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Masonry structures are the most prevalent type of buildings worldwide, and a significant portion are situated in
seismic-prone areas. Thus, detailed information regarding their seismic strength and vulnerability is needed. The
complexity of studying masonry structures lies in defining accurate and efficient models for representing masonry
walls. In this context, there is a need for simplified methods that allow the modeling of masonry walls within a
3D structure. This work presents a methodology to define effective masonry properties from numerical analyses

on representative volumes, using a damage model informed by experimental tests on units and mortar. These
effective material properties serve as input parameters to model masonry walls within a macro-model approach,
aiming to accurately capture the in-plane behavior and damage mechanisms with limited computational cost.
The methodology is verified with experimental results and applied to real case studies in Cuenca, Ecuador.

1. Introduction

Masonry buildings, the most common structures worldwide, are par-
ticularly vulnerable to earthquakes. However, research on masonry re-
mains limited, for instance, when compared to reinforced concrete or
steel structures. Further research is thus needed to refine current anal-
ysis methods and ensure accurate predictions of the global structural
response and the behavior of the structural components. However, mod-
eling masonry is challenging due to its heterogeneous nature and inher-
ent non-linear behavior.

Several seismic assessment methods for masonry rely on idealized
procedures [1,24,34,36] to capture the global response. These methods
commonly model walls using 1D beam elements. Most idealized meth-
ods face difficulties in characterizing the connection between walls and
other structural components, such as reinforced concrete columns and
beams. In addition, the multiple damage mechanisms of masonry walls
are not easily captured [8]. On the other hand, more dedicated mod-
els consider most interactions between masonry constituents using a
full discretization of units, mortar, and interfaces [12,15,49]. Applying
these modeling approaches to large walls or buildings implies high com-
putational costs [25,28], particularly in 3D, and may be cumbersome to

implement. Hence, macro-modeling-an intermediate solution-arises as
a valuable option [51].

Macro-models have been used for the seismic assessment of large and
complex structures [27,35]. By treating masonry as a homogeneous con-
tinuum, this approach implies significant computational savings and an
easier mesh generation process. While isotropic models are often used
due to their simplicity and fewer material properties, it has been well-
recognized that masonry is better represented as an orthotropic medium.
Hence, suitable non-linear constitutive models are required, which must
accurately capture the orthotropic elasticity, strength, and softening re-
sponse of the composite material. Elastoplasticity and damage models
are typically employed for this purpose. Early references that address
the yielding and maximum strength of different anisotropic materials in-
clude Hill [19,20], Hoffman [21], Tsai-Wu [67], and Dutko et al. [14].
Moreover, this problem may be addressed conveniently using tensor
transformations, e.g., linear transformations of stress components and
the concept of mapped stress tensor [6,7]. This approach describes the
anisotropic behavior of a material through equivalent isotropic proper-
ties. In this context, a transformation tensor was defined by Oller et al.
[45,46] to relate the stresses and strains in an orthotropic space to those
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in a mapped space, where an isotropic yield criterion is employed. While
these mapping tensor methods focus on plasticity problems, the work of
Pela et al. [50,51] further considered continuum damage mechanics.

The success of macro-modeling approaches relies heavily on access
to accurate and representative material properties. For masonry, such
properties may be obtained from experimental testing [5]. Conducting
tests on 1:1 scale walls or buildings in small laboratories is often im-
practical due to the high costs and lack of adequate equipment. Hence,
tests on (properly defined) representative volumes are essential. In this
context, numerical homogenization offers a viable alternative, providing
averaged effective material properties from direct numerical simulations
[26].

The effective stress-strain relations of macro-models based on ho-
mogenized material properties require the elastic stiffness constants and
the generally non-linear tangent operator. In this context, Lourengo [25]
showed accurate results for an elastoplastic model considering repre-
sentative volumes of layered structures. For masonry, a non-layered
composite, the author employed a two-step homogenization along the
two main material axes. In this case, results [25] showed that without
discretizing the geometry of the components, the method accurately pre-
dicts the elastic response. However, it can yield significant errors in the
non-linear stage. Luciano and Sacco [33] further proposed a damage
model based on periodic homogenization. The method identifies eight
damaged/undamaged states based on different mortar crack patterns
and allows the study of damage evolution in masonry, considering sim-
plified geometries.

The non-linear homogenization of masonry presents considerable
complexity, particularly during softening, due to mathematical chal-
lenges, difficulties in predicting collapse displacements, limitations in
defining micromechanical damage, and representing frictional behav-
ior. While improved methodologies are still under development [22,
26,41], Petracca [54] proposed a different approach, employing a frac-
ture energy-based regularization for two-scale computational homoge-
nization. This procedure allows first-order homogenization for quasi-
brittle materials, considering the characteristic finite element size at
both micro- and macro-scales and the size of the representative volume
element (RVE). However, solving a micro-scale boundary volume prob-
lem at every macroscopic time step/iteration implies a computational
burden. Computational multi-scale methods, of course, share this issue
in general. In the present study, this approach is taken as the point of
departure; however, rather than performing two-scale computations, we
aim to identify the averaged properties of a macro-scale damage model.

A numerical model suitable for deriving effective properties must
describe the different stages of masonry behavior. For this purpose, it
is possible to use detailed, 2D or 3D, micro-modeling of single-wythe
walls. The 2D case is efficient and can provide accurate results [18,58]
for walls with brick assemblies that follow a regular pattern [2,53]. A
computationally efficient option in this context is limit analysis [3,59],
which determines the ultimate load-carrying capacity and failure mode.
However, this approach does not capture the softening response. An-
other option is to use discrete models [3,37,59] with zero-thickness
interface elements characterized by cohesive-frictional constitutive laws
[18]. The brick units are commonly described as rigid blocks and the
non-linear behavior is limited to the interfaces [13]. This approach al-
lows for material characterization under different loading conditions
[53,58] but is not suitable if the non-linear behavior of the bricks plays
an important role, e.g., when the failure probability is higher for units
than for mortar [38]. Indeed, in masonry walls with low-strength bricks
under high compressive-shear states, damage can appear in the units
before the mortar, modulating the global response. A viable alterna-
tive uses continuum elements for the bricks and the mortar, with both
materials exhibiting non-linear behavior. Nevertheless, standard FEM-
continuum methods present well-established difficulties in capturing
softening and failure mechanisms [15] and, when at all possible, re-
quire fine discretizations to yield accurate results [28].
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The continuum damage approach for masonry structures proposed
by Petracca et al. [58] overcomes most of these limitations, building
upon previous damage models by Cervera et al. [10], Faria et al. [16],
and Wu et al. [71]. It employs an anisotropic damage model [50] with
different degradation mechanisms for loading/unloading in tension and
compression. The model is deemed more efficient than plasticity ap-
proaches, allowing a straightforward description of damage in units
and mortar using two scalar-valued internal variables. These variables
are evaluated explicitly, without local iterative schemes. Moreover, the
model includes an implicit control of dilatancy in the mortar joints,
without resorting to plastic potentials. The authors present an implicit/-
explicit integration scheme [44] that improves convergence, avoiding
numerical instability in the softening stage, where a fracture energy-
based approach provides regularization.

The present paper aims to identify effective properties for different
types of masonry, including walls with low-strength units, for use in a
macro-modeling approach. To describe the non-linear response of the
constituent materials, we resort to the continuum damage model of Pe-
tracca et al. [58], informed by experimental tests on brick units and mor-
tar. We explore a simple methodology to derive effective masonry prop-
erties from numerical simulations on RVEs. The obtained properties are
then used as input parameters of a macro-scale continuum model, avoid-
ing the computational burden of two-scale analysis. The methodology
applies to masonry walls with any regular arrangement (single-wythe or
double-wythe masonry walls). The validation is twofold, considering (i)
macro-model simulations with experimental verification for the shear
walls tested by Raijmakers and Vermeltfoort [61], and (ii) size effects
and mesh sensitivity, essential for materials with softening. Moreover,
the methodology is applied to obtain the effective properties of two typ-
ical masonry walls used in buildings in Cuenca, Ecuador, considering
uncertainty in the materials and providing a representative database for
construction in the region.

