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Masonry structures are the most prevalent type of buildings worldwide, and a significant portion are situated in 
seismic-prone areas. Thus, detailed information regarding their seismic strength and vulnerability is needed. The 
complexity of studying masonry structures lies in defining accurate and efficient models for representing masonry 
walls. In this context, there is a need for simplified methods that allow the modeling of masonry walls within a 
3D structure. This work presents a methodology to define effective masonry properties from numerical analyses 
on representative volumes, using a damage model informed by experimental tests on units and mortar. These 
effective material properties serve as input parameters to model masonry walls within a macro-model approach, 
aiming to accurately capture the in-plane behavior and damage mechanisms with limited computational cost. 
The methodology is verified with experimental results and applied to real case studies in Cuenca, Ecuador.

1. Introduction

Masonry buildings, the most common structures worldwide, are par-

ticularly vulnerable to earthquakes. However, research on masonry re-

mains limited, for instance, when compared to reinforced concrete or 
steel structures. Further research is thus needed to refine current anal-

ysis methods and ensure accurate predictions of the global structural 
response and the behavior of the structural components. However, mod-

eling masonry is challenging due to its heterogeneous nature and inher-

ent non-linear behavior.

Several seismic assessment methods for masonry rely on idealized 
procedures [1,24,34,36] to capture the global response. These methods 
commonly model walls using 1D beam elements. Most idealized meth-

ods face difficulties in characterizing the connection between walls and 
other structural components, such as reinforced concrete columns and 
beams. In addition, the multiple damage mechanisms of masonry walls 
are not easily captured [8]. On the other hand, more dedicated mod-

els consider most interactions between masonry constituents using a 
full discretization of units, mortar, and interfaces [12,15,49]. Applying 
these modeling approaches to large walls or buildings implies high com-

putational costs [25,28], particularly in 3D, and may be cumbersome to 
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implement. Hence, macro-modeling–an intermediate solution–arises as 
a valuable option [51].

Macro-models have been used for the seismic assessment of large and 
complex structures [27,35]. By treating masonry as a homogeneous con-

tinuum, this approach implies significant computational savings and an 
easier mesh generation process. While isotropic models are often used 
due to their simplicity and fewer material properties, it has been well-

recognized that masonry is better represented as an orthotropic medium. 
Hence, suitable non-linear constitutive models are required, which must 
accurately capture the orthotropic elasticity, strength, and softening re-

sponse of the composite material. Elastoplasticity and damage models 
are typically employed for this purpose. Early references that address 
the yielding and maximum strength of different anisotropic materials in-

clude Hill [19,20], Hoffman [21], Tsai-Wu [67], and Dutko et al. [14]. 
Moreover, this problem may be addressed conveniently using tensor 
transformations, e.g., linear transformations of stress components and 
the concept of mapped stress tensor [6,7]. This approach describes the 
anisotropic behavior of a material through equivalent isotropic proper-

ties. In this context, a transformation tensor was defined by Oller et al. 
[45,46] to relate the stresses and strains in an orthotropic space to those 
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in a mapped space, where an isotropic yield criterion is employed. While 
these mapping tensor methods focus on plasticity problems, the work of 
Pelà et al. [50,51] further considered continuum damage mechanics.

The success of macro-modeling approaches relies heavily on access 
to accurate and representative material properties. For masonry, such 
properties may be obtained from experimental testing [5]. Conducting 
tests on 1:1 scale walls or buildings in small laboratories is often im-

practical due to the high costs and lack of adequate equipment. Hence, 
tests on (properly defined) representative volumes are essential. In this 
context, numerical homogenization offers a viable alternative, providing 
averaged effective material properties from direct numerical simulations 
[26].

The effective stress-strain relations of macro-models based on ho-

mogenized material properties require the elastic stiffness constants and 
the generally non-linear tangent operator. In this context, Lourenço [25]

showed accurate results for an elastoplastic model considering repre-

sentative volumes of layered structures. For masonry, a non-layered 
composite, the author employed a two-step homogenization along the 
two main material axes. In this case, results [25] showed that without 
discretizing the geometry of the components, the method accurately pre-

dicts the elastic response. However, it can yield significant errors in the 
non-linear stage. Luciano and Sacco [33] further proposed a damage 
model based on periodic homogenization. The method identifies eight 
damaged/undamaged states based on different mortar crack patterns 
and allows the study of damage evolution in masonry, considering sim-

plified geometries.

The non-linear homogenization of masonry presents considerable 
complexity, particularly during softening, due to mathematical chal-

lenges, difficulties in predicting collapse displacements, limitations in 
defining micromechanical damage, and representing frictional behav-

ior. While improved methodologies are still under development [22,

26,41], Petracca [54] proposed a different approach, employing a frac-

ture energy-based regularization for two-scale computational homoge-

nization. This procedure allows first-order homogenization for quasi-

brittle materials, considering the characteristic finite element size at 
both micro- and macro-scales and the size of the representative volume 
element (RVE). However, solving a micro-scale boundary volume prob-

lem at every macroscopic time step/iteration implies a computational 
burden. Computational multi-scale methods, of course, share this issue 
in general. In the present study, this approach is taken as the point of 
departure; however, rather than performing two-scale computations, we 
aim to identify the averaged properties of a macro-scale damage model.

