advanced bias correction
technique that adjusts the quantiles of modeled data based on the observed distribution
over a historical period. The process consists of four steps: (i) The cumulative distribution
function (CDF) is estimated for the modeled and observed data. (ii) The relative change
in model quantiles between the historical and projected periods is calculated using the
inverse of the CDE (iii) This transformation is applied to the quantiles of the observed data
in the historical period. (iv) The bias in the future projection is corrected at any time by
applying the relative change multiplied by the observed data quantiles. As indicated by the
literature [44], QDM is related to the equidistant CDF matching algorithm proposed by [45],
and compared with Quantile Mapping (QM) algorithms, it is less prone to problems such
as inflating trends relative to extreme data.

After the climate data were corrected, they were interpolated using the Kriging
method [37] to obtain yearly spatial maps in different periods.

2.3.3. Evapotranspiration

Evapotranspiration was determined using the Holdridge method [46], in which a
simple expression for its determination in tropical and subtropical regions was defined.
This expression is based on the air temperature between 0 °C and 30 °C (biotemperature),
which determines the rhythm and intensity of the physiological processes of plants (photo-
synthesis, respiration, and transpiration) as well as the rate of direct evaporation of water
contained in the soil and vegetation. Holdridge’s original model is shown in Equation (5).

ETp = Cho-T (5)

where ET, is the potential evapotranspiration (mm-year 1) and T is the air temperature
(°C). The Cyp coefficient is used for annual estimates with a value of 58.93.

The current temperature of the study area was obtained from the meteorological
gauges of the Catholic University of Cuenca and EMAPAL-EP. Future temperature data
(Appendix A) were derived from the QDM downscaling process performed on RCM-EC.
These data (historical and future) were interpolated using the Kriging methodology [37] to
obtain the spatial temperature of the entire study area.



Hydrology 2024, 11, 157

7 of 21

2.3.4. Plant Available Water Capacity

Plant available water content (Figure 2j) is defined as the difference between the
volumetric field capacity fraction and the permanent wilting point. The data on available
water content for plants come from the ISRIC database [47]. Since the database reports
moisture content in mm and at seven depths, it is necessary to convert these values into a
fraction using Equation (6).

wwe = (1) () X o~ 06000 ©

k=1

where N is the number of depths, xy is the k-th depth, and f(xy ) is the value of the water
content at that depth. Since the result of the available water content is in a range of 0-100,
which represents the percentage, it is necessary to divide by 100 to obtain the value in
fraction and to be able to introduce these results into the InVEST model.

2.3.5. Root Restraint Layer Depth

It is the soil depth (mm) at which root penetration is inhibited due to chemical or
physical characteristics of soil (Figure 2k). The data were obtained from Ecuador’s National
Information System of Rural Lands and Technological Infrastructure (SIGTIERRAS—http:
/ / geoportal.agricultura.gob.ec/index.php/visor-geo, accessed on 10 February 2024).

The available data had a qualitative classification and were transformed into quantita-
tive data using the available scientific literature as a reference [48], achieving a more precise
approximation to reality. Furthermore, to validate this new classification, field tests were
carried out (Figure 3), providing an empirical validation of the categorization. The values
obtained from these pits in the field for validation are presented in Table 1 for reference.

Figure 3. Fieldwork was carried out to validate the classification of root depth.
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Table 1. Location of points used to validate root depth classification.
Qualitative Literature . Final
X Y Classification Classification Field Tests Classification

738996.59 9705017.924 Superficial <100 80 100
746905.33 9706492.673 Shallow 100-500 420 500
742884.14 9706173.413 Moderately deep 500-1000 650 1000
740168.82 9698183.620 Moderately deep 500-1000 700 1000
742064.25 9705251.796 Deep 1000-1500 >1000 1500

2.3.6. Land Use and Land Cover

The land use and land cover data used in the study were obtained from MAATE for
2014, 2016, and 2018 (Figure 21-n). The methodology described for its classification can be
found in [49].

In addition, land use change forecasts for two trending and other pessimistic scenarios
were created for 2030, 2040, and 2050 (Figure 20-t). The trend scenario assumes a population
growth of 1.56% (population growth determined shortly before the analysis period), in
addition to the temporary land use change trends observed between 2014 and 2018. On the
other hand, the pessimistic scenario makes the following assumptions: with a population
growth rate of 5.83% (corresponding to the highest growth rate in Ecuador during the study
period), the Cubilan protective forest would no longer exist, and the existing paths in the
study area become gravel roads.