2. Micro-modeling approach

We resort to continuum damage mechanics to describe the behavior
of composite masonry structures [54,58]. The parameters of the dam-
age model are established from experimental tests on bricks and mortar.
This section is the basis for the micro-modeling approach, used to de-
rive effective macroscopic properties from representative volumes in the
subsequent sections.

2.1. Damage model

We consider a tension/compression damage model [58] that has
shown to be robust and accurate for both the micro- and macro-
modeling of masonry structures [56]. It represents an enhancement of
previous models [10,16,71], providing a convenient control of dilatancy
under shear stress states. The resulting micro-model is simple and effi-
cient, and avoids nested iterative procedures by explicitly updating two
scalar-valued damage internal variables. The formulation is briefly sum-
marized below for the readers’ convenience.

The stress tensor of the constitutive model is defined in terms of two
damage parameters, one for the positive part and one for the negative
part:

oc=(1-d"He"+(1-d)6~ @

where d* and d~ are the two damage scalars that measure the amount
of damaged material from 0 (no damage) to 1 (complete damage). More-
over, 67 and 6™ are, respectively, the positive and negative parts of the
effective stress tensor &, representing the stress on the effective resistant
section. & is calculated from the linear elastic relation

6=C:e 2
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where C is the fourth-order isotropic stiffness tensor and € is the strain
tensor. The positive and negative parts of the effective stress tensor are
given by

3
6+:Z<6_i>pi®pi (3)

6 =0—-0 4)

where &; is the ith principal stress, p; is the unit vector of the associ-
ated principal direction, and (-) are the Macaulay brackets, returning
zero for negative values and the enclosed expression for positive values.
Thus, the positive part of the effective stress tensor 6T represents the re-
composition of the positive eigenvalues multiplied by the outer product
of the associated eigenvectors.

The model includes failure criteria for tension and compression. In
the 2D case, the tensile failure surface is given in terms of an equivalent
stress measure 7t:

= H(=6,,,) [ﬁ ((xl_] +14/3J, +ﬂ(6max)> ?] (5)

with

kb -1 f c

a—m, ﬂ—z(l—a)—(1+¢1) (6)
Here, I, is the first invariant of the effective stress tensor, J, is the
second invariant of the effective deviatoric stress tensor, 6,,,, is the
maximum effective principal stress, kj, is the ratio of bi-axial to uni-
axial compressive strengths, f, is the maximum compressive stress, and
/i is the tensile strength. On the other hand, the compression failure
surface is defined as

T_=H(_6-min) [ﬁ <IZI_1+ 3f2+klﬁ<6max>>] )
Here, the scalar k,; takes values between O (Drucker-Prager criterion)
and 1 (Lubliner et al. criterion [32]). This parameter implicitly controls
dilatancy (volume change due to shear stress) by defining the size of
the compressive surface in the tension/compression quadrants. A larger
compressive surface (relative to the tensile surface) results in higher
dilatancy.
In equations (5) and (7), the Heaviside function

0 x<0
H =
&) {1 o ®

is introduced to allow the tensile surface to evolve when at least one
principal stress is positive and the compressive surface to evolve when at
least one principal stress is negative [58], hindering unrealistic damage
mechanisms from being active under arbitrary stress states.

The model takes into account irreversible damage. This condition is
characterized by two damage thresholds, r* and r~, representing the
largest positive and negative damage values reached by 7* at any time
step ¢ in the loading history:

r* =max | r¥, max 7% 9)
07 0<n<r
where r:—)' represents the initial limits in tension (f,) and compression

(fe)- In this way, the damage criteria read

t-rf=<0 (10)

The evolution law for tensile damage has the explicit form [58]

+ + _ ot
dteh=1- o exp< 2Hy . 11)
+ dis r(_;_

where Hg; is a softening parameter adjusted according to the dissipa-
tive zone size /y;; [4,43], taken equal to the finite element discretization

Results in Engineering 23 (2024) 102546

length, /4;; =1, in order to achieve mesh-insensitive results. In partic-
ular:

mat — 2

fi

where Gy is the fracture energy in tension, obtained from the uniaxial
stress-strain curve, while

2
1 b
=1+ —) — 13
& <+Hdis)2E 1%

Hgy, = (12)

lmat - ldis

is the specific fracture energy per unit volume. In this way, the following
condition is satisfied:

8t lais = Gy 14

This model produces a typical uniaxial response [29], characterized by
the initial elastic stiffness up to the peak strength and exponential soft-
ening thereafter.

On the other hand, for the evolution of the compressive damage
index d~, Petracca et al. [58] proposed an ad hoc expression based
on a composite curve using a uniaxial hardening/softening law. Three
quadratic Bézier curves, each controlled by three control points, char-
acterize the linear (€, o)), hardening, peak (¢, o) and softening parts
of a uniaxial compressive test. The softening part is represented by a
residual (e,,0,) and ultimate state (e,,0,). The damage index d~ as a
function of the damage threshold r~ is updated using
aomy=1- 22 (15)

r
where Y () represents a stress state in the Bézier curves as a function
of ¢E=r"/E.

Note that equation (14), relating the specific fracture energy with the
characteristic finite element size, is well-established from the work of
Bazant et al. [4] and has been adopted in several contributions [9,43,54]
to achieve mesh-insensitive results in finite element simulations during
softening. This feature is crucial for the present numerical studies.

2.2. Material properties

The damage model introduced in section 2.1 requires the follow-
ing properties: compressive strength f. and corresponding strain €ps
Young’s modulus E, Poisson’s ratio v, tensile strength f,, compressive
elastic strength £, compressive residual strength f,, fracture energies
(G, for tension and G, for compression), compressive biaxial strength
factor ky,, and shear-compression reduction factor k;. Here, these prop-
erties are obtained from experimental tests on bricks and mortar cubes.
In this process, it is relatively simple to obtain the compressive strength
/. and the corresponding strain €, from compressive tests, without com-
plex equipment. These two parameters are the basis for estimating ad-
ditional properties.

The remaining material parameters are derived as follows. Firstly,
the expression proposed by Yassin [72] is employed to estimate Young’s
modulus of bricks and mortar as

_2

€,

E

(16)
P

The Poisson’s ratio, after consulting the work of several authors [42,47,
48,69], is chosen 0.18 for hollow bricks, 0.17 for solid bricks, and 0.20
for mortar. The tensile strength of bricks and mortar is a function of
their corresponding compressive strength. The value is sampled from a
log-normal distribution with an average of 0.07 f, [63,64] and a stan-
dard deviation of 0.007 f,. The units of f, must be N/mm?. Compressive
elastic strengths of brick f,y, and mortar f.,, and compressive resid-
ual strengths of brick f,;, and mortar f,, are defined as 1/3 and 1/10 of
their corresponding compressive strength. These values could be modi-
fied or adjusted from experimental tests.
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Secondly, since small equipment cannot capture softening dur-
ing compressive tests (the analysis stops after reaching the maximum
strength), the fracture energies are defined as functions of strength.
Lourenco and Milani [30], Lourenco and Rots [29], and Vasconcelos
et al. [68] proposed to estimate fracture energies as the ratio be-
tween strength and energy (ductility index), suggesting G, = 1.6 f,. and
G, =0.029 f,, the strength values in N/mm and the fracture energies in
N/mm?. Finally, the values of k;, vary between 1 and 1.2 for bricks and
mortar, and k; can be assumed as O for the units and 0.2 for mortar
[25,57].

3. Macro-modeling and experimental verification

This section presents the macro-modeling approach informed by
effective properties. The overall methodology is as follows. First, the
parameters of the micro-model are established from experimental tests
on bricks and mortar (section 2.2). Then, RVEs of a masonry wall are
defined and subjected to numerical analyses under different loading
conditions. Then, results from the numerical calculations, namely the
stress-strain and stress-displacement curves, are used to determine ef-
fective properties. As a crucial step, we consider orthotropic conditions,
relying on the tensor mapping procedure of Pela [52] and Pela et al.
[50]. To assess the accuracy of the macro-modeling approach, we take
the experimental shear wall results of Raijmakers and Vermeltfoort [61]
as a benchmark. Consequently, effective properties are extracted from
RVEs representing the bonding pattern of walls J4D and J2G [61], ana-
lyzed under compressive, tensile, and shear forces.