A numerical model suitable for deriving effective properties must 
describe the different stages of masonry behavior. For this purpose, it 
is possible to use detailed, 2D or 3D, micro-modeling of single-wythe 
walls. The 2D case is efficient and can provide accurate results [18,58]

for walls with brick assemblies that follow a regular pattern [2,53]. A 
computationally efficient option in this context is limit analysis [3,59], 
which determines the ultimate load-carrying capacity and failure mode. 
However, this approach does not capture the softening response. An-

other option is to use discrete models [3,37,59] with zero-thickness 
interface elements characterized by cohesive-frictional constitutive laws 
[18]. The brick units are commonly described as rigid blocks and the 
non-linear behavior is limited to the interfaces [13]. This approach al-

lows for material characterization under different loading conditions 
[53,58] but is not suitable if the non-linear behavior of the bricks plays 
an important role, e.g., when the failure probability is higher for units 
than for mortar [38]. Indeed, in masonry walls with low-strength bricks 
under high compressive-shear states, damage can appear in the units 
before the mortar, modulating the global response. A viable alterna-

tive uses continuum elements for the bricks and the mortar, with both 
materials exhibiting non-linear behavior. Nevertheless, standard FEM-

continuum methods present well-established difficulties in capturing 
softening and failure mechanisms [15] and, when at all possible, re-

quire fine discretizations to yield accurate results [28].

The continuum damage approach for masonry structures proposed 
by Petracca et al. [58] overcomes most of these limitations, building 
upon previous damage models by Cervera et al. [10], Faria et al. [16], 
and Wu et al. [71]. It employs an anisotropic damage model [50] with 
different degradation mechanisms for loading/unloading in tension and 
compression. The model is deemed more efficient than plasticity ap-

proaches, allowing a straightforward description of damage in units 
and mortar using two scalar-valued internal variables. These variables 
are evaluated explicitly, without local iterative schemes. Moreover, the 
model includes an implicit control of dilatancy in the mortar joints, 
without resorting to plastic potentials. The authors present an implicit/-

explicit integration scheme [44] that improves convergence, avoiding 
numerical instability in the softening stage, where a fracture energy-

based approach provides regularization.

The present paper aims to identify effective properties for different 
types of masonry, including walls with low-strength units, for use in a 
macro-modeling approach. To describe the non-linear response of the 
constituent materials, we resort to the continuum damage model of Pe-

tracca et al. [58], informed by experimental tests on brick units and mor-

tar. We explore a simple methodology to derive effective masonry prop-

erties from numerical simulations on RVEs. The obtained properties are 
then used as input parameters of a macro-scale continuum model, avoid-

ing the computational burden of two-scale analysis. The methodology 
applies to masonry walls with any regular arrangement (single-wythe or 
double-wythe masonry walls). The validation is twofold, considering (i) 
macro-model simulations with experimental verification for the shear 
walls tested by Raijmakers and Vermeltfoort [61], and (ii) size effects 
and mesh sensitivity, essential for materials with softening. Moreover, 
the methodology is applied to obtain the effective properties of two typ-

ical masonry walls used in buildings in Cuenca, Ecuador, considering 
uncertainty in the materials and providing a representative database for 
construction in the region.

2. Micro-modeling approach

We resort to continuum damage mechanics to describe the behavior 
of composite masonry structures [54,58]. The parameters of the dam-

age model are established from experimental tests on bricks and mortar. 
This section is the basis for the micro-modeling approach, used to de-

rive effective macroscopic properties from representative volumes in the 
subsequent sections.

2.1. Damage model

We consider a tension/compression damage model [58] that has 
shown to be robust and accurate for both the micro- and macro-

modeling of masonry structures [56]. It represents an enhancement of 
previous models [10,16,71], providing a convenient control of dilatancy 
under shear stress states. The resulting micro-model is simple and effi-

cient, and avoids nested iterative procedures by explicitly updating two 
scalar-valued damage internal variables. The formulation is briefly sum-

marized below for the readers’ convenience.

The stress tensor of the constitutive model is defined in terms of two 
damage parameters, one for the positive part and one for the negative 
part:

𝝈 = (1 − 𝑑+) 𝝈̄+ + (1 − 𝑑−) 𝝈̄− (1)

where 𝑑+ and 𝑑− are the two damage scalars that measure the amount 
of damaged material from 0 (no damage) to 1 (complete damage). More-

over, 𝝈̄+ and 𝝈̄− are, respectively, the positive and negative parts of the 
effective stress tensor 𝝈̄, representing the stress on the effective resistant 
section. 𝝈̄ is calculated from the linear elastic relation

𝝈̄ =ℂ ∶ 𝝐 (2)



Results in Engineering 23 (2024) 102546

3

H. García, J. Jiménez-Pacheco and J. Ulloa

where ℂ is the fourth-order isotropic stiffness tensor and 𝝐 is the strain 
tensor. The positive and negative parts of the effective stress tensor are 
given by

𝝈̄
+ =

3∑
𝑖=1

⟨𝜎̄𝑖⟩𝒑𝑖 ⊗ 𝒑𝑖 (3)

𝝈̄
− = 𝝈̄ − 𝝈̄

+ (4)

where 𝜎̄𝑖 is the ith principal stress, 𝒑𝑖 is the unit vector of the associ-

ated principal direction, and ⟨⋅⟩ are the Macaulay brackets, returning 
zero for negative values and the enclosed expression for positive values. 
Thus, the positive part of the effective stress tensor 𝝈̄+ represents the re-

composition of the positive eigenvalues multiplied by the outer product 
of the associated eigenvectors.