Land use forecasts were created using the land change modeling software Dinamica
EGO version 7.1.1. [50]. The Dinamica EGO methodology uses cellular automata to model
changes in land use based on biological, physical, and socioeconomic variables obtained
from land cover and use maps (for this study between 2016 and 2018). In this model,
space is divided into a grid of cells, where each cell represents a unit of land and can
be in different states that change according to specific rules. The simulation is based on
the local interaction of cells, which enables the modeling of transformations and new
spatial scenarios. In the Dinamica EGO model, windows of different sizes, from 1 x 1 to
11 x 11 pixels, are used to assess the quality of spatial simulations. Each window allows
one to compare spatial patterns in specific areas of the map, from fine details with small
windows (1 x 1) to general trends with large windows (11 x 11). This approach helps to
identify how the model reproduces spatial patterns at different scales and ensures accurate
and valid fitting of the simulations by comparing the obtained patterns with the observed
patterns. This process measures the percentage of similarity, which means how closely
the simulated map matches the observed map. The minimum and maximum similarity
percentages represent the lowest and highest possible degree of agreement between the
two, providing a range for model validation. A similarity percentage of 50% or more
between the simulated and actual patterns indicates a good model fit [51]. For a more
detailed explanation of the methodology, see [50]. The validation model was performed in
2018, and its results are presented in Appendix B.

For InVEST modeling, the trend and pessimistic scenarios were combined with the
climate scenarios. The trend scenario was combined with the RCP 4.5 scenario, and the
pessimistic scenario was used in conjunction with the RCP 8.5 scenario.

2.3.7. Biophysical Table

A biophysical table (Table 2) was created in text format (.csv) presenting the following
attributes: Id, LULC classes, presence of vegetation (1 corresponds to the presence of vege-
tation and 0 without vegetation), evapotranspiration coefficient (Kc) and root depth. The
LULC classes were developed by [24], the evapotranspiration coefficient was determined
by [47], and the depth of the roots was determined from the previously presented cover
and land use data.
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Table 2. Biophysical table used in the INVEST water production model.

Id Lucode LULC_Classes LULC_Veg Kc Root_Depth

1 7 Wooded grassland 1 0.15 500

2 11 Cropland (row crops) 1 0.90 1500

3 12 Bare ground 0 1 10

4 13 Urban and Built-Up 0 1 10

5 14 Water 0 1.05 10

6 16 Mixed forest 1 0.25 1500

2.3.8. Z-Parameter

The Z-parameter, which captures the local precipitation pattern, whose values range
between 1 and 30, was taken from the literature [52]. This value was 7.33. This value within
the model is used in Equation (4), as described previously.

2.4. Sensitivity Analysis

The model’s sensitivity was assessed by varying different parameters according to
the methods proposed in the literature [23,25,53], involving adjustments to various model
parameters. For our study, each of the rasters used as inputs to the model was varied by
£10% and +20%, allowing the comparison of five scenarios: scenario 1 (Variation —20%),
scenario 2 (Variation —10%), scenario 3 (no variation), scenario 4 (variation +10%), and
scenario 5 (variation +20%). The sensitivity analysis was carried out in 2018.

3. Results and Discussion
3.1. Variation in the Rainfall

As shown in Figure 2a—i, higher rainfall amounts are observed in the upper part of
the study zone. In addition, in the base period, it is observed that the amount of rainfall is
lower in 2016 compared with 2014 and then increases in 2018, which may be due to the large
amounts of rainfall in these periods [54] and the humidity arises from transpiration the
Amazon forests, which are transported by air masses from the Amazon basin and carried to
the paramos in southern Ecuador [55]. Furthermore, it can be seen that in the two scenarios
(RCP 4.5 and 8.5), the RCP 8.5 scenario is the one with the highest precipitation values.

3.2. Evolution of Land Use and Land Cover

As shown in Tables 3 and 4 and Figures 2 and 4, land cover and land use in the
study area changed from the base period (2014) to 2018. As for forests, the area they
covered decreased by 4.4% from 2014 to 2018. Urban regions recorded an increase of 7%
compared with the base period. The areas earmarked for cultivation recorded a rise of
2.3%. In contrast, the water area experienced a decline of 9.4% and 15.6% in 2016 and
2018, respectively.

Table 3. Area covered by each cover and land use within the study area for the trend scenario.