3.1. Orthotropic damage model

Masonry is modeled at the macro-level as a homogeneous or-
thotropic continuum, considering the arrangement of its components
and their interaction. The orthotropic behavior is simulated using a
tensor mapping procedure that establishes a mathematical relation-
ship between the anisotropic real space and an auxiliary mapped space,
greatly simplifying the modeling process [51].

The non-linear behavior is again represented by the continuum dam-
age model of subsection 2.1, where the damage parameters now evolve
independently in different material axes for tension and compression.
To this end, the real stresses are transformed into the mapped space us-
ing fourth-order transformation tensors that represent the anisotropic
properties of the material. The damage variables and total stresses are
computed in the mapped space and then returned to the real orthotropic
stress space to update the internal forces. The algorithm is presented in
Pela et al. [51] for the analysis of masonry structures.

In orthotropic behavior, axial and shear strains in one direction are
independent. Additionally, there is no coupling between shear stresses
acting on different planes. Thus the resulting orthotropic relation be-
tween stresses and strains in plane stress conditions is

E, Va1 B 0
o1 l—v]2Ev2| 1—22 Va1 11
0y |=| U222 2 0 € a7)
. I=vipva;  1-vip vy 2¢
12 0 0 Gy, 12

where E; and E, are the Young’s modulus in the x-direction and y-
direction, respectively, v;, and v,, are the two Poisson coefficients and
G, is the shear modulus in the 1-2 direction.

3.2. Effective properties

An RVE represents the smallest volume element that captures the
essential characteristics of the microstructure and allows an objective
prediction of effective properties. In the present work, we derive effec-
tive material properties from RVEs of single-wythe masonry walls using
the numerical damage framework of section 2 as a micro-modeling ap-
proach. As discussed before, regularization is achieved during softening
by taking the characteristic length equal to the finite element size.
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Fig. 1. Graphical illustration of the fracture energy per unit area (grey) from
idealized stress-displacement curves.

I m

(a) X 0.99 m

Fig. 2. (a) Scheme of the experimental test setup of wall J4D consisting of 18
rows of bricks and mortar, two of which are attached to steel beams (black), and
the loading conditions in two stages [70]. In the first stage, a uniform vertical
force P is applied. In the second stage, a displacement-controlled lateral load
H is applied. (b) Experimental crack patterns for wall JD4 after an incremental
displacement of 4 mm, adapted from Lourenco [25].

Analyses in two directions are necessary to define the effective prop-
erties of the orthotropic medium. Thus, the numerical simulations are
conducted in directions perpendicular to the bed joints (y or 2) and
perpendicular to the head joints (x or 1). The results are the basis for
deriving the effective properties, employing the average stresses, aver-
age strains, and total displacements of the RVEs under different loading
conditions. At each load increment, the stress ¢ is computed by averag-
ing the resulting forces and dividing by the acting area of the RVE. The
corresponding strain ¢ is determined by averaging the displacement at
each increment and dividing by the initial length of the specimen in the
loading direction. A typical response curve consists of four characteristic
stages: elasticity, yielding, maximum strength, and softening.

For the elasticity parameters, compressive tests yield an estimate for
Young’s modulus, computed using Hooke’s law in 1D as E = ¢ /e dur-
ing the elastic stage. Similarly, shear tests provide the shear modulus
during the elastic stage as G = (V H)/(A ), where V is the total shear
force, H is the RVE height, A is the RVE area, and ¢ is the average
lateral displacement. On the other hand, the compression and tensile
strengths follow from the corresponding maxima of each curve. For com-
pression, the elastic compressive strength is assumed to be 1/5 of the
peak strength, approximately corresponding to the value where the uni-
axial curve becomes inelastic. The compressive residual strength is the
stress (at a strain higher than ep) whose value decreases to less than or
equal to 80% of the peak strength (it is assumed that the RVEs fail at
this value).

Finally, the areas under the compressive and tensile force-displacement
curves estimate the compressive and tensile fracture energies [25,29],
respectively. This approach will be crucial for counteracting the ex-
pected size effect, as shown numerically in section 4.5. Fig. 1 illustrates
the areas under the curve that represent fracture energy in units of en-
ergy per unit length. The limit on the right side of Gy, represents the
ultimate compressive strength.
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Table 1

Material properties of bricks and mortar adapted from Lourenco [25,

58].
Property Values Units

Brick Mortar

Young’s modulus E 16700 850 [MPa]
Poisson’s ratio v 0.15 0.15 [-]
Tensile strength f, 2.0 0.25 [MPa]
Tensile fracture energy G, 0.08 0.018 [N/mm]
Compressive elastic strength f, 8.0 3.0 [MPa]
Compressive strength f, 12.0 10 [MPa]
Compressive residual strength f, 1.0 2.0 [MPa]
Compressive fracture energy G, 6.0 80.0 [N/mm]
Strain at peak strength € 0.004 0.04 [-]
Compressive biaxial strength factor ky 1.2 1.2 [-]
Shear-compression reduction factor k; 0.0 0.16 [-]

<
N
—

NI
Yo}
y-

230 ‘
ze— 10

220

Fig. 3. RVE representing the pattern of wall JD4, showing the mesh (black bor-
ders) representing bricks (brown fills) and mortar (gray fills).

3.3. Wall J4D

Let us now present a validation of the macro-modeling approach for
characterizing masonry walls. We consider, as a benchmark, wall J4D
of the TU Eindhoven shear walls tested by Raijmakers and Vermeltfoort
[61] in 1992, as part of the CUR [62] project. The dimensions of the
wall (Fig. 2) are 0.99 m long, 1 m high, and 0.098 m wide, consisting
of 18 courses of wire-cut solid bricks and mortar. The upper and lower
courses are fixed in steel sections. The bricks are 0.204 m long, 0.0525
m high, and 0.098 m thick. The mortar is 0.01 m thick and composed
of cement, lime, and sand in a volume ratio 1:2:9.

During the experiment, two actuators hold the upper steel beam hor-
izontally (Fig. 2) while the lower beam is fixed. A compressive pressure
of 0.3 N/mm?, resulting in a total load of 30 kN, is applied to the up-
per beam. In the second loading stage, lateral displacements are applied
incrementally until failure. Fig. 2b presents the crack pattern in the fi-
nal state. Diagonal cracks form around the mortar interface, typical of
shear failure. The three lower-right bricks show diagonal cracks, while
the lower-left section shows detachment of brick-mortar interfaces.

The following subsections aim to reproduce the experimental obser-
vations using the simplified framework proposed in the present study.
The accuracy of the orthotropic macro-model solution in approximat-
ing the experimental results will represent the first validation of this
approach.

3.3.1. RVE analyses and effective properties

The framework discussed in section 3.2 for computing effective ma-
sonry properties is now applied to an RVE considering the wall’s bonding
pattern (Fig. 3). Table 1 summarizes the material properties of units and
mortar, obtained as discussed in subsection 2.2, based on the compres-
sive strengths from Lourengo [25].

The numerical analyses consider compressive, tensile, and shear
loading under plane stress conditions. Fig. 4 illustrates the boundary
conditions. The bottom nodes are fixed in both directions for the com-
pressive and tensile analyses, while an equal-degree-of-freedom con-
straint is assigned to the top nodes. A distributed vertical load is first
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Fig. 4. Scheme of boundary conditions for (a) RVE perpendicular to bed joint (y
or 2 direction) and (b) RVE perpendicular to the head joint (x or 1 direction).

Table 2
Effective masonry properties for wall J4D obtained from compressive, tensile,
and shear analyses in two directions.