The model includes failure criteria for tension and compression. In 
the 2D case, the tensile failure surface is given in terms of an equivalent 
stress measure 𝜏+:

𝜏+ =𝐻(−𝜎̄min)
[

1
1 − 𝛼

(
𝛼 𝐼1 +

√
3𝐽2 + 𝛽 ⟨ 𝜎̄max⟩) 𝑓t

𝑓c

]
(5)

with

𝛼 =
𝑘b − 1
2𝑘b − 1

, 𝛽 =
𝑓c
𝑓t

(1 − 𝛼) − (1 + 𝛼) (6)

Here, 𝐼1 is the first invariant of the effective stress tensor, 𝐽2 is the 
second invariant of the effective deviatoric stress tensor, 𝜎̄max is the 
maximum effective principal stress, 𝑘b is the ratio of bi-axial to uni-

axial compressive strengths, 𝑓c is the maximum compressive stress, and 
𝑓t is the tensile strength. On the other hand, the compression failure 
surface is defined as

𝜏− =𝐻(−𝜎̄min)
[

1
1 − 𝛼

(
𝛼 𝐼1 +

√
3𝐽2 + 𝑘1 𝛽 ⟨ 𝜎̄max⟩)]

(7)

Here, the scalar 𝑘1 takes values between 0 (Drucker-Prager criterion) 
and 1 (Lubliner et al. criterion [32]). This parameter implicitly controls 
dilatancy (volume change due to shear stress) by defining the size of 
the compressive surface in the tension/compression quadrants. A larger 
compressive surface (relative to the tensile surface) results in higher 
dilatancy.

In equations (5) and (7), the Heaviside function

𝐻(𝑥) =

{
0 𝑥 < 0
1 𝑥 > 0

(8)

is introduced to allow the tensile surface to evolve when at least one 
principal stress is positive and the compressive surface to evolve when at 
least one principal stress is negative [58], hindering unrealistic damage 
mechanisms from being active under arbitrary stress states.

The model takes into account irreversible damage. This condition is 
characterized by two damage thresholds, 𝑟+ and 𝑟−, representing the 
largest positive and negative damage values reached by 𝜏± at any time 
step 𝑡 in the loading history:

𝑟± = max
(
𝑟±0 , max

0≤𝑛≤𝑡
𝜏±

)
(9)

where 𝑟±0 represents the initial limits in tension (𝑓t ) and compression 
(𝑓c0). In this way, the damage criteria read

𝜏± − 𝑟± = ≤ 0 (10)

The evolution law for tensile damage has the explicit form [58]

𝑑+(𝑟+) = 1 −
𝑟+0
𝑟+

exp

{
2𝐻dis

(
𝑟+0 − 𝑟+

𝑟+0

)}
(11)

where 𝐻dis is a softening parameter adjusted according to the dissipa-

tive zone size 𝑙dis [4,43], taken equal to the finite element discretization 

length, 𝑙dis ≡ 𝑙ch, in order to achieve mesh-insensitive results. In partic-

ular:

𝐻dis =
𝑙dis

𝑙mat − 𝑙dis
, 𝑙mat =

2𝐸𝐺f

𝑓 2
t

(12)

where 𝐺f is the fracture energy in tension, obtained from the uniaxial 
stress-strain curve, while

𝑔f =
(
1 + 1

𝐻dis

)
𝑓 2
t

2𝐸
(13)

is the specific fracture energy per unit volume. In this way, the following 
condition is satisfied:

𝑔f 𝑙dis =𝐺f (14)

This model produces a typical uniaxial response [29], characterized by 
the initial elastic stiffness up to the peak strength and exponential soft-

ening thereafter.

On the other hand, for the evolution of the compressive damage 
index 𝑑−, Petracca et al. [58] proposed an ad hoc expression based 
on a composite curve using a uniaxial hardening/softening law. Three 
quadratic Bézier curves, each controlled by three control points, char-

acterize the linear (𝜖0, 𝜎0), hardening, peak (𝜖p, 𝜎p) and softening parts 
of a uniaxial compressive test. The softening part is represented by a 
residual (𝜖r , 𝜎r ) and ultimate state (𝜖u, 𝜎u). The damage index 𝑑− as a 
function of the damage threshold 𝑟− is updated using

𝑑−(𝑟−) = 1 −
∑
(𝜉)
𝑟−

(15)

where 
∑
(𝜉) represents a stress state in the Bézier curves as a function 

of 𝜉 = 𝑟−∕𝐸.

Note that equation (14), relating the specific fracture energy with the 
characteristic finite element size, is well-established from the work of 
Bažant et al. [4] and has been adopted in several contributions [9,43,54]

to achieve mesh-insensitive results in finite element simulations during 
softening. This feature is crucial for the present numerical studies.

