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ABSTRACT Generation and transmission network expansion planning (GTNEP) co-optimization models
have been developed to enable simultaneous decisions considering investment and operational components.
Most works solve the GTNEP using linearized models without considering voltage variables, reactive
power constraints, and network power losses, thus resulting in a loss of model fidelity and leading to
either sub-optimal or non-feasible expansion plans. Therefore, this work addresses the GTNEP problem by
integrating the planning of new generation power plants, transmission lines, reactive power allocation, and
the evaluation of network power losses, using the AC model to assess the operational problem. Therefore,
the integrated AC-GTNEP problem is tackled using meta-heuristic optimization techniques. The approach
was implemented using the Julia programming language and evaluated using the 6-bus Garver, the IEEE
24-bus, and the IEEE 118-bus test systems. The results illustrate that the proposed integrated GTNEP
approach yields more cost-effective expansion plans compared to the sequential approach, with total savings
of approximately 11.30%, 8.8%, and 2.5% when applied to each test system, respectively.

INDEX TERMS AC model, co-optimization, generation expansion planning, integrated planning,
transmission network expansion planning.
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Variable operating and maintenance cost of
candidate power plant m.

Fuel cost of candidate power plant m.

Total active power demand.

Total reactive power demand.

Emission rate of pollution type p by candidate
unit m.

Existing emission of pollution type p at bus i.
Consumption rate of fuel type f by candidate
unit m.

Existing consumption rate of fuel type f at
bus i.

Number of existing lines between nodes i — j.
Maximum number of lines that can be added
between nodes i — j.

Cost of reactive power compensation.

Cost of active load shedding.

Cost of network power losses.

Number of hours in a year.

Loss factor.

Base power.

Annual discount rate.

Lifetime of candidate power plant m.
Capacity factor of candidate power plant m.
Electrical efficiency of candidate power plant
m.

CO;, emission cost for candidate power plant
m.

Overnight cost of candidate power plant m.
Minimum and maximum percentage reserve
margin.

Maximum emission of pollution type p.
Maximum available quantity of fuel type f.
Maximum active power generation of the
existing power plant at bus i.

Minimum active power generation of the
existing power plant at bus i.

Maximum reactive power generation of the
existing power plant at bus i.

Minimum reactive power generation of the
existing power plant at bus i.

Maximum active power generation by
candidate power plant m at bus i.

Minimum active power generation by
candidate power plant m at bus i.

Maximum active power generation by
candidate power plant m at bus i.

Minimum active power generation by
candidate power plant m at bus i.

Maximum active power generation by
fictitious generator at bus i.

Minimum active power generation by
factitious generator at bus i.

Maximum reactive power generation by
fictitious generator at bus i.
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Minimum reactive power generation by
factitious generator at bus i.
b"  Shunt susceptance at node node i.

g; Shunt conductance at node i.
SETS

€  Set of buses.

A Set of candidate power plants.

A Set of generation outages.

' Set of all rights-of-ways.

T  Set of fuel types.

¥ Set of pollution types.

Z  Set of integer numbers.

VARIABLES
E,i Energy produced by power plant type m

allocated at bus i.

njj Number of added lines between buses i, j.

PZom Active power flow through line between
buses i, j.

Pfj‘? Active power flow through line between
buses j, i.

ngm Reactive power flow through line between
buses i, j.

QZ’ Reactive power flow through line between
buses j, i.

or Reactive power compensation allocated at
bus i.

P Active load shedding at bus i.

P Active power delivered by power plant type
m allocated at bus .

or Reactive power delivered by power plant type
m allocated at bus i.

P‘f Total active power generation at bus i.

Qf' Total reactive power generation at bus i.

Vi Voltage magnitude at bus i.

0; Phase angle of the voltage at bus i.

Ui Indicates whether power plant type m is

constructed at bus i.

DP«, P Probability and cumulative probability of
generation outage .

te Period of lost load during generation outage
K.

I. INTRODUCTION

The electrical power supply system aims to provide energy to
users while meeting quality, reliability, and safety criteria at
a minimum cost. Planning for the operation and expansion of
the electrical system across the entire supply chain is essential
to achieve these objectives. In this context, Generation
Expansion Planning (GEP) often relies on a single node
model [1], [2], where it is assumed that all generation units
and loads are concentrated on a single bus. Conversely,
when addressing Transmission Network Expansion Planning
(TNEP) [3], [4], it is assumed that the location and capacity
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of the new generation units are known. Typically, generation
and transmission network expansion planning have been
addressed sequentially [5], with GEP being solved first,
and the resulting expansion plan is then used as an initial
condition to address the TNEP problem. This approach was
usually accepted considering that more than 80% - 90% of
investments are related to GEP and that siting constraints
typically determined the location of power plants, with trans-
mission costs being of lesser concern. However, solving the
GEP and TNEP problems successively leads to sub-optimal
solutions or costly proposals due to oversized transmission
expansion plans or high energy production costs.

According to [6], co-optimization of generation and
transmission network expansion planning is gaining more
attention due to several key factors. The increasing costs
and political challenges associated with siting and permitting
extra high voltage (EHV) transmission lines have made
coordinated planning more attractive. The flexibility and
lower capital intensity of natural gas-fired facilities, as well
as advancements in dry cooling technologies, have also
contributed to this trend. Additionally, integrating remote
renewable resources, often far from major load centers,
requires comprehensive planning to balance high-quality
resources with substantial transmission investments. Industry
restructuring has further highlighted the economic benefits of
interregional transmission, particularly for accessing diverse
renewable energy sources and improving overall energy
availability.

For those reasons, integrated generation and transmission
network expansion planning models have been proposed to
ensure a reliable and resilient energy supply by simultane-
ously identifying the optimal timing, types, and locations for
new generation units and transmission elements. The benefits
of GTNEP can be summarized as follows [7]: (i) it allows
the assessment of the interdependence that exists between
the transmission network and the quality of renewable
resources, (ii) it enables the integration of generation
and transmission with other emerging technologies, (iii) it
links the power system with electrical markets, and (iv)
it results in improved expansion plans in terms of cost-
effectiveness. On the other hand, power system constraints
such as network flow limits, load demands, and reliability
requirements link the two planning problems, introducing
additional difficulty in finding feasible and practical planning
solutions.