Property Values Units
2-direction 1-direction
Young’s modulus E 4142.7 9395.4 [MPa]
Shear modulus G 1521.4 1521.4 [MPa]
Poisson’s ratio v 0.20 0.17 [-]
Tensile strength f, 0.21 0.56 [MPa]
Tensile fracture energy G, 0.02 0.05 [N/mm]
Compressive elastic strength f, 3.6 3.1 [MPa]
Compressive strength fc 10.7 9.4 [MPa]
Compressive residual strength f, 1.8 2.5 [MPa]
Compressive fracture energy G, 6.8 16.2 [N/mm]
Strain at peak strength ¢, 0.008 0.004 [-]
Compressive biaxial strength factor ky, 1.2 1.2 [-]
Shear-compression reduction factor k, 0.0 0.0 [-1

applied until reaching a target displacement. The initial loads are -1
N/mm for compression and 0.1 N/mm for tension. Then, displacement-
controlled increments in 200 steps are applied, leading to maximum
reaction forces (compressive or tensile strength) followed by softening
behavior. The target displacement for compression and tension is 5.0
mm and 0.25 mm, respectively. The top boundary conditions for the
shear simulations are different. A prescribed relative displacement con-
strains the top nodes while forcing them to reach a target displacement
of 1 mm. These conditions keep the top nodes parallel to the bottom
nodes. Vertical displacement of the top surface is allowed.

The analyses under plane stress conditions employ the penalty
method to enforce constraints, while equilibrium is reached at each time
step using the Krylov-Newton [65] iteration method. The tolerance crite-
ria to check for convergence is 0.0001. The analysis takes approximately
30 s using a computer with an i7-8750 (2.20 GHz) processor and 16 GB
of RAM.

Table 2 highlights the orthotropic properties derived from wall J4D
RVEs in the y and x directions. As discussed in section 3.2, the av-
erage stress-strain curves from the compressive and tensile analyses
(Fig. 5, a to d) provide the effective Young’s modulus, elastic compres-
sive strength, peak strength (compressive strength), residual strength,
and tensile strength. On the other hand, the shear analyses (Figs. 5e
and 5f) provide the shear modulus during the elastic stage. Finally, we
obtain compressive and tensile fracture energies from the correspond-
ing stress-displacement curves. As mentioned previously, this procedure
provides a simple approach to alleviate the expected size effects in the
softening response; this delicate point is addressed numerically in sec-
tion 4.5 and not reproduced here for brevity.

3.3.2. Macro-model analysis

Fig. 6 presents the numerical representation of wall J4D. The wall
is discretized using quadrilateral elements under plane-stress conditions
in OpenSees, using STKO [55]. The boundary conditions replicate the
experimental test setup. The bottom nodes are fixed in the x and z di-
rections. A distributed vertical load of 30 N/mm, simulating the 0.3
N/mm? of the experimental test, is assigned to the top elements of the
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Fig. 5. Stress-strain curves resulting from compressive loading on RVEs (a) perpendicular to bed joints and (b) perpendicular to head joints, and from tensile forces
on RVEs (c) perpendicular to bed joints and (d) perpendicular to head joints. Force-displacement curves from top lateral loading on RVEs (e) parallel to bed joints

and (f) parallel to the head joints.

FEM model. This procedure is load-controlled and performed in 10 steps
(it is assumed that the response will only be elastic). A second loading
stage starts by imposing the vertical displacement on the top nodes cor-
responding to the last displacement state from the previous analysis. An
equal-degree-of-freedom constraint is imposed on the upper nodes so
that the elements representing the steel beam remain horizontal. Then,
a prescribed lateral displacement of 4 mm is imposed on the top nodes
in 200 steps. Equilibrium is reached at each time step using the Krylov-
Newton iteration method [65].

Fig. 7 compares five curves: four numerical simulations and the
experimental results. The numerical solutions include cases using the
two sets of effective properties (in directions x and y) separately for
isotropic macro-model analyses, a case using all the effective proper-
ties for orthotropic macro-model analysis, and the direct micro-model
solution. The two isotropic solutions fail to approximate the wall’s max-
imum strength and almost the entire experimental curve. The isotropic
curve representing the wall’s y-direction only matches the initial elas-
tic stage of the experiment but overestimates the peak force. This effect
is even more pronounced in the x-direction isotropic case. These re-

sults confirm that effective isotropic properties for masonry may not be
representative. Conversely, the orthotropic homogenized solution shows
excellent agreement with the experimental data, comparable to that of
the micro-model solution in predicting the behavior of the wall in its
elastic, inelastic, and softening stages.

Fig. 8 illustrates the horizontal displacement of the micro-model
and orthotropic macro-model simulations after reaching a maximum
top lateral displacement of 4 mm. Both solutions exhibit a clear path
that identifies the separation of the wall into two parts. Additionally,
both solutions display similar behavior corresponding to the experimen-
tal failure mode (Fig. 2b) and the response indicated in Fig. 7. Note
that the top-left and bottom-right locations of fracture initiation are
very close. However, the micro-model solution presents a slightly dif-
ferent trajectory. It primarily follows the path of the mortar bedding,
which is not explicitly represented in the macro-model. Nevertheless,
at a much lower computational cost, an overall reasonable agreement
is observed, both in terms of the force-displacement response and the
failure path.
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Fig. 6. (a) STKO representation of steel profiles (black), wall J4D masonry (brown), and boundary conditions (purple). (b) Finite element discretization using 856

elements and 754 nodes; the element size is 40 mm.

120 T T T T T T T
100 g
80 - i

6Of : < \ 1

Base shear force [kN]

0 . . . .
0 0.5 1 1.5 2 25 3 3.5 4

Lateral displacement [mm]

Fig. 7. Force-displacement curves from experimental results (red line), numer-
ical micro-model analysis (blue line), macro-model orthotropic analysis (blue
tick line), and macro-model isotropic analysis with materials properties on the
y-direction (blue dashed line) and macro-model isotropic analysis with materi-
als properties on the x-direction (blue dotted line).

3.4. wall J2G

Fig. 9a presents the experimental setup of wall J2G [61], with an
opening, while Fig. 9b shows the crack patterns. Most cracks form along
the mortar joints, while only three bricks crack: one at the upper-left
corner and two at the lower-right corner.

Fig. 10 illustrates a macro-model representation of wall J2G, with
Fig. 10a depicting the model and Fig. 10b representing the correspond-
ing finite element discretization. Table 2 presents the effective proper-
ties of wall J4D, which are also employed for wall J2G since the wall
is made from the same materials. The boundary conditions are also the
same. However, now the elements representing wall J2G are four-node
parametric shell elements [31] instead of the quadrilateral elements
used for wall J4D.

Fig. 11 shows the force-displacement curves, indicating changes in
wall response, i.e., the onset of inelastic behavior, peak force, and ulti-
mate displacement. The macro-model shows an accurate prediction of
the elastic stage (1, = 0.40 mm) and the maximum strength. However,
we observe a substantial stress decay (softening) after reaching the peak
strength, which differs from the experimental result. This response is the
case for both micro and macro-model predictions.

Figs. 12 and 13 depict tensile damage indices and maximum prin-
cipal stresses at four displacement levels, as obtained from the macro-
model FEM solution. Damage starts at the wall’s lower-left and upper-
right corners. Fig. 13a shows tensile stress indicating possible detach-
ments on the upper-right and bottom-left corners (Fig. 12a). Under

increasing lateral displacement, the damage areas increase (Fig. 12b),
and the wall presents the highest compressive stresses (Fig. 13b). Then,
the model shows severe damage at nearly 7 mm of lateral displacement
(Fig. 12c). Splitting of the wall at a lateral displacement of 20 mm along
the opening between the upper-left and bottom-right corners is evident
due to extensive damage (Fig. 12d). The failure pattern of the wall is
consistent with the experimental result depicted in Fig. 9.

Softening is triggered after reaching the maximum strength (Fig. 11)
due to high tensile stresses (Fig. 13b) on the upper-left and bottom-
right corners of the opening, resulting in possible longitudinal cracks.
The final stage shows a pronounced softening response since most of
the wall is under tensile stresses (Figs. 13c and 13d) that exceed the
material’s tensile strength. In this case, the micro-model and the macro-
model numerical solutions depart considerably from the experimental
post-peak response. In particular, the experimental force-displacement
curve (Fig. 11) shows a ductile response with softening after reaching a
lateral displacement of 13 mm. Wall J2G reaches a final displacement
of 20 mm, more significant than the displacement of wall J4D under the
same compressive loading. A possibility for the considerable difference
after the post-peak response is that the model lacks the macroscopic
plasticity that results from friction at the interfaces. This limitation is a
worthwhile starting point for future research.