2.2. Material properties

The damage model introduced in section 2.1 requires the follow-

ing properties: compressive strength 𝑓c and corresponding strain 𝜖p, 
Young’s modulus 𝐸, Poisson’s ratio 𝜈, tensile strength 𝑓t , compressive 
elastic strength 𝑓c0 , compressive residual strength 𝑓r , fracture energies 
(𝐺t for tension and 𝐺c for compression), compressive biaxial strength 
factor 𝑘b, and shear-compression reduction factor 𝑘1. Here, these prop-

erties are obtained from experimental tests on bricks and mortar cubes. 
In this process, it is relatively simple to obtain the compressive strength 
𝑓c and the corresponding strain 𝜖p from compressive tests, without com-

plex equipment. These two parameters are the basis for estimating ad-

ditional properties.

The remaining material parameters are derived as follows. Firstly, 
the expression proposed by Yassin [72] is employed to estimate Young’s 
modulus of bricks and mortar as

𝐸 =
2𝑓c
𝜖p

(16)

The Poisson’s ratio, after consulting the work of several authors [42,47,

48,69], is chosen 0.18 for hollow bricks, 0.17 for solid bricks, and 0.20 
for mortar. The tensile strength of bricks and mortar is a function of 
their corresponding compressive strength. The value is sampled from a 
log-normal distribution with an average of 0.07 𝑓c [63,64] and a stan-

dard deviation of 0.007 𝑓c. The units of 𝑓c must be N/mm2. Compressive 
elastic strengths of brick 𝑓c0b and mortar 𝑓c0m and compressive resid-

ual strengths of brick 𝑓rb and mortar 𝑓rm are defined as 1/3 and 1/10 of 
their corresponding compressive strength. These values could be modi-

fied or adjusted from experimental tests.
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Secondly, since small equipment cannot capture softening dur-

ing compressive tests (the analysis stops after reaching the maximum 
strength), the fracture energies are defined as functions of strength. 
Lourenço and Milani [30], Lourenço and Rots [29], and Vasconcelos 
et al. [68] proposed to estimate fracture energies as the ratio be-

tween strength and energy (ductility index), suggesting 𝐺c = 1.6 𝑓c and 
𝐺t = 0.029 𝑓t , the strength values in N/mm and the fracture energies in 
N/mm2. Finally, the values of 𝑘b vary between 1 and 1.2 for bricks and 
mortar, and 𝑘1 can be assumed as 0 for the units and 0.2 for mortar 
[25,57].

3. Macro-modeling and experimental verification

This section presents the macro-modeling approach informed by 
effective properties. The overall methodology is as follows. First, the 
parameters of the micro-model are established from experimental tests 
on bricks and mortar (section 2.2). Then, RVEs of a masonry wall are 
defined and subjected to numerical analyses under different loading 
conditions. Then, results from the numerical calculations, namely the 
stress-strain and stress-displacement curves, are used to determine ef-

fective properties. As a crucial step, we consider orthotropic conditions, 
relying on the tensor mapping procedure of Pelà [52] and Pelà et al. 
[50]. To assess the accuracy of the macro-modeling approach, we take 
the experimental shear wall results of Raijmakers and Vermeltfoort [61]

as a benchmark. Consequently, effective properties are extracted from 
RVEs representing the bonding pattern of walls J4D and J2G [61], ana-

lyzed under compressive, tensile, and shear forces.

3.1. Orthotropic damage model

Masonry is modeled at the macro-level as a homogeneous or-

thotropic continuum, considering the arrangement of its components 
and their interaction. The orthotropic behavior is simulated using a 
tensor mapping procedure that establishes a mathematical relation-

ship between the anisotropic real space and an auxiliary mapped space, 
greatly simplifying the modeling process [51].

The non-linear behavior is again represented by the continuum dam-

age model of subsection 2.1, where the damage parameters now evolve 
independently in different material axes for tension and compression. 
To this end, the real stresses are transformed into the mapped space us-

ing fourth-order transformation tensors that represent the anisotropic 
properties of the material. The damage variables and total stresses are 
computed in the mapped space and then returned to the real orthotropic 
stress space to update the internal forces. The algorithm is presented in 
Pelà et al. [51] for the analysis of masonry structures.

In orthotropic behavior, axial and shear strains in one direction are 
independent. Additionally, there is no coupling between shear stresses 
acting on different planes. Thus the resulting orthotropic relation be-

tween stresses and strains in plane stress conditions is

⎡⎢⎢⎣
𝜎11
𝜎22
𝜎12

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎣

𝐸1
1−𝜈12 𝜈21

𝜈21 𝐸1
1−𝜈12 𝜈21

0
𝜈12 𝐸2

1−𝜈12 𝜈21
𝐸2

1−𝜈12 𝜈21
0

0 0 𝐺12

⎤⎥⎥⎥⎦
⎡⎢⎢⎣
𝜖11
𝜖22
2 𝜖12

⎤⎥⎥⎦ (17)

where 𝐸1 and 𝐸2 are the Young’s modulus in the 𝑥-direction and 𝑦-

direction, respectively, 𝜈12 and 𝜈21 are the two Poisson coefficients and 
𝐺12 is the shear modulus in the 1-2 direction.

3.2. Effective properties

An RVE represents the smallest volume element that captures the 
essential characteristics of the microstructure and allows an objective 
prediction of effective properties. In the present work, we derive effec-

tive material properties from RVEs of single-wythe masonry walls using 
the numerical damage framework of section 2 as a micro-modeling ap-

proach. As discussed before, regularization is achieved during softening 
by taking the characteristic length equal to the finite element size.