Two aspects must be considered to address the inte-
grated GTNEP: (i) the mathematical modeling and (ii) the
solution method. In the early stages of research aimed at
addressing the GTNEP problem, the transport model of
the transmission network was considered and consequently
does not consider the Kirchhoff's Voltage Law (KVL) [8].
Subsequent studies [9], [10], [11] have adopted the use
of the direct current (DC) model to address the GTNEP
problem. Linearized AC models have also been applied
to GTNEP, as in [12], [13], and [14]. The disadvantage
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of this linear approximation is the loss of model fidelity
since it does not consider voltage variables, constraints
related to reactive power limits, or the proper assessment
of network power losses. Disregarding these factors means
the model does not take into account essential aspects of
power system operations that affect both the feasibility and
economic efficiency of the solutions, resulting in sub-optimal
expansion plans and underestimated investments, which are
not very useful for real-world applications. Therefore, the
expansion solutions derived from these approaches must
be verified using a complete AC model to ensure they
meet network security requirements. However, when the AC
model is applied, it turns the GTNEP into a mixed-integer
nonlinear programming problem, which is challenging to
solve.

Regarding solution methods applied to GTNEP, the
prevailing approach in most research is to employ linearized
models solved by mathematical optimization-based methods
[11], [15], [16]. However, mathematical-based solvers can
only deal with linearized and convex models, which do not
accurately represent network behavior. When mathematical
optimization techniques are applied to non-convex models,
they can deal only with a few variables, yielding unfeasible or
no solutions for medium or large-scale networks. Therefore,
when the full AC model is applied, meta-heuristic techniques
have demonstrated their effectiveness and superiority over
traditional optimization methods in TNEP, as proven in [17].
However, only some research works apply meta-heuristic
techniques to solve the GTNEP. In [18], the Gradient-Genetic
Hybrid algorithm was used to evaluate the impacts of
wind and solar energy generation sources. In [19], the
Genetic-Tabu Hybrid Algorithm was used to solve the
GTNEP applied to planning energy systems in offshore oil
fields.

Consequently, this study utilizes the AC model to address
the operational challenges of GTNEP, providing a more
comprehensive and realistic representation of the electrical
system. As optimization techniques, the Iterated Greedy
Algorithm (IGA) [20] and hybrid meta-heuristics based on
differential evolution (DE) [21], Archimedes optimization
algorithm (AOA) [22], and Honey Badger Algorithm (HBA)
[23], along with the Tabu Search (TS) [24] meta-heuristic,
were implemented to solve the GTNEP problem. It is worth
noting that these methods have not yet been applied to the
GTNEP problem. The full AC power flow model is adopted
to study the impact of network power losses, reactive power
compensation, and the long-term planning of new power
plants and transmission lines. Reliability criteria such as
Loss of Load Probability (LOLP) [25] are formulated as
annual constraints to ensure reliable operation. Furthermore,
a detailed breakdown of operational costs related to new
power plants based on the levelized cost of electricity was
considered in the model to facilitate cost-effective decision-
making, which has not been thoroughly explored in other
research works.
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Thus, the contributions of this research are: (i) the
use of nonlinear equations of the AC model to represent
the transmission network which, different from state-of-art
approaches, results in more realistic expansion plans, (ii) an
integrated approach to generation and transmission network
expansion planning, along with a comparative analysis
against the sequential approach, (iii) the detailed breakdown
of operational costs in the model, leading to more accurate
decision-making, and (iv) the application and hybridization
of different meta-heuristic algorithms to solve the GTNEP
problem, along with a comparative analysis among them.

The remainder of this work is organized as follows:
Section II presents the GTNEP mathematical model, while
Section III describes the AOA-TS, DE-TS, HBA-TS, and
IGA meta-heuristics implemented to solve the GTNEP
problem. Finally, results and conclusions are shown in
Section IV, and V respectively.

Il. GTNEP MATHEMATICAL MODEL

The mathematical model of integrated GTNEP involves
solving two problems: (i) the Master Problem (MP), which
minimizes the investment cost of new power plants, includ-
ing the cost obtained in the sub-problem, and (ii) the
Sub-Problem (SP), which involves solving the TNEP prob-
lem.

A. MASTER PROBLEM

The master problem formulation comprises equations (1)
to (10). These equations encompass the objective, constraints,
and decision variables involved in the optimization process.
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(10)

In (1), the objective function aims to minimize the total
generation investment cost defined in (2). The objective
function also includes the investment and operational costs
of the sub-problem w defined in (11). Constraints (3) and (4)
stipulate that the total active and reactive generation capacity
from existing and candidate power plants must lie within
the minimum (1_3 =1+ K%) and maximum (ﬁ =1+ 7%)
percentage reserve margin of the total active and reactive
power demand. This ensures that the system maintains
adequate reserve capacity to handle fluctuations in demand
and unexpected outages. Equation (5) specifies that the
consumption of fuel type f must not exceed the maximum
available fuel quantity ff, while (6) represents the amount
of pollution type p that can be emitted. This quantity should
not exceed the maximum limit 7p~ Constraint (7) indicates
that only one candidate power plant can be allocated to
bus i, while (8) ensures that the decision to construct a
generating unit is binary. Additionally, in (9), it is established
that the Loss of Load Probability (LOLP) should not
exceed the upper limit LOLP. The LOLP is determined
using (10), where p,, P, and t, are computed using the
forced outage rate (FOR) of each power plant, and a Load
Duration Curve (LDC), following the process described
in [26].

B. SUB-PROBLEM

The sub-problem involves solving the TNEP problem, which
is further divided into two parts: (i) the expansion problem
and (ii) the operational problem.

1) EXPANSION PROBLEM

The main objective of this problem, presented in (11), is to
minimize the investment cost of adding new transmission
lines, and reactive power compensation (12), the estimated
cost of network power losses (13), and the estimated cost
of energy production (16). The constraints for the expansion
problem are related to the maximum number of lines that can
be added to each right-of-way (14) and the integer nature of
the added lines (15).

min w = Cexp + Cl()ss + C()p (11)
Cop =D i -mj+ D ¢ - 0 (12)
ijel’ ieQ
Closs =h 'floss . QOIOSS ' Z (P]l:‘;'om + Pfjo) (13)
ijel
Subject to: 0 < nj <7y —n) (Vi,jeT) (14)
njeZ (Vi,jel) (15)

2) OPERATIONAL PROBLEM
The operational problem provides, to the expansion problem,
the cost of active load shedding and the estimated cost
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of energy production, as given in (16). To address this
operational aspect, the AC optimal power flow is used.
The objective function incorporates the Levelized Cost
of Electricity (LCOE) [27], computed by equation (17)
and the Capital Recovery Factor (18) associated with
candidate power plants. The capital recovery factor helps
determine the annualized cost of capital investment for
each power plant, while the LCOE represents the minimum
average price at which the electricity generated by the
asset must be sold to break even at the end of its
lifetime.

b
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The constraints for the operational problem are detailed
from (19) to (30). Equation (19) addresses the active power
balance at each bus of the system, while (20) deals with the
reactive power balance. The limits of apparent power flow
through the lines are represented by constraints (21) and (22),
where l; = n; + n . The set of constraints (23) - (26),
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represents the maximum and minimum capacities for active
and reactive power generation, either by candidate or
fictitious generators. The set of constraints (23) - (26), ensure
that if power plant type m is allocated to load bus i, then the
limits for active and reactive power generation of that bus will
be determined by the parameters of the candidate generator.
Otherwise, these values will be determined by the parameters
of the fictitious generator. In (23) and (24) vy, is defined as
Vmi = 1 —up;. Constraints (27) - (30) represent the maximum
and minimum limits for active power, reactive power, voltage
magnitudes, and phase angles. Finally, the expressions for
Pf rom Pf]", QZom, and QY in equations (19) - (22) can be
found in [28]. It is important to note that n;; is specified as
an integer variable, and u,,; is identified as a binary variable.
Other variables are considered continuous unless explicitly
specified otherwise.