So far, we have shown numerically that the macro-damage model
of Petracca et al. [58] informed by effective masonry properties from
micro-model analyses provides an efficient alternative to direct numer-
ical simulations, with a comparable ability to reproduce experimental
observations. The following section will further delve into RVE analysis
in a real case study, considering uncertainty in the material properties,
size effects, and mesh sensitivity.

4. Application to Ecuadorian masonry

We apply the proposed methodology to estimate the effective proper-
ties of typical masonry systems of buildings in Cuenca, Ecuador. Similar
to section 3, the procedure comprises four stages:

1. Evaluating the material properties for bricks and mortar for the
damage model of section 2, using experimental data from conven-
tional materials in the region.

2. Defining RVEs for two typical masonry walls of buildings in Cuenca.

3. Numerically testing the RVEs under compressive, tensile, and shear
loading in two directions, considering uncertainty in the material
properties for bricks and mortar.

4. Estimating a database of effective properties from the numerical
results.
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Fig. 8. Lateral displacement of wall J4D in mm (color bar) obtained using (a) the full micro-model and (b) the orthotropic macro-model. Superimposed on both
figures are the mesh edges (gray lines). The displacements are scaled with a factor of 5.
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Fig. 9. (a) Scheme of the experimental test setup of wall J2G, consisting of 18 rows of bricks and mortar, two of which are attached to steel beams (black), and the
loading conditions in two stages [61]. In the first stage, a uniform vertical force P is applied. In the second stage, a displacement-controlled lateral load H is applied.
(b) Experimental crack patterns for wall J2G. Adapted from Laurengo [25].
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Fig. 10. (a) STKO representation of steel profiles (black) and wall J2G masonry (brown). (b) Finite element discretization of wall J2G using 2049 elements and 1742
nodes.
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Fig. 11. Force-displacement curves from experimental results (red line), numer-
ical micro-model analysis (thin blue line), and orthotropic macro-model analysis
(thick blue line). The markers (black squares) signal distinctive changes in wall
response at u, = 0.26 mm (onset of inelastic behavior), u, = 1.73 mm (peak
force), u, = 6.93 mm (onset of residual strength), and u, = 20.0 mm (ultimate
displacement).

In addition, as an essential validation step, we assess the size ef-
fects and mesh sensitivity of the RVEs, as expected during softening
responses. In particular, we highlight the role of the adopted regulariza-
tion scheme, equations (12)-(14), and the use of the stress-displacement
curves for computing the effective fracture energy.

4.1. Background

The city of Cuenca has a population of about 300,000 inhabitants
[23]. It is located in the southern part of Ecuador, in the Andean High-
lands, at about 2350 m to 2550 m above sea level. Cuenca’s Historical
Center is recognized for its architectural wealth and was added to UN-
ESCO’s list of World Heritage Trust sites in 1999. In Cuenca, there are
more than 60,000 buildings [17]; of these, 43% are confined masonry,
27% are reinforced concrete, 19% are unreinforced masonry, 6% are
steel structures, and 3% are timber and other types [11]. Moreover,
80% of the building stock is low-rise, composed of buildings with 1 to
3 stories, from which 53% are two-story dwellings.

Since late 2017, the research group Vulnerabilidad Sismica del Patri-
monio Edificado de Cuenca has been studying the seismic vulnerability of
Cuenca’s buildings in collaboration with the Red Sismica del Austro (seis-
mological observatory and research group in the South of Ecuador). The
group aims to increase data and reduce uncertainty by performing ex-
perimental compressive tests on units, mortar cubes, and masonry piers.

4.2. Experiments on bricks and mortar

Fig. 14 shows two typical bricks from buildings in Cuenca. The first
type is a hollow tochana unit with an average length L =30 cm or 40 cm,
height 2 =20 cm, and width b = 13 cm. The second type is a solid burnt
unit called panelén, with an average length L = 28 cm, height 4 =9 cm,
and width b = 13 cm. The experimental compression tests on bricks fol-
lowed the ASTM C67 standard, while the procedure for mortar adhered
to the ASTM C109 standard. The experimental campaign was performed
on 144 hollow bricks, 149 sold bricks, and 37 mortar cubes. The mortar
composition was 1 part cement, 3 parts sand, and water. This mixture
mirrors the one commonly employed by local construction workers dur-
ing wall assembly. This detail provides context to the present research
and underscores its practical application in the local construction indus-
try.

Fig. 15aillustrates the testing equipment just before finalizing a com-
pressive test on a solid brick. The testing equipment is simple and com-
prises two rigid cylinders, a stationary upper crosshead, and a bottom
piston that transmits the load. Table 3 displays the experimental aver-
age compressive strength f and strain at peak stress ¢, of hollow and
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Table 3

Experimental results from compression tests on hol-
low and solid bricks of compressive strength f_ at
strain ¢, each result being the average of 10 tests.
The bottom section shows the corresponding mean
X, standard deviation s, and coefficient of variation

CV.

Brick fe €

Producer  [MPa] [-]
Hollow Solid Hollow Solid
1.64 7.72 0.012 0.0027

Sinincay 2.40 8.10 0.011 0.0026
1.53 8.91 0.013 0.0031
1.82 5.72 0.007 0.0024

Racar 2.80 8.50 0.010 0.0029
1.87 5.58 0.01 0.0022
1.80 1.71 0.003 0.0015

El Tejar 1.97 3.12 0.005 0.0018
1.28 4.83 0.009 0.0022
1.85 6.55 0.008 0.0023

X 1.90 6.07 0.0088 0.0024

N 0.43 2.37 0.0034 0.0005

Ccv 0.23 0.398 0.39 0.20

solid bricks obtained from testing units from three manufacturers (mean
of 10 tests). The statistical parameters show that solid bricks are more
resistant than hollow bricks, with five times higher average compressive
strength. A reason for the relatively low strength of hollow bricks lies
in the manufacturing process. Most units are handmade, meaning the
pieces often have imperfections along the longitudinal voids (Fig. 14a).
During the experimental tests, the inner faces of the bricks are expected
to crack at relatively low stress, leading to complete failure of the brick.

On the other hand, the compressive tests on mortar cubes yield a
mean compressive strength of 7.24 MPa, a median of 7.27 MPa, a stan-
dard deviation of 1.17 MPa, and a coefficient of variation of 16.09. For
the strain €ps the mean is 0.0055, the standard deviation is 0.0012, and
the coefficient of variation is 21.8%.

Since experimental testing introduces several sources of uncertainty,
it is preferred to fit log-normal probability distribution functions (PDFs).
These functions can be fitted using the statistical parameters for bricks
and mortar derived from the experimental tests. The PDFs can be used
to sample f,. and the corresponding strain €, to account for uncertainty
due to the variability in the compressive strength and strain of units and
mortar.

The fitted log-normal probability distribution functions are used to
sample one hundred values of f. and ¢, for units and mortar. The
number of samples is considered sufficient to study the variability. The
remaining parameters required for the damage model (section 2) are
derived as in subsection 2.2 for the corresponding values of f, and ¢,.
Table 4 presents the derived material properties of the two bricks and
the mortar obtained from the average /. and ¢,,.

4.3. RVE analyses

Fig. 16 presents the geometry of RVEs composed of hollow (Fig. 16a)
and solid (Fig. 16b) bricks. 10 mm quadrilateral elements discretize the
domain using 376 and 1729 nodes, and 682 and 945 elements, for hol-
low bricks and solid bricks respectively. The geometrical characteristics
replicate the wall’s pattern, i.e., joining RVEs form a typical masonry
wall. The element type, boundary conditions, numerical solution under
plane stress, and goal of each analysis are the same as in section 3.3.1.
We discuss the response of three illustrative RVEs below.