Fig. 1. Graphical illustration of the fracture energy per unit area (grey) from 
idealized stress-displacement curves.

Fig. 2. (a) Scheme of the experimental test setup of wall J4D consisting of 18 
rows of bricks and mortar, two of which are attached to steel beams (black), and 
the loading conditions in two stages [70]. In the first stage, a uniform vertical 
force 𝑃 is applied. In the second stage, a displacement-controlled lateral load 
𝐻 is applied. (b) Experimental crack patterns for wall JD4 after an incremental 
displacement of 4 mm, adapted from Lourenço [25].

Analyses in two directions are necessary to define the effective prop-

erties of the orthotropic medium. Thus, the numerical simulations are 
conducted in directions perpendicular to the bed joints (𝑦 or 2) and 
perpendicular to the head joints (𝑥 or 1). The results are the basis for 
deriving the effective properties, employing the average stresses, aver-

age strains, and total displacements of the RVEs under different loading 
conditions. At each load increment, the stress 𝜎 is computed by averag-

ing the resulting forces and dividing by the acting area of the RVE. The 
corresponding strain 𝜖 is determined by averaging the displacement at 
each increment and dividing by the initial length of the specimen in the 
loading direction. A typical response curve consists of four characteristic 
stages: elasticity, yielding, maximum strength, and softening.

For the elasticity parameters, compressive tests yield an estimate for 
Young’s modulus, computed using Hooke’s law in 1D as 𝐸 = 𝜎∕𝜖 dur-

ing the elastic stage. Similarly, shear tests provide the shear modulus 
during the elastic stage as 𝐺 = (𝑉 𝐻)∕(𝐴 𝛿), where 𝑉 is the total shear 
force, 𝐻 is the RVE height, 𝐴 is the RVE area, and 𝛿 is the average 
lateral displacement. On the other hand, the compression and tensile 
strengths follow from the corresponding maxima of each curve. For com-

pression, the elastic compressive strength is assumed to be 1/5 of the 
peak strength, approximately corresponding to the value where the uni-

axial curve becomes inelastic. The compressive residual strength is the 
stress (at a strain higher than 𝜖p) whose value decreases to less than or 
equal to 80% of the peak strength (it is assumed that the RVEs fail at 
this value).

Finally, the areas under the compressive and tensile force-displacement

curves estimate the compressive and tensile fracture energies [25,29], 
respectively. This approach will be crucial for counteracting the ex-

pected size effect, as shown numerically in section 4.5. Fig. 1 illustrates 
the areas under the curve that represent fracture energy in units of en-

ergy per unit length. The limit on the right side of 𝐺f2 represents the 
ultimate compressive strength.
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Table 1

Material properties of bricks and mortar adapted from Lourenço [25,

58].

Property Values Units

Brick Mortar

Young’s modulus 𝐸 16700 850 [MPa]

Poisson’s ratio 𝜈 0.15 0.15 [-]
Tensile strength 𝑓t 2.0 0.25 [MPa]

Tensile fracture energy 𝐺t 0.08 0.018 [N/mm]

Compressive elastic strength 𝑓c0 8.0 3.0 [MPa]

Compressive strength 𝑓c 12.0 10 [MPa]

Compressive residual strength 𝑓r 1.0 2.0 [MPa]

Compressive fracture energy 𝐺c 6.0 80.0 [N/mm]

Strain at peak strength 𝜖p 0.004 0.04 [-]
Compressive biaxial strength factor 𝑘b 1.2 1.2 [-]
Shear-compression reduction factor 𝑘1 0.0 0.16 [-]

Fig. 3. RVE representing the pattern of wall JD4, showing the mesh (black bor-

ders) representing bricks (brown fills) and mortar (gray fills).

3.3. Wall J4D

Let us now present a validation of the macro-modeling approach for 
characterizing masonry walls. We consider, as a benchmark, wall J4D 
of the TU Eindhoven shear walls tested by Raijmakers and Vermeltfoort 
[61] in 1992, as part of the CUR [62] project. The dimensions of the 
wall (Fig. 2) are 0.99 m long, 1 m high, and 0.098 m wide, consisting 
of 18 courses of wire-cut solid bricks and mortar. The upper and lower 
courses are fixed in steel sections. The bricks are 0.204 m long, 0.0525 
m high, and 0.098 m thick. The mortar is 0.01 m thick and composed 
of cement, lime, and sand in a volume ratio 1:2:9.

During the experiment, two actuators hold the upper steel beam hor-

izontally (Fig. 2) while the lower beam is fixed. A compressive pressure 
of 0.3 N/mm2, resulting in a total load of 30 kN, is applied to the up-

per beam. In the second loading stage, lateral displacements are applied 
incrementally until failure. Fig. 2b presents the crack pattern in the fi-

nal state. Diagonal cracks form around the mortar interface, typical of 
shear failure. The three lower-right bricks show diagonal cracks, while 
the lower-left section shows detachment of brick-mortar interfaces.

The following subsections aim to reproduce the experimental obser-

vations using the simplified framework proposed in the present study. 
The accuracy of the orthotropic macro-model solution in approximat-

ing the experimental results will represent the first validation of this 
approach.