3) LOAD SHEDDING STRATEGY

The active and reactive load shedding is modeled by

incorporating fictitious generators allocated at the system

load buses. Thus, if P{ is larger than zero or O is
different from zero, it indicates that the resulting transmission
network configuration does not comply with the GTNEP sub-
problem constraints. As a result, the following scenarios may

occur [17]:

i. P{ = 0 indicates that there is no active power load
shedding. This means that the fictitious generators do
not generate active power.

ii. P{ > 0 indicates that there is active power load
curtailment. One way to handle this situation is to
consider the production cost of the fictitious generators
gof’ as the cost associated with unserved energy, which
implies that the final expansion plan may include load
curtailments. Alternatively, another approach is to set
w‘f’ to the same value as the cost of the most expensive
transmission topology. Therefore, there is a penalty
in the objective function to avoid the need for active
load curtailments in the final expansion plan. The
penalization to the objective function guarantees that
P{ =0.

iii. Qf = 0 indicates that there is no reactive power load
shedding. This means that the fictitious generators do
not generate reactive power.

iv. Qf # 0 indicates that there is reactive power load
curtailment or, in other words, the system requires
the allocation of reactive power compensation. In this
context, it is essential to ensure that the compensation
cost is always positive, meaning that the term <p?
must be larger than zero ((p;’ > () for capacitive
compensation and less than zero ((piq < 0) for inductive
compensation. In this work, the reactive load supplied
by these fictitious generators is considered the reactive
power compensation that must be added to the load
buses to maintain system stability and achieve feasible
economic expansion plans.
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IIl. META-HEURISTICS IMPLEMENTATION
In this work, it was implemented the Iterated Greedy
Algorithm (IGA) [20] to address the sub-problem. For the
master problem, it was applied four population-based hybrid
meta-heuristics and conducted a comparative analysis of
their efficiency. The meta-heuristics employed include Dif-
ferential Evolution (DE) [21], the Archimedes Optimization
Algorithm (AOA) [22], and the Honey Badger Algorithm
(HBA) 23, each hybridized with Tabu Search (TS) [24],
resulting in DE-TS, AOA-TS, and HBA-TS, respectively.
Additionally, we introduced a variant of HBA-TS incorporat-
ing Levy flights (HBA-TS-LF) [29]. These meta-heuristics
were selected based on the claims by the authors of AOA
and HBA, which suggest that these algorithms outperform
several well-known state-of-the-art and recently introduced
meta-heuristics, as evidenced in [22] and 23, respectively.
Figure 1 shows the flow chart of the HBA-TS meta-
heuristic, which will be used to describe how meta-heuristics
are applied to the AC-GTNEP.

A. TEST SYSTEM DATA

This work used three test systems to evaluate the AC-GTNEP,
the Garver 6-bus, the IEEE 24-bus, and the IEEE 118-bus test
systems.

B. AC-GTNEP PARAMETERS

In this step, the parameters of the AC-GTNEP corresponding
to the mathematical model in Section II and defined in the
nomenclature need to be initialized.

Meta-heuristic Parameters

Il
Define GTEP parameters ‘ Evaluation ‘
Defi didate b
‘ efine candidate buses ‘ L<T No

Define candidate Yes
generators

‘ Update the tabu list ‘ ‘ Best solution x* ‘

‘ Update density factor (X) ‘ End
—»{ For current individual x; ‘ _,{ Fork « 1to N ‘

‘ Update generation data ‘

‘ Compute intensity (1) ‘

Evaluate GTNEP master
problem constraints

Meets constraints?
Yes

Yes

No Digging phase

H Honey phase ‘

Check tabu list
‘ Determine LCOE ‘ (2-opt move)
‘ Update test system ‘
No @
‘ Solve TNEP sub-problem ‘ Yes
[ Evaluate GTNEP OF | ‘ Evaluation
\ Elitism

\
\
‘ Sort population ‘
|

—{ Update the tabu tenure

FIGURE 1. Proposed HBA-TS hybrid meta-heuristic applied to the
AC-GTNEP problem.
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C. CANDIDATE BUSES

Load nodes are selected as candidate nodes to allocate new
power plants. These candidate load nodes are arranged in
a vector format, which will be considered an individual x;
of the population X in the master problem. The number
of individuals N (population size) is defined as a common
parameter for all meta-heuristics, and the number of load
nodes is defined as the dimension D (number of elements of
each individual) of the master problem.

D. CANDIDATE POWER PLANTS

Determining the candidate power plants and their respective
parameters is essential to computing the levelized cost of
electricity. These parameters are provided in Tables 1 and 2.
These tables offer comprehensive information regarding the
characteristics of conventional and non-conventional power
plants considered in the study. This detailed information
serves as the basis for evaluating the economic viability
and performance of different types of power generation
technologies within the integrated planning framework.

E. META-HEURISTICS PARAMETERS

For each meta-heuristic, specific parameters must be deter-
mined through a trial-and-error process. These parameters
were set using the Garver 6-bus test system and applied con-
sistently across all tests. Table 3 describes the recommended
parameter settings for the meta-heuristics used in this study.

F. INITIAL POPULATION

The population X for the master problem is initialized by
randomly generating a set of solutions corresponding to the
number of available candidate power plants. Each individual
Xk in the population is formed by D elements, where each row
corresponds to a load bus in the test system, and each element
represents a candidate power plant.

G. EVALUATION

In this step, the initial population is evaluated. As depicted
in Figure 1, the evaluation process involves updating each
individual’s test system generation data and assessing the
master problem constraints. If these constraints are met, the
levelized cost of electricity is computed, and the test system
data is updated. With the updated data, the sub-problem is
solved using the IGA algorithm [20]. Finally, the objective
function of the master problem is evaluated. If all individuals
have been assessed, the process returns to the meta-heuristic,
where the optimization process of the master problem
continues until the termination criterion is met.