The first analysis concerns the RVE with hollow bricks under ten-
sile loading perpendicular to bed joints. The force-displacement curve
in Fig. 17 highlights two distinctive states: the maximum tensile force
(4.16 kN) and the force previous to the residual strength (0.40 kN).
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Fig. 12. Tensile damage evolution of wall J2G (color bar) at meaningful points identified by horizontal top-displacements of (a) u, = 0.26 mm (initiation of inelastic
behavior), (b) u, = 1.73 mm (peak shear force and initiation of softening), (c¢) u, = 6.93 mm (initiation of residual strength), and (d) u, = 20.0 mm (ultimate
displacement). The displacement is scaled with a factor of 10.
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Fig. 13. Minimum principal stress evolution of wall J2G in MPa (color bar) at meaningful points identified by horizontal top-displacements of (a) u, = 0.26 mm
(initiation of inelastic behavior), (b) u, = 1.73 mm (peak shear force), (c) u, = 6.93 mm (initiation of softening), and (d) u, = 20.0 mm (ultimate displacement). The
displacement is scaled with a factor of 10.
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Table 4

Results in Engineering 23 (2024) 102546

The material properties of hollow bricks, solid bricks, and mortar defined using aver-
age compressive strength f, and strain at peak strength e,,.

Property Values Units
Hollow bricks Solid bricks Mortar

Compressive strength f, 1.9 6.07 7.24 [MPa]
Strain at peak strength €, 0.0088 0.0024 0.0055 [-]
Young’s modulus E 432 5058 2633 [MPa]
Poisson’s ratio v 0.18 0.17 0.2 [-]
Tensile strength f, 0.13 0.42 0.51 [MPa]
Tensile fracture energy G, 0.004 .012 0.06 [N/mm]
Compressive elastic strength f, 0.63 2.02 2.41 [MPa]
Compressive residual strength f; 0.19 0.61 0.72 [MPa]
Compressive fracture energy G, 3.04 9.71 13 [N/mm]

(a) (b)
Fig. 14. Geometrical parameters: length L, height /1, and width b of (a) hollow
tochana and (b) solid panelén bricks used in Cuenca, Ecuador.

Figs. 18 and 19 present the damage states and stresses corresponding to
these two points. At tensile strength, damage localizes around the mor-
tar interfaces (Fig. 18a). Immediately after reaching the peak strength,
the model presents a quasi-brittle response with increasing damage in
the same areas. However, the damage index reaches 1, indicating com-
plete damage in tension. This damage state corresponds to detachment
along the mortar joints. Fig. 19a shows the highest tensile stresses at
values of 0.2 MPa along the brick-mortar vertical interfaces (top and
bottom) and the middle-right side of the RVE. Under increasing load,
Fig. 19b shows a state of relaxation due to the failure of most parts of
the RVE. However, there are small areas with residual stresses along the
horizontal brick-mortar interface.

The second analysis concerns the RVE with solid bricks under com-
pressive loading perpendicular to head joints. Fig. 20 presents the
force-displacement curve. In this case, it is possible to identify four
distinctive points. The first (159.44 kN) corresponds to the beginning
of a strongly inelastic response. Then, the curve shows the maximum
strength (200.58 kN) followed by a third point highlighting the loss of
stiffness (marked softening). Finally, the fourth point signals the resid-
ual strength. Fig. 21 shows the compressive damage at the three latter
points. Fig. 21a confirms the onset of a marked non-linear response, with
small areas showing minor compressive damage. The maximum strength
state (Fig. 21b) shows an increase of damage distributed around the
RVE, with higher damage values d~ for the bricks. Fig. 21c illustrates
the damage state under softening behavior. At this stage, the damage
around the previous areas increases, reaching values closer to 1. The
final state (Fig. 21d), at the onset of residual strength, shows complete
failure (d~ = 1), consistent with the failure of specimens in compression
[73].

Fig. 22a shows higher compressive stresses for the bricks than for
the mortar at the onset of a marked inelastic response. The compressive
stresses acting on the bricks, conforming most of the RVE, are higher
than the mortar since stiffer elements require more load to achieve
equal displacement. The compressive stresses along the vertical mor-
tar joints are, on average, 67% lower. The state of stress (Fig. 22b) that
results in the maximum strength is characterized by equal compressive
stresses transmitted between the bricks. Subsequently, softening is trig-
gered due to damage from a new displacement increment, reducing the
stress (Fig. 22c). The final state (Fig. 22d) presents small residual stresses
with damage in most elements.

11

Finally, the third study concerns the RVE with solid bricks un-
der shear loading parallel to the bed joints. Fig. 23 shows the force-
displacement curve. The model shows an inelastic response at an early
stage for a displacement of 0.04 mm. The inelastic stage is character-
ized by a small stiffness decay with minor tensile damage localized on
the bottom-left and top-right corners (Fig. 24a). Moreover, at the onset
of a marked inelastic response, the minimum principal stress (Fig. 25a)
is positive and relatively small (close to zero). A lateral displacement
of 0.17 mm marks the maximum strength. It produces an increase of
damage in areas around the compressed diagonal (Fig. 24b), where
compressive stresses are higher, reaching values of 6 MPa around the
corners (Fig. 25b). Under increasing load, compressive damage spreads,
e.g., in the bottom-right corner (Fig. 24c). This damage induces a strain-
softening response and thus a change of behavior, with lower compres-
sive stresses and higher tensile stresses (Fig. 25¢). The RVE softens after
exceeding a lateral displacement of 0.38 mm. Finally, at a horizontal dis-
placement of 1 mm, damage spreads (Fig. 24d), and compressive stresses
reduce (Fig. 25d) along the compressed diagonal. In general, the RVE
shows a relatively high strength capacity. This response is characteristic
of bearing walls [66] supporting high compressive forces under in-plane
lateral loading.

These numerical analyses show results consistent with experimen-
tal observations [66]. Tensile failure is characterized by detachment, a
typical failure mode for masonry piers subjected to tensile stresses. For
the RVE under compressive loading, the results show damage concen-
trating in the central part of the pier, similar to the damage observed
in experimental tests of masonry piers [63]. Finally, the shear analy-
sis characterizes a typical response of masonry piers under lateral and
compressive forces [66]. Damage concentrates along the compressed di-
agonal and (here) the bottom left and right corners.

4.4. Effective properties

Having discussed and validated the response of RVEs with hollow
bricks and solid bricks under different loading conditions, we proceed
to generate a database of effective properties, considering the variability
in material parameters discussed in section 4.2.

Figs. 26 and 27 show sets of stress-strain curves and force-displac-
ement curves for 100 RVEs with hollow bricks and solid bricks, respec-
tively, due to compressive, tensile, and shear loading. The curves show
the results of RVEs with different material properties, derived from com-
pressive strength f, and strain €, values of units and mortar sampled
from the fitted log-normal PDFs. As described in section 3.2, at each dis-
placement increment, the stress is computed by averaging the resulting
forces and dividing by the corresponding area. Similarly, the strain is de-
termined by averaging the displacement at each increment and dividing
by the initial height.

The simulations on RVEs with hollow brick under tensile loading
show a brittle material behavior, as expected for this type of material.
Additionally, the average tensile strength is significantly lower than the
compressive strength, by a factor of ~14. Moreover, we observe that
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Fig. 15. (a) Experimental setup [40] on a solid brick sample. (b) Pictures of units, mortar, and masonry piers from the second experimental campaign.

310

1
:
:
[T

200
420

Fig. 16. The RVEs representing masonry composed of (a) hollow bricks and (b)
solid bricks. Superimposed on each figure is the mesh (black borders) represent-
ing unit elements (brown fills) and mortar elements (gray fills).
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Fig. 17. Force-displacement curve due to tensile loading perpendicular to the
bed joint of the RVE with hollow bricks. The markers (red squares) correspond
to distinctive states at vertical displacements u, = 0.10 mm (tensile strength)
and u, = 0.14 mm (near-residual strength).

hollow bricks are stronger when compressive loading is applied per-
pendicular to the head joints compared to the same loading applied
perpendicular to the bed joints (Figs. 26a and 26¢). However, the simu-
lations show the opposite trend for tensile tests, i.e., bricks are weaker
when pulled perpendicular to the head joints.