3.3.1. RVE analyses and effective properties

The framework discussed in section 3.2 for computing effective ma-

sonry properties is now applied to an RVE considering the wall’s bonding 
pattern (Fig. 3). Table 1 summarizes the material properties of units and 
mortar, obtained as discussed in subsection 2.2, based on the compres-

sive strengths from Lourenço [25].

The numerical analyses consider compressive, tensile, and shear 
loading under plane stress conditions. Fig. 4 illustrates the boundary 
conditions. The bottom nodes are fixed in both directions for the com-

pressive and tensile analyses, while an equal-degree-of-freedom con-

straint is assigned to the top nodes. A distributed vertical load is first 

Fig. 4. Scheme of boundary conditions for (a) RVE perpendicular to bed joint (𝑦
or 2 direction) and (b) RVE perpendicular to the head joint (𝑥 or 1 direction).

Table 2

Effective masonry properties for wall J4D obtained from compressive, tensile, 
and shear analyses in two directions.

Property Values Units

2-direction 1-direction

Young’s modulus 𝐸̄ 4142.7 9395.4 [MPa]

Shear modulus 𝐺̄ 1521.4 1521.4 [MPa]

Poisson’s ratio 𝜈̄ 0.20 0.17 [-]
Tensile strength 𝑓t 0.21 0.56 [MPa]

Tensile fracture energy 𝐺̄t 0.02 0.05 [N/mm]

Compressive elastic strength 𝑓c0 3.6 3.1 [MPa]

Compressive strength 𝑓c 10.7 9.4 [MPa]

Compressive residual strength 𝑓r 1.8 2.5 [MPa]

Compressive fracture energy 𝐺̄c 6.8 16.2 [N/mm]

Strain at peak strength 𝜖p 0.008 0.004 [-]
Compressive biaxial strength factor 𝑘̄b 1.2 1.2 [-]
Shear-compression reduction factor 𝑘̄1 0.0 0.0 [-]

applied until reaching a target displacement. The initial loads are -1 
N/mm for compression and 0.1 N/mm for tension. Then, displacement-

controlled increments in 200 steps are applied, leading to maximum 
reaction forces (compressive or tensile strength) followed by softening 
behavior. The target displacement for compression and tension is 5.0 
mm and 0.25 mm, respectively. The top boundary conditions for the 
shear simulations are different. A prescribed relative displacement con-

strains the top nodes while forcing them to reach a target displacement 
of 1 mm. These conditions keep the top nodes parallel to the bottom 
nodes. Vertical displacement of the top surface is allowed.

The analyses under plane stress conditions employ the penalty 
method to enforce constraints, while equilibrium is reached at each time 
step using the Krylov-Newton [65] iteration method. The tolerance crite-

ria to check for convergence is 0.0001. The analysis takes approximately 
30 s using a computer with an i7-8750 (2.20 GHz) processor and 16 GB 
of RAM.

Table 2 highlights the orthotropic properties derived from wall J4D 
RVEs in the 𝑦 and 𝑥 directions. As discussed in section 3.2, the av-

erage stress-strain curves from the compressive and tensile analyses 
(Fig. 5, a to d) provide the effective Young’s modulus, elastic compres-

sive strength, peak strength (compressive strength), residual strength, 
and tensile strength. On the other hand, the shear analyses (Figs. 5e 
and 5f) provide the shear modulus during the elastic stage. Finally, we 
obtain compressive and tensile fracture energies from the correspond-

ing stress-displacement curves. As mentioned previously, this procedure 
provides a simple approach to alleviate the expected size effects in the 
softening response; this delicate point is addressed numerically in sec-

tion 4.5 and not reproduced here for brevity.

3.3.2. Macro-model analysis

Fig. 6 presents the numerical representation of wall J4D. The wall 
is discretized using quadrilateral elements under plane-stress conditions 
in OpenSees, using STKO [55]. The boundary conditions replicate the 
experimental test setup. The bottom nodes are fixed in the 𝑥 and 𝑧 di-

rections. A distributed vertical load of 30 N/mm, simulating the 0.3 
N/mm2 of the experimental test, is assigned to the top elements of the 
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Fig. 5. Stress-strain curves resulting from compressive loading on RVEs (a) perpendicular to bed joints and (b) perpendicular to head joints, and from tensile forces 
on RVEs (c) perpendicular to bed joints and (d) perpendicular to head joints. Force-displacement curves from top lateral loading on RVEs (e) parallel to bed joints 
and (f) parallel to the head joints.

FEM model. This procedure is load-controlled and performed in 10 steps 
(it is assumed that the response will only be elastic). A second loading 
stage starts by imposing the vertical displacement on the top nodes cor-

responding to the last displacement state from the previous analysis. An 
equal-degree-of-freedom constraint is imposed on the upper nodes so 
that the elements representing the steel beam remain horizontal. Then, 
a prescribed lateral displacement of 4 mm is imposed on the top nodes 
in 200 steps. Equilibrium is reached at each time step using the Krylov-

Newton iteration method [65].