1) SUB-PROBLEM OPTIMIZATION IGA

In the evaluation process for each individual, the TNEP
sub-problem is solved using the IGA meta-heuristic. Details
and settings for this IGA approach can be found in [20].
The IGA employs a greedy constructive heuristic algorithm,
which builds a solution step-by-step, starting from an empty
solution S°. An element is added at each step until a complete
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solution S* is generated. The IGA structure is defined by
five main stages: initialization, destruction, construction,
acceptance criterion, and stopping criterion, each described
below.
(1) Initialization: This phase starts with an empty solution
SO and adds one transmission line in each corridor at
a time. For each of these added lines, the constraints
and objective function of the sub-problem are evaluated.
Once a line has been added to all corridors, the one that
produced the lowest value in the objective function is
added to the solution. This procedure continues until
the maximum number of iterations is reached. If adding
more transmission lines does not improve the objective
function value, it means that the final solution S* has
been found.

(i) Destruction: In this phase, r elements are removed from
the incumbent solution S*. The value of r is determined
based on the percentage of minimum and maximum
values [z, 7| of the total added lines, and the number
of steps (§) of possible combinations of r line elements.

(iii)) Re-construction: Starting from the destructed solution,
the same process as the initialization phase is repeated
until a final solution is constructed.

(iv) Acceptance criterion: The element that produces the
lowest value in the objective function will be added to
the solution.

(v) Stopping criterion: Maximum number of iterations 7'.

H. MASTER PROBLEM OPTIMIZATION

After evaluating the initial population, the logic of the specific
population-based meta-heuristic is applied iteratively until a
maximum number of iterations 7 is achieved (see Figure 1).
A brief description of the population-based meta-heuristics
used in this work is presented below.

1) HONEY BADGER ALGORITHM (HBA)

The proposed algorithm is inspired by the intelligent foraging
behavior of the honey badger, creating an efficient search
strategy for optimization problems. The dynamic search
behaviors, including digging and honey-finding phases, are
translated into HBA’s exploration and exploitation phases.
Figure 1 illustrates the optimization process that integrates
the HBA-TS algorithm, while a complete mathematical
formulation can be found in [23]. The following process
continues until a maximum number of iterations is reached:

(i) Tabu list (create/update): After the evaluation process,
a tabu list (TL) is created or updated to store the current
incumbent solution. This list is filled and emptied as the
algorithm progresses based on the tabu tenure (TT).

(i) Density factor A: The density factor determines the
extent to which the search behavior varies over time,
with a decreasing value encouraging more exploitation
as iterations progress.

A=Cy -exp (—%) (3D
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(iii) Intensity (Ix): Represents the degree of focus or
concentration of a honey badger towards a potential
solution. It is determined by both the attractiveness of
the solution area Sy = (xx — X+ 1)2 and the proximity
of the honey badger to the prey dy = x™* — x.

Sk
Iy =ry, 4~71-d,? (32)

(iv) Digging phase: During this phase, honey badgers rely
on scent intensity (I), distance to prey (dx), dynamic
search behavior influenced by time (A), disturbances
(F), and random numbers (r,,) to explore and locate even
better solutions.

AT =X L FCp b X+ F vl h - dy
-|cos 2mry) - (1 — cos 2mry))| (33)

(v) Honey phase: In this phase, new individuals x,i‘H move
towards the best current solution x*.

M =x* 4 F-r) - h-dy (34)

(vi) Tabu list/ 2-opt move: Each individual x; in the modified
population X'+ is evaluated after the digging and honey
phases. If it is found in the tabu list, a 2-opt move [30]
is executed to modify the individual.

(vii) Finally, the new population X’*! is evaluated and sorted,
the best individuals are stored (Elitism), and the tabu
tenure of all elements in the tabu list is updated.

2) LEVY FLIGHT

The concept of Lévy flight, inspired by the foraging behavior
of some animal species such as birds and insects, has
been incorporated into the Honey Badger algorithm [31].
Lévy flights are characterized by long-range and random
movements, allowing individuals to escape from local optima
and explore distant areas in the search space. It consists in
generating steps from a Levy distribution that replace the
random numbers denoted by r;, in (33) and (34) by:

Oy

A e 35
r=se (35)
where the values of s, 0, and o, are computed as follows:
u
M’VN(O,O',%), VNN(O,OVZ) (37)

/8

r(1+ﬁ)-sin(#) e
, oy =

r ((1 n g) - 2(ﬂ*'>/2)

3) ARCHIMEDES OPTIMIZATION ALGORITHM

The Archimedes Optimization Algorithm (AOA) is an
optimization method inspired by the Archimedes principle of
physics, where objects (xx) immersed in a fluid experience
an upward buoyant force equal to the weight of the displaced
fluid. AOA utilizes this principle to iteratively optimize

oy =
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solutions by updating individual properties like volume,

density, and acceleration based on interactions with neighbor

objects; detailed mathematical formulation and pseudocode
of AOA can be found in [22]. The main steps for AOA are as
follows:

(i) Initialization: During the initialization phase, the popu-
lation, density, acceleration, and volume are randomly
generated.

(i) Evaluation: The initial population is evaluated as in the
case of HBA-TS algorithm (Figure 1).

(iii) Main loop of AOA-TS: During the optimization process,
until a maximum number of iterations is reached, the
algorithm creates/updates the tabu list. It then updates
the features of all individuals, computing a transfer
factor. If this factor is 0.5 or less, the algorithm
enters the exploration phase; otherwise, it proceeds to
the exploitation phase. Following this, the tabu list is
checked for the modified population, and if necessary,
a 2-opt move is executed.

(iv) Finally, the new population is evaluated and sorted, the
best individuals are stored (Elitism), and the tabu tenure
of all elements in the tabu list is updated.

4) DIFFERENTIAL EVOLUTION

The DE-TS structure is defined in four mains mechanics,

such as initialization, mutation, recombination, and selection.

These mechanics have been designed to implement the

DE/rand/1/bin variation [21].

(1) Initialization: The population X is randomly generated
during the initialization phase.

(i) Evaluation: In this phase, each individual in the popu-
lation is evaluated based on data from candidate power
plants.

(iii) Main loop of DE-TS: During the optimization process,
until a maximum number of iterations is reached,
the algorithm creates/updates the tabu list. After
that, the mutation and recombination process is per-
formed. If the new vector is in the tabu list, a 2-opt
move is executed to modify the individual, which is then
evaluated. Finally, the best individual is selected, and
the tabu tenure of all vectors in the tabu list is reduced.
This process is carried out for all individual x; in the
population X.

(iv) At the end of each iteration, the best individuals are
stored, and the population is sorted so that the next
iteration is started.