To verify this result, we conducted experimental tests on two spec-
imens built to characterize these RVEs under compressive loading, ap-
plied perpendicular to the bed joints or the head joints (Fig. 28). The
average compressive strength of tochana bricks from a batch of 50 units
is 2.2 MPa, and the average compressive strength from 15 mortar cubes
(8 tests per group) is 6.80 MPa. Table 5 summarizes the results from
the experimental tests. Higher compressive strength values are observed
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Fig. 18. Tensile damage d* (color bar) due to tensile loading perpendicular to
the bed joint of the RVE with hollow bricks at (a) uy = 0.10 mm (tensile strength)
and (b) u, = 0.14 mm (near-residual strength).
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Fig. 19. Maximum principal stresses in MPa (color bar) due to tensile loading
perpendicular to the bed joint of the RVE with hollow bricks at (a) u, = 0.10 mm
(tensile strength) and (b) u, = 0.14 mm (near-residual strength).
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Fig. 20. Force-displacement curve due to compressive loading perpendicular to
the head joints of the RVE with solid bricks. The markers (red squares) corre-
spond to distinctive states at vertical displacements uy = —0.375 mm (onset of
inelastic behavior), u, = —0.975 mm (peak strength), u, = —1.375 mm (onset of
softening), and uy = 3.175 mm (residual strength).
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Table 5

Compressive strength f,, maximum load P,, and gross area A for RVEs of hollow
bricks under compressive loading perpendicular to bed joints and head joints. The
bottom section shows the corresponding mean %, standard deviation s, and coeffi-

cient of variation CV.

Load perpendicular to bed joint

Load perpendicular to head joint

Results in Engineering 23 (2024) 102546

Group  f, P, A fe P, A
[N/mm"2] [N] [mm"2] [N/mm"2] [N] [mm"2]

1 0.59 20305.72 34398 1.61 68748.48 42750

2 0.76 26083.81 34510 1.00 43896.81 43957

3 0.73 26448.74 36000 1.10 52966.15 48000

4 0.73 26882.34 36704 1.81 86605.62 47864

5 0.92 32994.95 36000 1.43 69150.69 48440

X 0.75 26543.11 35522.4 1.39 64273.55 46202.2

s 0.12 4496.28 1017.6 0.34 16474.24 2643.9

Ccv 0.16 0.17 0.03 0.24 0.26 0.06
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Fig. 21. Compressive damage d~ (color bar) due to compressive loading per-
pendicular to the head joints of the RVE with solid bricks at (a) u, = 0.40 mm
(inelastic behavior), (b) u, = 1.00 mm (compressive strength), (c) uy = 1.40 mm
(softening), and (d) u, = 3.20 mm (residual strength).

for the RVE under compressive forces perpendicular to the head joints,
agreeing with the numerical results.

The difference in strength can be due to the variation in position,
length, and material characteristics of the mortar elements, which are
stiffer than hollow brick elements. For instance, in the RVEs under com-
pression perpendicular to head joints, the mortar elements bear the
forces from top to bottom. In the case of tensile loading, the strength
highly depends on the contact area, a function of the total length of the
mortar elements. Under loading perpendicular to bed joints and head
joints, the mortar layer has a length of 310 mm and 200 mm, respec-
tively.

The curves from compressive and tensile analysis on RVEs with solid
bricks show a slight difference in strength between the two configura-
tions. In this case, bricks are stiffer than mortar, reducing the effect
of mortar position and length on the composite strength. Nevertheless,
there is still a slight difference. Under compression, Fig. 27a shows a
mean compressive strength of 5.75 MPa, while the mean curve from
Fig. 27c shows a maximum strength of 5.36 MPa. For tensile loading,
the results are the opposite. The mean curve resulting from forces per-
pendicular to the bed joints shows an ultimate tensile strength of 0.37
MPa, while in the other case, the mean tensile strength is 0.41 MPa.
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Fig. 22. Minimum principal stresses in MPa (color bar) due to compressive
loading perpendicular to the head joints of the RVE with solid bricks at (a)
uy = 0.40 mm (inelastic behavior), (b) uy = 1.00 mm (compressive strength), (c)
u, = 1.40 mm (softening), and (d) u, = 3.20 mm (residual strength).
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Fig. 23. Force-displacement curve due to shear loading parallel to the bed joints
of the RVE with solid bricks. The markers (red squares) correspond to distinc-
tive states at imposed horizontal displacements u, = 0.04 mm (onset of inelastic
behavior), u, = 0.17 mm (peak strength), uy = 0.38 mm (onset of softening), and
u, = 1 mm (residual strength).



H. Garcia, J. Jiménez-Pacheco and J. Ulloa

y-
(3‘) z x
05
0.375
025
0125
W 0
(b) 7

Results in Engineering 23 (2024) 102546

)
1
0875
0.75

(C) % o 0625
05
0375
0.25
0125

(@) 1 ’

Fig. 24. Tensile damage d* and compressive damage d~ due to shear loading parallel to the bed joints of the RVE with solid bricks at (a) u, = 0.04 mm (onset of
inelastic behavior), (b) u, = 0.17 mm (peak strength) (¢) u, = 0.38 mm (softening), and (d) u, = 1.00 mm (residual strength).
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Fig. 25. Minimum principal stresses in MPa (color bar) due to shear loading parallel to the bed joints of the RVE with solid bricks at (a) u, = 0.04 mm (onset of
inelastic behavior), (b) u, = 0.17 mm (compressive strength), (c) u, = 0.38 mm (softening), and (d) u, = 1.00 mm (residual strength).

Table 6 presents the effective material properties for the damage
model resulting from the multiple analyses. This database contributes
toward characterizing masonry buildings using a macro-element ap-
proach. In particular, the damage model informed by effective prop-
erties can improve the characterization of masonry for the seismic as-
sessment of masonry buildings, as typical in the city of Cuenca. In this
sense, progress has been made in defining a catalog of typical buildings
from Cuenca’s historical center [60].

4.5. Size effects and mesh sensitivity

In the previous sections, the curves resulting from numerical anal-
yses on RVEs were used to obtain effective masonry properties in two
in-plane directions. These properties characterized the damage model at
the macro-scale level [58], yielding accurate and representative results.

However, it is crucial to assess the reliability of this numerical frame-
work, in particular, concerning size effects and mesh sensitivity in the
finite element simulations during softening. The objective is to ensure
that the derived material properties remain relatively consistent, re-
gardless of the model’s size or mesh discretization. This consistency is
essential for validating the procedure. To this end, we compare results
across specimens of different sizes, considering systems composed of

14

1 RVE, 4 RVEs, and 16 RVEs under compressive and tensile loading
(Fig. 29). We conduct simulations under applied displacements up to 5
mm for compression and 0.25 mm for tension. The boundary conditions
and numerical procedure are the same as in subsection 4.3.

Fig. 30 shows stress-strain and stress-displacement curves for the
three specimens under compressive and tensile loading. All cases yield
the same Young’s modulus and compressive strength from the stress-
strain curves in compression. However, the post-peak response varies
across specimens. In particular, smaller specimens show a higher degree
of toughness as expected. Conversely, the stress-displacement curves
present stiffness variation, with higher stiffness for the smaller speci-
mens. The tensile test results exhibit similar behavior: the stress-strain
curves show the same Young’s modulus and small variations in ten-
sile strength (~3% higher for the smaller samples), while the stress-
displacement curves show higher stiffness for smaller specimens. How-
ever, in both analyses, the lower stiffness in the stress-displacement
curves is accompanied by much larger displacements at the same stress
level in the post-peak stage. As a result, the area under the curve, char-
acterizing the fracture energy, is similar for the three specimens.