Fig. 7 compares five curves: four numerical simulations and the 
experimental results. The numerical solutions include cases using the 
two sets of effective properties (in directions 𝑥 and 𝑦) separately for 
isotropic macro-model analyses, a case using all the effective proper-

ties for orthotropic macro-model analysis, and the direct micro-model 
solution. The two isotropic solutions fail to approximate the wall’s max-

imum strength and almost the entire experimental curve. The isotropic 
curve representing the wall’s 𝑦-direction only matches the initial elas-

tic stage of the experiment but overestimates the peak force. This effect 
is even more pronounced in the 𝑥-direction isotropic case. These re-

sults confirm that effective isotropic properties for masonry may not be 
representative. Conversely, the orthotropic homogenized solution shows 
excellent agreement with the experimental data, comparable to that of 
the micro-model solution in predicting the behavior of the wall in its 
elastic, inelastic, and softening stages.

Fig. 8 illustrates the horizontal displacement of the micro-model 
and orthotropic macro-model simulations after reaching a maximum 
top lateral displacement of 4 mm. Both solutions exhibit a clear path 
that identifies the separation of the wall into two parts. Additionally, 
both solutions display similar behavior corresponding to the experimen-

tal failure mode (Fig. 2b) and the response indicated in Fig. 7. Note 
that the top-left and bottom-right locations of fracture initiation are 
very close. However, the micro-model solution presents a slightly dif-

ferent trajectory. It primarily follows the path of the mortar bedding, 
which is not explicitly represented in the macro-model. Nevertheless, 
at a much lower computational cost, an overall reasonable agreement 
is observed, both in terms of the force-displacement response and the 
failure path.
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Fig. 6. (a) STKO representation of steel profiles (black), wall J4D masonry (brown), and boundary conditions (purple). (b) Finite element discretization using 856 
elements and 754 nodes; the element size is 40 mm.

Fig. 7. Force-displacement curves from experimental results (red line), numer-

ical micro-model analysis (blue line), macro-model orthotropic analysis (blue 
tick line), and macro-model isotropic analysis with materials properties on the 
𝑦-direction (blue dashed line) and macro-model isotropic analysis with materi-

als properties on the 𝑥-direction (blue dotted line).

3.4. Wall J2G

Fig. 9a presents the experimental setup of wall J2G [61], with an 
opening, while Fig. 9b shows the crack patterns. Most cracks form along 
the mortar joints, while only three bricks crack: one at the upper-left 
corner and two at the lower-right corner.

Fig. 10 illustrates a macro-model representation of wall J2G, with 
Fig. 10a depicting the model and Fig. 10b representing the correspond-

ing finite element discretization. Table 2 presents the effective proper-

ties of wall J4D, which are also employed for wall J2G since the wall 
is made from the same materials. The boundary conditions are also the 
same. However, now the elements representing wall J2G are four-node 
parametric shell elements [31] instead of the quadrilateral elements 
used for wall J4D.

Fig. 11 shows the force-displacement curves, indicating changes in 
wall response, i.e., the onset of inelastic behavior, peak force, and ulti-

mate displacement. The macro-model shows an accurate prediction of 
the elastic stage (𝑢x = 0.40 mm) and the maximum strength. However, 
we observe a substantial stress decay (softening) after reaching the peak 
strength, which differs from the experimental result. This response is the 
case for both micro and macro-model predictions.

Figs. 12 and 13 depict tensile damage indices and maximum prin-

cipal stresses at four displacement levels, as obtained from the macro-

model FEM solution. Damage starts at the wall’s lower-left and upper-

right corners. Fig. 13a shows tensile stress indicating possible detach-

ments on the upper-right and bottom-left corners (Fig. 12a). Under 

increasing lateral displacement, the damage areas increase (Fig. 12b), 
and the wall presents the highest compressive stresses (Fig. 13b). Then, 
the model shows severe damage at nearly 7 mm of lateral displacement 
(Fig. 12c). Splitting of the wall at a lateral displacement of 20 mm along 
the opening between the upper-left and bottom-right corners is evident 
due to extensive damage (Fig. 12d). The failure pattern of the wall is 
consistent with the experimental result depicted in Fig. 9.

Softening is triggered after reaching the maximum strength (Fig. 11) 
due to high tensile stresses (Fig. 13b) on the upper-left and bottom-

right corners of the opening, resulting in possible longitudinal cracks. 
The final stage shows a pronounced softening response since most of 
the wall is under tensile stresses (Figs. 13c and 13d) that exceed the 
material’s tensile strength. In this case, the micro-model and the macro-

model numerical solutions depart considerably from the experimental 
post-peak response. In particular, the experimental force-displacement 
curve (Fig. 11) shows a ductile response with softening after reaching a 
lateral displacement of 13 mm. Wall J2G reaches a final displacement 
of 20 mm, more significant than the displacement of wall J4D under the 
same compressive loading. A possibility for the considerable difference 
after the post-peak response is that the model lacks the macroscopic 
plasticity that results from friction at the interfaces. This limitation is a 
worthwhile starting point for future research.

So far, we have shown numerically that the macro-damage model 
of Petracca et al. [58] informed by effective masonry properties from 
micro-model analyses provides an efficient alternative to direct numer-

ical simulations, with a comparable ability to reproduce experimental 
observations. The following section will further delve into RVE analysis 
in a real case study, considering uncertainty in the material properties, 
size effects, and mesh sensitivity.

4. Application to Ecuadorian masonry

We apply the proposed methodology to estimate the effective proper-

ties of typical masonry systems of buildings in Cuenca, Ecuador. Similar 
to section 3, the procedure comprises four stages:

1. Evaluating the material properties for bricks and mortar for the 
damage model of section 2, using experimental data from conven-

tional materials in the region.