IV. TEST AND RESULTS

This research work evaluates the proposed methodology
using three test systems: the Garver 6-bus system, the
IEEE 24-bus system, and the IEEE 118-bus system. The
problem was implemented using the Julia programming
language [32], running on an Intel i7 processor at 3.60 GHz
with 16GB of RAM. The operational problem described in
section II-B2 was solved using IPOPT. The results include
information about the added lines, new power plants that
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TABLE 1. Technical and economic characteristics of conventional
generation.

Technology Type Coal Natural Gas  Natural Gas
(Lignite)-A  (CCGT)-B (OCGT)-C
Active power capacity (MW) 600 500 600
Reactive power capacity (MVA) 100 45 48
Overnight Cost (USD/kW) 2189.486 957.900 738.952
Fixed O&M Costs (USD/MWh) 8.6 13.31 16.71
Variable O&M Costs (USD/MWh) 3.2 2.31 2.00
Coal Price (USD/ton) 51 NR NR
Natural Gas Price (USD/MBtu) NR 3.2 3.2
Carbon Price (USD/ton of CO2) 30 30 30
Calorific Value (kcal/kg) 4063.6 NR NR
COg2 Emission Factor (tons/TJ) 101.00 56.10 56.10
Efficiency (%) 34 58 44
Capacity Factor (%) 85 85 44
Lifetime (years) 40 30 30
FOR (%) 6.0 9.0 7.0
Construction Years 4.0 3.0 2.0

NR: not required for the power plant.

TABLE 2. Technical and economic characteristics of renewable
generation.

Technology Type Solarl‘) (PV) Onsholge wind
Active power capacity (MW) 100 100
Reactive power capacity (MVA) 10 10
Overnight Cost (USD/kW) 1197.4 1314.7
Fixed O&M Costs (USD/MWh) 6.48 5.98
Variable O&M Costs (USD/MWh) 0 0.02
Capacity Factor (%) 31 47
Lifetime (years) 25 25

FOR (%) 6.0 5.0
Construction Years 1.0 1.0

need to be incorporated, the requirements of reactive power
compensation, network power losses, and their respective
costs. The energy cost of projected power plants during their
lifetime is also considered.

A. PARAMETERS OF CANDIDATE POWER PLANTS

In [33], the distribution of global energy production across
different technologies reveals that 61% of total energy
generation stems from unabated fossil fuels. In contrast,
renewable energy sources contribute 29% to the total energy
output. Therefore, generation plants based on these energy
sources were considered as candidates for power plants,
including a coal-fired thermal power plant, a Combined
Cycle Gas Turbine (CCGT) power plant, an Open Cycle
Gas Turbine (OCGT) power plant, a solar photovoltaic (PV),
and an onshore wind power plant. Tables 1 and 2 present
technical and economic characteristics of candidate power
plants considered in this research [27]. The CO; emission
factors for different types of fuels can be found in [34].

B. GENERAL PARAMETERS

The following data were assumed for all tests: « = 10%,
h = 8760. The maximum limit for reactive power sources
was considered to be in) = 50 MVar, and the cost (p(qi) was
0.025 MUSD per each MVar. The voltage magnitude limits
were V" = 1.05 p.u. and V""" = (.95 p.u. The maximum
active power limit for the fictitious generators was considered
to be I_’Ei) = 1000 MW. However, the cost (pfl.) was considered
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to be high, aiming to achieve an expansion plan where active
load shedding is approximately zero, Pfi) ~ 0. For network
power losses ¢ = 100 USD/MWh, and fi,s; = 0.6144.
In the conducted tests, no consideration was given to the
maximum fuel limits or CO, emissions limits. Furthermore,
operation and maintenance costs for existing generation units
were not considered in the analysis for the Garver 6-bus
and IEEE 24-bus systems. However, for the IEEE 118-bus
system, these costs were included in the analysis. A modified
load duration curve was used to determine the loss of load
probability as defined in (39).

P =1—083-(12) +4.73 - (ta)
—13.54 - (14)° + 15.72 - (12)* — 6.43 - (14)° (39)

C. PARAMETERS OF META-HEURISTICS

The meta-heuristics used in this research work include the
hybrid meta-heuristic AOA-TS, DE-TS, HBA-TS, HBA-TS-
LF, and IGA. Table 3 defines the parameters used in the
optimization process for each proposed meta-heuristic.

D. GARVER 6-BUS SYSTEM

The Garver system comprises six buses with a total active
power demand of 760 MW and 152 Mvar of reactive power.
Additionally, it includes 15 candidate right-of-ways for
new transmission lines.The installed active power capacity

TABLE 3. Parameter configurations of the selected algorithms.

Algorithm Parameters

DE Populatipn s.ize =50, s.ce.lle factor =0.5
Recombination probability = 0.7

AOA 0 G ns Cam 15 Ch = 05

HBA Number of honey badgers =50,C) =2,Cg =6

IGA 7w =10%,7 =30%,5 = 3

TS Tabu tenure is set to 40% of the allowed iterations.

LF B=15

is 1140 MW, while the reactive power capacity ranges
between —30 Mvar and 332 Mvar. The maximum number of
lines that can be added to each right-of-way, denoted as 7,
is set to 5. This system consists of three load buses that are
considered potential locations for allocating candidate power
plants. Thus, results for three case studies, denoted as A1, A2,
and A3, are presented in Table 4, and the performance of the
applied meta-heuristics is detailed in Tables 5, 6, and 7.

1) CASE STUDY A1

In this case, two scenarios are explored: scenario Al.1, which
does not include the allocation of reactive power, and scenario
Al.2, which considers including reactive power sources in
its formulation. In both scenarios, power plants A (coal-
lignite), B (CCGT), D (Solar PV), and E (Onshore wind) were
considered as candidate options, while constraints related to
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minimum and maximum reserve margin and LOLP were not
considered. The results presented in Table 4 for scenarios
Al.1 and A1.2 correspond to the integrated generation and
transmission network expansion planning. There is no need
to add new power plants in scenarios Al.l1 or Al.2, as the
existing generation has a reserve margin of 50%. Therefore,
this case study corresponds to the TNEP problem, and
the results are consistent with [35] and [36]. From the
results, it is observed that scenario Al.2 achieves a total
savings of 47.43 MUSD (28.46%), primarily due to reactive
power compensation (Q% = 49,43 Mvar), which leads to
the requirement of fewer transmission lines in the corridors
(2 —6) and (3 — 5), compared to scenario Al.1.

Regarding the performance of the meta-heuristics, Table 5
presents various indicators, such as the number of objective
function evaluations for the master problem and the sub-
problem, as well as the execution time for each scenario. For
this scenario, DE-TS takes 7.6 hours to reach ten iterations,
which is almost 5 times longer than the time taken by
HBA-TS and AOA-TS in scenario A1.1, and almost two times
longer in scenario A1.2. This suggests that this meta-heuristic
is not as efficient as the others applied in this study, at least
in terms of computational time.