Land Cover and Base Period Trending Scenario Rate Change
Land Use 2014 2016 2018 2030 2040 2050 2030 2040 2050
Mixed Forest 21.25 20.56 20.32 18.34 17.02 16.38 —97%  —163%  —19.4%
G"ﬁ’s‘;‘f:fd 11.34 11.20 10.88 9.77 8.95 8.53 ~102%  —17.8%  —21.6%
Cropland 50.33 51.06 51.50 53.83 55.10 55.56 4.5% 7.0% 7.9%
Urban and 3.24 3.34 347 428 5.15 5.74 23.4% 48.5% 65.5%
Built-Up
Wetland 0.03 0.03 0.02 0.02 0.02 0.02 —9.6% —9.6% —9.6%
Bare Ground 0.24 0.24 0.23 0.24 0.24 0.24 2.0% 2.0% 2.0%
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Table 4. Area covered by each cover and land use within the study area for the pessimistic scenario.

Land Cover and Base Period Pessimistic Scenario Rate Change
Land Use 2014 2016 2018 2030 2040 2050 2030 2040 2050
Mixed Forest 21.25 20.56 20.32 7.60 5.48 5.40 —62.6%  —730%  —734%
G"X;’;‘f:fd 11.34 11.20 10.88 6.29 5.48 477 —421%  —49.6%  —562%
Cropland 50.33 51.06 51.50 65.39 64.57 62.89 27.0% 25.4% 221%
Urban and 3.24 3.34 347 6.79 10.56 13.03 96.1%  204.7% 276.1%
Built-Up
Wetland 0.03 0.03 0.02 0.02 0.02 0.02 ~96%  —9.6% ~9.6%
Bare Ground 0.24 0.24 0.23 0.23 0.23 0.23 —01%  —01% —0.1%
90
50 ]
0]
o
:ESO ]
<o
20
0]
° 2014 2016 2018 2030 2040 2050 2030 2040 2050
Base period Trend scenario Pessimistic scenario
[ Mixed forest [ Wooded grassland [ ] Cropland [ ] Urban and Built-Up

Figure 4. Area covered by each cover and land use within the study area in the different study
periods and scenarios.

Let us compare the trend and pessimistic scenarios. We can find that the pessimistic
scenario has the most considerable changes in land cover and use, with the increase in area
of urban areas being the highest. By 2030, the urban area will almost double compared
with 2018, and by 2050, the area will nearly triple. For the years 2030, 2040, and 2050, there
was a significant decrease in forested grassland areas of 42.1%, 49.6%, and 56.2%. The areas
earmarked for cultivation have increased compared with 2018. However, since 2030 is the
year with the highest growth rate (27%), the growth rate starts to decrease after this year.
Finally, the forests are experiencing the most significant decline in their area, namely by
62.6% by 2030 and 73.4% by 2050 compared with 2018.

Although this increase in the area dedicated to cultivation suggests that it could help
ensure the food sovereignty of the area’s residents in the future, several studies indicate that
the conversion of forests to agricultural land will lead to modify their productivity [56,57]
and changes in their physical and hydraulic properties that make them drier [32,58].

3.3. Annual Water Yield in the Study Zone

The InVEST model with the water yield module was used to determine water pro-
duction in three current periods (2014, 2016, and 2018), future climate change scenarios
(RCP 4.5 and 8.5), and future coverage and land use scenarios (trend and pessimistic). The
model’s only limitation is that it is impossible to perform seasonal analysis because it uses
annual values for estimation.

As shown in Figure 5, the study area exhibits fluctuations in water yield in different
periods. Although the region’s rainfall determines the water available, the land’s use and
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coverage determine the water yield. Significant changes in land cover and land use can
affect, among other things, the hydrological systems of evaporation, transpiration, and
water retention [53,59] and thus affect the water yield of a catchment. For this reason, the
water yield module of the INVEST model estimates its water availability in each pixel as
precipitation — actual evapotranspiration, which depends on cover and land use.
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Figure 5. Water yield in the Tabacay and Aguilan river basins in different periods: (a) 2014, (b) 2016,
(c) 2018, (d) 2030 (RCP 4.5—trend scenario), (e) 2040 (RCP 4.5—trend scenario), (f) 2050 (RCP 4.5—
trend scenario), (g) 2030 (RCP 8.5—pessimistic scenario), (h) 2040 (RCP 8.5—pessimistic scenario),
(i) 2050 (RCP 8.5—pessimistic scenario).

In addition to water yield, maintaining or increasing forest areas will benefit other
ecosystem services (including carbon sequestration and diversity maintenance). Within
the areas covered with forests is the Cubilan Protective Forest, where, in addition to
providing various ecosystem services [60], sites with more outstanding water production
are emerging, which is why it is necessary to carry out efforts between residents and
government bodies for the protection of this area, which is responsible, among other things,
for the production of water that supplies the city of Azogues (lower part of the Aguildn
and Tabacay sub-basins).