Table 7 summarizes five key material properties that characterize
the damage model in the linear, inelastic, and softening stages. The dif-
ferences in fracture energy between the models are reasonable (~13%
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Fig. 26. Stress-strain curves from 100 RVEs of hollow bricks (gray) under distributed loads perpendicular to bed joints for (a) compression and (b) tension, and
perpendicular to head joints for (c) compression and (d) tension. Force-displacement curves for shear loading (e) parallel to bed joints and (f) parallel to head joints.
Superimposed on each figure are the mean (blue) and the mean plus/minus one standard deviation (magenta). The curves correspond to RVEs with different material
properties, derived from compressive strength and strain values of units and mortar sampled from the fitted log-normal PDFs.

for compressive fracture energy and >10% for tensile fracture energy),
lower than the coefficient of variation of the energy parameters obtained
from the numerical analyses.

Nevertheless, the difference is likely due to different failure modes
triggered in larger samples. Fig. 31 shows the final fracture state of the
three specimens in compression at the target displacement (5 mm). The
fracture energy per unit area of the first two specimens (Figs. 31a and
31b) is approximately the same. The model with 16 RVEs presents a
slight increase in fracture energy per unit area due to a vertical crack
(Fig. 31c). On the other hand, for tensile loading, we can observe from
Fig. 32 that the fracture modes are similar for all three cases, with cracks
developing in the lower section.

Finally, Fig. 30b and Fig. 30d assess the effect of mesh discretization,
showing results for element sizes of 1 mm, 10 mm, and 15 mm. The
results are indistinguishable up to the peak and show slight variation
in the softening stage. Signs of convergence are seen when comparing
results across different mesh sizes: discrepancies are smaller between
the 1 mm and 10 mm meshes than between 10 mm and 15 mm. This
trend suggests that the results progressively converge towards a stable
solution as the mesh size decreases.
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These results highlight promising aspects of the present framework.
The composite maximum strengths are objectively captured and can
therefore be well estimated, including the tensile strength, which is com-
monly a critical parameter for failure analysis, further influencing the
wall’s shear capacity. Consequently, the results suggest that the prop-
erties obtained from analyzing small samples (one or a few RVEs) may
provide reasonable approximations of the effective properties of the con-
tinuum material. Moreover, since one RVE represents a relatively small
model, it is possible to use a fine discretization with limited computa-
tional cost.

5. Conclusion

We have presented a simple framework for determining effective
masonry properties, for use in macro-model structural simulations. It
was shown that these properties may be estimated in a relatively sim-
ple manner, without resorting to rigorous homogenization methods.
Specifically, a damage model was used to conduct direct numerical sim-
ulations on RVEs, including a practical procedure for defining the base
material properties from experimental tests on units and mortar. The
micro-model results were then used to derive the effective properties re-
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Fig. 27. Stress-strain curves from 100 RVEs of solid bricks (gray) under distributed loads perpendicular to bed joints for (a) compression and (b) tension, and
perpendicular to head joints for (c¢) compression and (d) tension. Force-displacement curves for shear loading (e) parallel to bed joints and (f) parallel to head joints.
Superimposed on each figure are the mean (blue) and the mean plus/minus one standard deviation (magenta). The curves correspond to RVEs with different material
properties, derived from compressive strength and strain values of units and mortar sampled from the fitted log-normal PDFs.

Fig. 28. RVEs of hollow bricks prior to and after being tested under compressive
loading perpendicular (a) to bed joints and (b) to head joints.

quired for the macro-model directly. Using both stress-strain and stress-
displacement curves was crucial to alleviate the size dependence of the
effective parameters, particularly concerning fracture energy. Moreover,
a conventional fracture energy-based regularization method proved ef-
fective in preventing mesh sensitivity. The analyses are performed in
two directions, accounting for orthotropic behavior, which was shown
to be essential for reproducing experimental observations.

16

The validation of the macro-model informed by the derived effective
properties showed accurate predictions of the global response, kinemat-
ics, stresses, and damage states, consistent with direct micro-modeling
results and experimental observations of masonry walls. Furthermore,
the present framework was applied to compute the effective properties
of two types of masonry walls, typical of masonry buildings in Cuenca,
Ecuador. The resulting properties comprise a database that may be used
for future regional investigations.

The present study contributes to the calibration of macro-models for
accurate characterizations of masonry walls. The methodology, being
simple to apply, can adapt to the modeling of masonry in 3D structures
for design and assessment. One limitation is that the damage model
requires several material parameters. Additionally, the material prop-
erties were derived from empirical relations, not experimental testing.
Finally, the proposed methodology lacks a theoretical background; thus,
it is not shown to be valid for boundary and loading conditions beyond
the present analyses. Further research is therefore required for more
complex walls under different loading conditions. It would also be inter-
esting to compare the present framework with other, perhaps rigorous,
homogenization methods. Additional experimental testing is also nec-
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Fig. 29. Masonry piers with solid bricks composed of (a) 1 RVE, (b) 4 RVEs, and (c) 16 RVEs.
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Fig. 30. Stress-strain curves for (a) compression and (c) tension and stress-displacement curves for (b) compression and (d) tension on 1 RVE (solid blue lines), 4
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Fig. 31. Failure pattern in compression at an imposed displacement of 5 mm on (a) 1 RVE, (b) 4 RVEs, and (c) 16 RVEs representing masonry piers with solid bricks

and an element size of 10 mm.
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Table 6

Mean X, standard deviation s, and coefficient of variation CV of effective properties for masonry
obtained from compression, tensile, and shear analyses on RVEs: Young’s modulus E, shear modulus
G, tensile strength f,, tensile fracture energy G,, compressive elastic strength f,, compressive
strength f,, compressive residual strength f,, compressive fracture energy G, and strain at peak

strength &,.
E G i G, feo e e G, é
[MPa] [MPa] [MPa] [N/mm] [MPa] [MPa] [MPa] [N/mm] [-]
RVEs y direction (hollow bricks)
460.58 93.57 0.096 0.0023 0.656 1.328 0.226 2.834 0.0056
297.95 64.97 0.05 0.00 0.52 0.71 0.13 1.65 0.002
0.65 0.69 0.53 0.66 0.80 0.54 0.55 0.58 0.36

RVESs x direction (hollow bricks)

514.66 133.23 0.068 0.0009 0.48 1.770 0.260 3.56 0.008
283.73 92.03 0.02 0.00 0.28 0.72 0.10 2.01 0.003
0.55 0.69 0.34 0.47 0.58 0.41 0.38 0.57 0.302

RVESs y direction (solid bricks)

5086.0 1620.2 0.42 0.015 2.42 5.90 1.16 9.04 0.002
1933.8 617.6 0.11 0.002 0.75 1.61 0.31 2.20 0.001
0.4 0.4 0.27 0.166 0.31 0.27 0.27 0.24 0.57

RVEs x direction (solid bricks)

5093 1029 0.42 0.009 2.35 5.92 1.13 8.73 0.004

2258 424 0.12 0.003 0.82 1.57 0.37 2.52 0.002

0.4 0.4 0.29 0.383 0.35 0.27 0.32 0.29 0.57
Table 7

Effective properties: Young’s modulus E, compressive strength f,, tensile strength f,, compressive
fracture energy G, and tensile fracture energy G,, resulting from compressive and tensile analyses
on 1 RVE, 4 RVEs, and 16 RVEs representing masonry piers with solid bricks. The first three rows
present the results of RVEs with an element size of 10 mm, while the last three rows present the
results of RVEs with an element size of 15 mm.

# RVEs E fe fi G, G,
[MPa] [MPa] [MPa] [N/mm] [N/mm]

1 4098 5.59 0.396 13.7 0.02
4098 5.57 0.390 13.8 0.018

16 4098 5.57 0.382 16.0 0.02

1 4098 5.59 0.396 11.7 0.015
4098 5.57 0.390 13.5 0.017

16 4098 5.57 0.382 17.0 0.019

Fig. 32. Failure pattern in tension at an imposed displacement of 0.25 mm on (a) 1 RVE, (b) 4 RVEs, and (c) 16 RVEs representing masonry piers with solid bricks

and an element size of 10 mm.
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essary to improve the calibration of numerical models concerning the
fracture energy parameters, the shear-compression reduction, and the
compressive bi-axial strength factors (here, the latter two parameters
were assumed from the literature according to the type of units and
mortar). Studying other possible brick configurations, such as interlock-
ing units [39], is also worth considering.
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