2) CASE STUDY A2

In case study A2, 100 MW was added to each existing load,
and power plants A, B, and C were simultaneously considered
as candidate options. For this scenario, the planning of
reactive power source allocation was not considered, nor was
the loss of load probability. The minimum and maximum
reserve margins were set as 20% and 40% of the total demand,
respectively. Thus, scenario A2.1 addresses the integrated
GTNEP, while scenario A2.2 deals with the sequential study
of GEP and then TNEP. The expansion plans are presented in
Table 4, while the performance of the applied meta-heuristics
is detailed in Table 6. The results show that integrated
planning achieved a cost saving of 168.14 MUSD (11.30%)
in the final expansion plan, with the type C power plant
being implemented at bus 5 (uc,5 = 1), and the following
transmission lines added: np_3 = 1, np_¢ = 2, and
na—e = 3. The cost savings amount to 127 MUSD (42.76%)
related to new transmission lines, 40.47 MUSD (5.87%)
in the estimated energy cost of the new power plants, and
0.67 MUSD (5.46%) in network power losses costs.

3) CASE STUDY A3

In this case study, similar to scenario A2, 100 MW was added
to each load. However, the difference lies in considering
power plants A, B, C, D, and E simultaneously as candidate
options. In this context, scenario A3.1 addresses integrated
generation and transmission network expansion planning,
while scenario A3.2 deals with sequential GEP and TNEP
studies, considering, in both cases, the allocation of reactive
power sources. The maximum loss of load probability value
for this scenario was set to 2%, while the minimum and
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TABLE 4. Results for integrated generation and transmission network expansion planning. Garver 6-bus system.

Scenario Al Al.2 A2.1 A2.2 A3.1 A3.2
na—e = na—¢ = na—3 =1 na—e =3 n2—e =3 na—e =4
Added lines n3—5 = 2 n3—5 = 1 n2—¢ = 2 n3—5 = 1 n3—5 = 2 n3—5 = 1
n4g—6 = 2 n4—6 = 2 n4—6 = 3 ns—¢ = 3 n4—6 = 3 n4—6 = 3
R - ~ R _ _ ug2 = up,4 =
Power plants required ucs =1 uc,g =1 ups = ups = 1
Shunt compensation (M Var) - 0f =49.43 - - 0.0 0.0
Estimated power losses (MW) 12.41 14.88 21.55 22.80 22.34 21.49
Line cost (MUSD) 160 110 170 297 220 230
Shunt compensation cost (MUSD) - 1.24 - - 0.0 0.0
Power losses cost (MUSD) 6.68 8.01 11.60 12.27 12.03 11.56
Generation investment cost (MUSD) - - 488.82 488.82 680.17 680.17
Estimated energy cost (MUSD) - - 648.63 689.10 322.09 318.43
Total cost (MUSD) 166.68 119.25 1319.05 1487.19 1234.28 1240.16
Power losses Yes Yes Yes Yes Yes Yes
Reactive power compensation No Yes No No Yes Yes
TABLE 5. Meta-heuristics performance applied to AC-GTNEP. Garver 6-bus system, case study A1 with 50 individuals and 10 iterations.
Meta-heuristic HBA-TS-LF HBA-TS AOA-TS DE-TS
Scenario Al.l Al.2 Al.l Al.2 Al.l Al2 Al.l Al2
O.F. evaluations (SP) 100913 164576 133777 120947 126196 113636 196547 151798
O.F. evaluations (MP) 144 251 198 188 170 161 259 224
Computational time (h) 1.2 2.1 1.6 1.6 1.5 1.5 7.6 3.3
TABLE 6. Meta-heuristics performance applied to AC-GTNEP. Garver 6-bus system, case study A2 with 50 individuals and 10 iterations.
Meta-heuristic HBA-TS-LF HBA-TS AOA-TS DE-TS
Scenario A2.1 A22 A2.1 A22 A2.1 A22 A2.1 A2.2
O.F. evaluations (SP) 310670 1284 172497 1284 147354 1284 200749 1503
O.F. evaluations (MP) 123 341 85 330 70 336 131 385
Computational time (h) 3.9 0.1 2.3 0.1 2.0 0.1 37 1.6
TABLE 7. Meta-heuristics performance applied to AC-GTNEP. Garver 6-bus system, case study A3 with 50 individuals and 10 iterations.
Meta-heuristic HBA-TS-LF HBA-TS AOA-TS DE-TS
Scenario A3l A32 A3l A32 A3l A32 A3.1 A32
O.F. evaluations (SP) 252090 1980 147292 1959 100507 1927 227813 1314
O.F. evaluations (MP) 128 489 82 402 62 392 135 401
Computational time (h) 29 0.05 1.4 0.1 1.2 0.05 3.8 1.1

maximum reserve margins were set to 20% and 40% of
the total demand, respectively. Power plants B and D must
be installed for this case study. Scenario A3.1 shows that
integrated planning leads to a transmission expansion plan
with the same number of added lines but with a lower cost
than sequential planning in scenario A3.2. As a result, a total
savings of 5.88 MUSD (0.47%) was achieved with integrated
planning in scenario A3.1, primarily attributed to the lower
cost of expanding the transmission system. For this scenario,
the cost savings amount to 10 MUSD (4.35%) related to
new transmission lines, while there is an increased cost of
3.66 MUSD (1.15%) in the estimated energy cost of the
new power plants and 0.47 MUSD (3.9%) in network power
losses costs. The performance of the applied meta-heuristics
is detailed in Table 7.

In all case studies of the Garver system, all meta-heuristics
converged to the minimum value in less than 10 iterations.
Among them, HBA-TS and DE-TS stand out for achieving
this solution in few iterations as illustrated in Figure 2.
According to the results presented in Tables 5, 6, and 7,
DE-TS requires a higher number of objective function
evaluations for both the master problem and the sub-problem,
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resulting in longer computational times. This issue is due
to the encoding method used in the DE/rand/1/bin variation,
where individuals in the population are evaluated one at a
time, demanding calls to subroutines developed for each of
them. In contrast, meta-heuristics like HBA-TS evaluate the
entire population within the same subroutine, eliminating the
need for repeated calls to other parts of the code.

1900 -

- -- HBA-TS-LF

\ \ HBA-TS

1800 F ‘\ --- AOA-TS ||
K DE-TS

1700 R A 1
1600, .

15001 R N 1

M.P. objective function

ool .

9 y T P L L
1300 2 1 6 3 10
Iteration

FIGURE 2. Convergence process of the HBA-TS-LF, HBA-TS, AOA-TS, and
DE-TS meta-heuristics for scenario A2.1 with 50 individuals.
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TABLE 8. Results for integrated generation and transmission network expansion planning. IEEE 24-bus system.