On the other hand, in the current period (2014-2018), the coverage and land use that
produces a lower amount of water are those destined for agriculture (Figure 7a). The lowest
values of water yield in this area are less than 300 mm per year. These results are consistent
with studies conducted in China by [61,62], where changes in land use, particularly in
agricultural land, impact water yield due to increased evapotranspiration. Similarly, the
study by [63] developed in the USA indicates that agricultural lands have lower water
yields than forests, such as in our study area.
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Changes or removal of vegetation cover to develop these activities can affect the
water cycle by altering evapotranspiration and soil properties, resulting in drier soils [32].
Approximately 60% of the total area of the catchment is dedicated to agricultural and
urban areas, which causes the catchments to lose their ability to regulate water, as stated in
the literature [64]. In the same way, this can be demonstrated by analyzing the historical
records of some streamflows in the area where the flow duration curve (FDC—Figure 6) is
more pronounced, which is consistent with studies that analyzed the effects of land use
changes [64,65]. These changes in land use and cover would impact water availability.
However, they would also allow catchments to respond more quickly to rainfall events with
higher and faster runoff, resulting in flooding in the lower-lying parts of the study area.
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Figure 6. Flow duration curves of the streamflows that are within the study area: (a) Condoryacu
streamflow, (b) Mapayacu streamflow, (¢) Nudpud streamflow, and (d) Llaucay streamflow.

The areas with the highest water yield values were those covered with mixed forest
and wooded grassland. Our results are consistent with the study by [66] which stated that
forest cover is inextricably linked to rainfall, which increases the probability of rainfall
events and increases water yield, and the study by [67] developed in New Zeeland, where
tussock grasslands can maximize water yield compared with other vegetation cover types.
Similarly, a study in the United States created by [63] found that forest covers also have
higher water yields. When plotting these covers, the maximum values were 898 and
908 mm in specific locations for 2014, the maximum values were close to 891 and 857 mm
for 2016, and there was more than 1000 mm of water yield in certain areas (Figure 7b,c) for
2018. During this period, there was a significant increase in water yield in various regions.
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Figure 7. Boxplot of water yield for each land use and land cover in the study zone: (a) Cropland,
(b) Mixed Forest, (c¢) Wooded Grassland.

Although it can be seen that in 2018 (Figure 7a), water yield increased in some agricul-
tural areas, this increase in water yield may lead to a deterioration in water quality [68]. This
fact leads to more significant salt movement and leaching of fertilizers used in these areas.
For this reason, future studies are necessary to analyze the water quantity and quality.

If we compare the current water yield with the future in the study area (Figure 8), it can
be seen that water yield in the Tabacay and Aguilan sub-basins will increase in the future.
This behavior may be because climate extremes will increase in the future, as indicated in
the literature [69]. Still, it must be considered that an increase in the amount of water can
lead to a deterioration in water quality [68]. The annual water yield in the RCP 4.5 and RCP
8.5 scenarios shows fluctuations compared with the base period. Both scenarios indicate an
overall increase in water yield over time; however, the RCP 8.5 scenario generally results in
a higher average water yield than the RCP 4.5 scenario. An exception occurs in 2050, where
the RCP 4.5 scenario is higher.
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Figure 8. Boxplot of water yield for each period within the study zone.
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3.4. Sensitivity Analysis

As shown in Figure 9, according to the sensitivity analysis, precipitation (Figure 9a)
shows an apparent increase and decrease in the maximum and minimum water yield values
with a variation of £20%. In evapotranspiration (Figure 9b), there is no fluctuation in water
yield maximum values, but there are fluctuations in water yield minimum values, which
are not as noticeable as fluctuating precipitation. Since the evapotranspiration is obtained
from temperature, it could indicate the model is not sensitive to temperature changes.
Some studies have attempted to assess the response of water yield to precipitation and
temperature, finding greater sensitivity to precipitation [6,70,71], consistent with that found
in our study. No significant changes were observed in the other parameters (Figure 9c—e),
which is consistent with previous findings in the literature [25,72].
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Figure 9. Sensitivity analysis of the different input parameters of the In'VEST model with a variation
of —10% (scenario 1), —20% (scenario 2), 0% (scenario 3), +10% (scenario 4), and +20% (scenario 5):
(a) Precipitation variation, (b) ETo variation, (c) Root Restraint Layer Depth, (d) Plant available water
capacity, and (e) Z-parameter.