Scenario B1.1 B1.2 B2.1 B2.2

nrg =1 no = 16-10 = 2 ni-s :71,2@724 = ;
Added lines ng—10 =1 n3_5 =3 "7-8 - 11610 - N8 -~

Ma1e = 1 neo =1 nig—16 =1 nig—23 =1ms24=1
nie—17 =1 nig—17 =1

Power plants required uc,10 =1 uc,19 =1
Shunt Comp. (M Var) 830.51 801.64 823.72
Power losses (MW) 257.12 221.77 294,26 293.27
Line cost (MUSD) 86 424 154 330
Shunt comp. cost (MUSD) 20.76 - 20.04 20.59
Power losses cost (MUSD) 138.39 119.36 158.37 157.84
Generation investment cost (MUSD) - - 488.82 488.82
Estimated energy cost (MUSD) - - 968.20 965.34
Total cost (MUSD) 245.15 543.36 1789.43 1962.59
O.F. evaluation (SP) 861 9512 - -
O.F. evaluation (MP) 1 1
Computational time (h) 0.05 1.11 - -
Power losses Yes Yes Yes Yes
Reactive power compensation Yes No Yes Yes

TABLE 9. Meta-heuristics performance applied to AC-GTNEP. IEEE 24-bus system, case study B2 with 50 individuals and 10 iterations.

Meta-heuristic HBA-TS-LF HBA-TS AOA-TS DE-TS

Scenario B2.1 B2.2 B2.1 B2.2 B2.1 B2.2 B2.1 B2.2
O.F. evaluations (SP) 352120 4751 226820 1536 441761 2459 689159 4455
O.F. evaluations (MP) 88 107 56 78 112 86 131 165
Computational time (h) 20.5 0.49 13.23 0.48 25.14 0.52 40.08 0.99

The results for the Garver system reveal that even when
the type C power plant is the most economical option
among those that use fuel such as coal or natural gas to
produce energy, as evidenced in scenario A2, in scenario
A3, it was crucial to incorporate plants B and D to meet
the constraints of loss of load probability and maximum
reserve margin, highlighting the importance of diversifying
energy sources. This adjustment led to a lower cost for case
study A3 compared to case study A2 (6.4% and 16.4% for
each scenario, respectively), mainly attributed to the reduced
energy costs resulting from the implementation of the solar
photovoltaic plant, highlighting the economic benefits of
renewable energy sources.

E. IEEE 24-BUS SYSTEM

The data for the IEEE 24-bus system can be found in [36].
This system has a total demand of 8550 MW and 1740 Mvar,
with an installed capacity of active power of 10215 MW
and an installed capacity of reactive power ranging
between —1905 Mvar and 7328 Mvar. There are 41 candidate
corridors for adding new transmission lines. The maximum
number of lines that can be added to each corridor was set
to 5. In all case studies involving the IEEE 24-bus system,
the loss of load probability constraint was not considered,
and the minimum and maximum reserve margins were set at
5% and 20% of the total demand, respectively. The expansion
plans for this system are presented in Table 8.

1) CASE STUDY B1
Case study B1 refers to the base case of the IEEE 24-bus
system, and two scenarios are analyzed. The first scenario,
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B1.1, considers the allocation of reactive power sources. The
second scenario, B1.2, does not include allocating reactive
power sources. In this case study, the installed capacity
of active power exceeds the demand by 20%. Given this
scenario, the base case was evaluated using the HBA-TS
algorithm, assuming no need to add new power plants.
Therefore, this case study corresponds to the TNEP problem,
and the results are consistent with those presented in [36].

From the results presented in Table 8§, it is shown that
a saving of 298.21 MUSD (54.9%) was achieved for the
scenario considering the joint planning of transmission lines
and allocation of reactive power sources (scenario B1.1),
compared to the case considering only the addition of trans-
mission lines. This saving is attributed to the construction
of fewer transmission lines, primarily due to the allocation
of reactive power sources at bus 3 ( 5= 293.19) and bus 9
(Qg = 537.31). Scenario B1.2 requires more objective func-
tion evaluations in the sub-problem, consequently increasing
the computational time required for the optimization process
(see Table 8).

2) CASE STUDY B2

For scenario B2, the generation and demand data were modi-
fied. The modified system includes the addition of 50 MW
of additional demand at each existing load. Additionally,
there was a reduction in the maximum generation capacity
of units allocated at buses 13 (—200 MW), 15 (—100 MW),
16 (—100 MW), 18 (—300 MW), and 21 (—200 MW), and
reactive power sources were allocated at buses 3 and 9.
For this scenario, the generation units listed in Tables 1
and 2 were simultaneously considered as candidate options.
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TABLE 10. Results for integrated generation and transmission network expansion planning. IEEE 118-bus system.

Scenario Cl.1

C1.2 C21 Cc2.2

nz—s =1,ng_9g =1,
ng—s =2,n9—10 =1,
n26-30 = 2, n23—32 = 1,
n3g—37 =2,n77—78 = 1,
ng2—g3 = 1,n94—100 = 1,
nr—113 =1

Added lines

n3—5 = 1, ng—g9 = 1,
ng—s5 =2,n9—10 = 1,
n26-30 = 2, n23—32 = 1,
n3s—37 = 2, ng2-83 = 1,
ng3—94 = 1,n17-113 =1

n3_s =1,ng_g =2
n3—s =1l,ng_9g =1, 35T o8 TS

ng—s =2,n9—10 =1,
n26-30 = 2,n23-32 = 1,
n3g—37 = 1,ng2-83 = 1,
ng3—94 = l,n17—113 =1

ng—s =2,n9—10 =1,
nis—17 = 1,n23—15 = 1,
n26-30 = 1,n23-32 =1,
n77—78 = 1,ng2-83 = 1,
ng4a—100 = 1,mr7-113 =1

Power plants required uc52 =1 uc,33 =1
Shunt Comp. (M Var)

Estimated power losses (MW) 104.77 111.64 122.13 116.45
Line cost (MUSD) 126.6 126.6 119.8 125.3
Shunt comp. cost (MUSD) - - - -
Power losses cost (MUSD) 56.39 60.09 65.73 62.68
Generation investment cost (MUSD) - - 488.82 488.82
Estimated energy cost (MUSD) 0.0 0.0 598.18 591.75
Estimated cost of existing energy (MUSD) - 26687.48 23 814.86 24 453.85
Total cost (MUSD) 182.99 26874.17 25089.72 2572247
O.F. evalutaions (SP) 177768 198541 89684 5394
O.F. evalutaions (MP) 22.00 28.00 23.00 28.00
Computational time (h) 38.15 47.15 46.30 1.64
Power losses Yes Yes Yes Yes
Reactive power compensation No No No No

Table 8 presents the results for scenario B2, covering both
the integrated GTNEP problem (B2.1) and the sequential
GEP-TNEP problem (B2.2).

The results indicate that in both scenarios, the imple-
mentation of power plant type C is necessary. In this way,
the expansion plan in scenario B2.1 achieved a savings
of 173.16 MUSD (8.82%), highlighting the efficiency of
integrated GTNEP. This integrated approach resulted in a
more cost-effective solution than the sequential scenario
B2.2. The cost savings for the integrated GTNEP amount
to 176 MUSD (53.33%) related to new transmission lines and
0.55 MUSD (2.67%) in reactive power allocation, while there
is an increased cost of 2.86 MUSD (0.29%) in the estimated
energy cost of the new power plants and 0.53 MUSD (0.33%)
in network power losses costs.

For this case study, Table 9 presents the performance of the
meta-heuristics, all of which reached the same solution that
minimizes the objective function. However, HBA-TS stands
out as the most efficient in terms of computational time,
being three times faster than DE-TS, which took 40.08 hours
to reach ten iterations. This result indicates that not only
did HBA-TS achieve faster convergence, but it also required
fewer objective function evaluations compared to DE-TS.

F. IEEE 118-BUS SYSTEM

This system has 118 buses, 186 corridors to add new
transmission lines, 91 load buses, and 54 thermal generation
units. The active and reactive power demand is 6240 MW
and 2470 MVar, respectively, with an installed capacity
of 7170 MW of active power [17]. In the tests, the HBA-TS
meta-heuristic was employed in the optimization process of
the master problem. Two case studies were analyzed, where
the type C power plant was considered a candidate option,
and ten load buses were evaluated as potential locations for
its allocation. These load buses were 3, 5, 11, 20, 33, 41, 52,
86, 94, and 108. Additionally, the allocation of reactive power

VOLUME 12, 2024

sources and the loss of load probability were not considered
in any of the mentioned cases. Besides this, 17 corridors were
considered for adding new transmission lines: 3-5, 8-9, 8-5,
9-10, 15-17,23-15,25-27,26-30, 23-32, 38-37,77-78, 82-83,
93-94,94-100, 99-100, 17-113, and 12-117, with a maximum
of 2 transmission lines that can be added to each corridor.
Finally, the number of iterations for the master problem was
set to 2. Results for the integrated GTNEP are presented in
Table 10.

1) CASE STUDY CT

For this case study, two scenarios were considered. Scenario
Cl1.1 corresponds to the base case without considering
the energy cost of existing power plants, while scenario
C1.2 considers the base case but includes the cost of existing
generation units. In both scenarios, reserve margin constraints
were not considered, aiming for this case study to be
considered a TNEP problem. As evidenced in Table 10, the
results indicate that the cost of adding new transmission lines
is the same for both scenarios, 126.6 MUSD, although they
present different topologies. It is also noteworthy that adding
the proposed power plant is unnecessary.

2) CASE STUDY C2

This case study begins with scenario C1.2, which consid-
ers the energy generation cost of existing power plants.
In scenario C2.1, an integrated GTNEP is conducted, while
scenario C2.2 involves sequential GEP-TNEP planning. For
both scenarios, the minimum and maximum reserve margins
were set at 15% and 30%, respectively. Table 10 presents
the results for these scenarios, showing a total cost saving
of 635.01 MUSD (2.47%) in scenario C2.1. The cost
savings in the integrated GTNEP are attributed to 5.5 MUSD
(4.39%) from new transmission lines and 638.99 MUSD
(2.61%) in the estimated energy cost of existing power
plants. Conversely, there is an increased cost of 6.43 MUSD
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(1.08%) in the estimated energy cost of new power plants and
3.05 MUSD (4.86%) in power losses.

It is concluded that considering the costs of existing
generation units makes the benefits of integrated planning
more noticeable. In scenario C2.1, the operating cost of
existing generation units decreased compared to scenario
C1.2. This reduction occurs because, in the projected system,
the type C power plant has a lower energy generation cost
than the existing power plants.

The results show that while each system presented unique
challenges, the integrated GTNEP approach consistently
outperformed the sequential planning method to achieve
higher cost-effectiveness, regardless of the test system
used. Therefore, the performance of the integrated GTNEP
approach varies across these test systems primarily in terms
of computational time and the number of objective function
evaluations, as shown in Tables 5, 6, 7, 9, and 10. In summary,
both computational time and objective function evaluations
increase with the size of the test system, indicating greater
computational complexity in larger systems, which can
decrease the robustness of the method.

V. CONCLUSION

In this study, a methodology for the co-optimization of gen-
eration and AC transmission networks using meta-heuristic
optimization techniques was proposed. The operational prob-
lem was formulated using mathematical representations of
the AC power flow. The model considered incorporating new
power plants, transmission lines, reactive power allocation,
and the evaluation of network power losses. To the author’s
knowledge, this is the first work that has included these
features in this problem. It was concluded that GEP and
TNEP should be carried out in an integrated manner since this
results in more economical expansion and operation plans,
allowing for better resource management.

Results show that the type C power plant OCGT has
the lowest levelized cost of energy compared to the
non-conventional power plants used in this research, such
as type A (coal-lignite) and type B CCGT units. This factor
led to the inclusion of this generation unit in scenarios A2
and B2. By taking advantage of the lower operating costs
and environmental benefits of renewable energy, scenario A3
highlights the importance of moving towards a more diverse
and sustainable energy mix.

In the comparative analysis of meta-heuristics applied to
the master problem of integrated generation and transmission
network expansion planning, the efficiency of the hybrid
meta-heuristic HBA-TS stands out. HBA-TS has proven
to be more efficient, showcasing fewer objective function
evaluations and, consequently, shorter computational times
for simulations. This emphasizes the significance of HBA-TS
as a valuable tool that can be applied to a wide range of
other optimization processes, providing reassurance about the
effectiveness of the optimization process.

While integrated planning offers superior economic ben-
efits compared to sequential planning, it is essential to
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recognize that it requires higher computational time and
increased objective function evaluations. The integrated
approach involves a more detailed analysis, leading to longer
processing times than the sequential approach. However,
the long-term economic and operational advantages out-
weigh these timing concerns, particularly when considering
the enhanced concurrent optimization of generation and
transmission expansion planning.

Future research aims to incorporate contingencies and
uncertainties into the planning process, implement dynamic
planning strategies, and integrate emerging technologies such
as HVDC links and storage devices. By addressing these
aspects in future works, we can enhance the robustness and
effectiveness of the planning framework, thereby ensuring the
resilience and sustainability of power systems.
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