3.5. Validation of the Obtained Annual Water Yield

The Catholic University of Cuenca and EMAPAL-EP carry out specific monthly flow
measurements in different streams within the study area. These observations were used to
compare the results of the modeling. However, as can generally be seen, using the InVEST
software V3.14.0 (Table 5), the modeling tends to overestimate the observed discharge.
There is only a slight coincidence in the Mapayacu discharge.

These differences can be attributed to the absence of some data in the modeling process
that were not considered due to lack of access to them, such as water extractions and losses
within the basin, as well as the presence of water-dependent activities such as fish farming
and livestock watering, which influence the variation in river flow. These activities may
impact water availability in the study area by diverting water flows for purposes not
accounted for in the INVEST model. Something similar happened in the study by [29] in
which, after evaluating 749 basins in five bioclimatic regions of North America, it was
found that the correlation between the observed and modeled rivers was highly dispersed
and relatively poor due to missing modeling considerations.
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Table 5. Comparison between estimated and observed water yield within the study site.

Discharge (m3/s)

Year 2014 Estimated Observed
Condoryacu 0.138 0.07
Llaucay 0.230 0.06
Mapayacu 0.062 0.07
Nudpud 0.177 0.07
Year 2016
Condoryacu 0.095 0.08
Llaucay 0.140 0.07
Mapayacu 0.042 0.07
Nudpud 0.115 0.07
Year 2018
Condoryacu 0.166 0.06
Llaucay 0.258 0.13
Mapayacu 0.076 0.08
Nudpud 0.221 0.08

It is crucial to emphasize that the InVEST model plays a prominent role in environ-
ments with limitations in data availability [73], serving as a preliminary guiding tool. The
initial use of the model allows for subsequent integration of more detailed data and addi-
tional considerations, essential for achieving a more accurate assessment of water flows
in the catchment. Similar conclusions were reached in the studies by [74,75], where the
InVEST model contributes to a general understanding of the hydrological patterns from
the watershed due to the limited data availability and leaves the field of study open for
complex modeling if more detailed data sets are available.

3.6. Public Policies and Decision Making

The water yield in 2018 increased compared with 2016 and 2018. This behavior may be
due to the measures to protect water sources carried out by the EMAPAL-EP in conjunction
with the Municipal Ordinance [76]. For instance, the Reciprocal Water Agreements (ARAs)
serve as strategies to conserve and restore forests and provide technical and financial assis-
tance to upland landowners. These initiatives have reduced agricultural land expansion,
preserved natural areas, and improved productivity through targeted training.

The Tabacay and Aguilan sub-basin’s water yield estimations would serve so decision-
makers can set guidelines for caring for water-relevant areas. However, this is a crucial
and complex challenge [77]. Conservation measures and policies focusing on a particular
environmental service may endanger and degrade other environmental services [78]. This
fact represents a challenge to improve hydro-ecological measurement systems to improve
the accuracy of the models and make better decisions. However, for places where data
availability is limited, the In'VEST model has proven to be sufficient [79].

4. Conclusions

Our study aimed to determine the changes in water yield of two Andean sub-basins in
southern Ecuador under climate change scenarios (RCP 4.5 and 8.5) and consider two future
scenarios of land use and land cover. The results show water yield fluctuations in various
years. The year 2016 had the lowest water yield in the base period. This behavior may be
due to changes in land use and land cover in the study area. The highest water yield occurs
in the upper part of the basins and, to a greater extent, in the Cubilan Protected Forest,
which, in addition to providing various ecosystem services, also produces large amounts
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of water. It was observed that, in terms of coverage, cropland presents the lowest water
yield compared with mixed forest coverage in both the trend and pessimistic scenarios.
However, there has been an increase in water yield from 2016 to 2018. This increment may
be due to the protection and conservation measures carried out in the study area by the
EMAPAL-EP with its ARAs initiative.

Given the effects of climate change, the study area will experience higher water yield
rates. However, when comparing both climate scenarios, the RCP 8.5 scenario will have
higher water yield rates. These results suggest that future adaptation measures will be
required to protect critical areas, ensure water security, and improve the resilience of
watersheds in climate-extreme scenarios.

Although not enough data are available to validate the model’s results, this study
provides knowledge for delineating water-relevant areas and continuing or creating new
research for their protection and conservation.
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Appendix A

Data correction using the QDM method for precipitation (Al) and temperature (A2)
for RCP 4.5 and 8.5 scenarios.
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Appendix B

Temperature (°C)
—— Future data —— Corrected future data

Validation of Dinamica Ego, (B1) land cover observed, (B2) land cover simulated, and

(B3) similarity.
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