2. Defining RVEs for two typical masonry walls of buildings in Cuenca.

3. Numerically testing the RVEs under compressive, tensile, and shear 
loading in two directions, considering uncertainty in the material 
properties for bricks and mortar.

4. Estimating a database of effective properties from the numerical 
results.
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Fig. 8. Lateral displacement of wall J4D in mm (color bar) obtained using (a) the full micro-model and (b) the orthotropic macro-model. Superimposed on both 
figures are the mesh edges (gray lines). The displacements are scaled with a factor of 5.

Fig. 9. (a) Scheme of the experimental test setup of wall J2G, consisting of 18 rows of bricks and mortar, two of which are attached to steel beams (black), and the 
loading conditions in two stages [61]. In the first stage, a uniform vertical force 𝑃 is applied. In the second stage, a displacement-controlled lateral load 𝐻 is applied. 
(b) Experimental crack patterns for wall J2G. Adapted from Laurenço [25].

Fig. 10. (a) STKO representation of steel profiles (black) and wall J2G masonry (brown). (b) Finite element discretization of wall J2G using 2049 elements and 1742 
8

nodes.
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Fig. 11. Force-displacement curves from experimental results (red line), numer-

ical micro-model analysis (thin blue line), and orthotropic macro-model analysis 
(thick blue line). The markers (black squares) signal distinctive changes in wall 
response at 𝑢x = 0.26 mm (onset of inelastic behavior), 𝑢x = 1.73 mm (peak 
force), 𝑢x = 6.93 mm (onset of residual strength), and 𝑢x = 20.0 mm (ultimate 
displacement).

In addition, as an essential validation step, we assess the size ef-

fects and mesh sensitivity of the RVEs, as expected during softening 
responses. In particular, we highlight the role of the adopted regulariza-

tion scheme, equations (12)–(14), and the use of the stress-displacement 
curves for computing the effective fracture energy.

4.1. Background

The city of Cuenca has a population of about 300,000 inhabitants 
[23]. It is located in the southern part of Ecuador, in the Andean High-

lands, at about 2350 m to 2550 m above sea level. Cuenca’s Historical 
Center is recognized for its architectural wealth and was added to UN-

ESCO’s list of World Heritage Trust sites in 1999. In Cuenca, there are 
more than 60,000 buildings [17]; of these, 43% are confined masonry, 
27% are reinforced concrete, 19% are unreinforced masonry, 6% are 
steel structures, and 3% are timber and other types [11]. Moreover, 
80% of the building stock is low-rise, composed of buildings with 1 to 
3 stories, from which 53% are two-story dwellings.

Since late 2017, the research group Vulnerabilidad Sísmica del Patri-

monio Edificado de Cuenca has been studying the seismic vulnerability of 
Cuenca’s buildings in collaboration with the Red Sísmica del Austro (seis-

mological observatory and research group in the South of Ecuador). The 
group aims to increase data and reduce uncertainty by performing ex-

perimental compressive tests on units, mortar cubes, and masonry piers.

4.2. Experiments on bricks and mortar

Fig. 14 shows two typical bricks from buildings in Cuenca. The first 
type is a hollow tochana unit with an average length 𝐿 = 30 cm or 40 cm, 
height ℎ = 20 cm, and width 𝑏 = 13 cm. The second type is a solid burnt 
unit called panelón, with an average length 𝐿 = 28 cm, height ℎ = 9 cm, 
and width 𝑏 = 13 cm. The experimental compression tests on bricks fol-

lowed the ASTM C67 standard, while the procedure for mortar adhered 
to the ASTM C109 standard. The experimental campaign was performed 
on 144 hollow bricks, 149 sold bricks, and 37 mortar cubes. The mortar 
composition was 1 part cement, 3 parts sand, and water. This mixture 
mirrors the one commonly employed by local construction workers dur-

ing wall assembly. This detail provides context to the present research 
and underscores its practical application in the local construction indus-

try.

Fig. 15a illustrates the testing equipment just before finalizing a com-

pressive test on a solid brick. The testing equipment is simple and com-

prises two rigid cylinders, a stationary upper crosshead, and a bottom 
piston that transmits the load. Table 3 displays the experimental aver-

age compressive strength 𝑓c and strain at peak stress 𝜖p of hollow and 

Table 3

Experimental results from compression tests on hol-

low and solid bricks of compressive strength 𝑓c at 
strain 𝜖p, each result being the average of 10 tests. 
The bottom section shows the corresponding mean 
𝑥̄, standard deviation 𝑠, and coefficient of variation 
CV.

Brick 𝑓c 𝜖p
Producer [MPa] [-]

Hollow Solid Hollow Solid

1.64 7.72 0.012 0.0027

Sinincay 2.40 8.10 0.011 0.0026

1.53 8.91 0.013 0.0031

1.82 5.72 0.007 0.0024

Racar 2.80 8.50 0.010 0.0029

1.87 5.58 0.01 0.0022

1.80 1.71 0.003 0.0015

El Tejar 1.97 3.12 0.005 0.0018

1.28 4.83 0.009 0.0022

1.85 6.55 0.008 0.0023

𝑥̄ 1.90 6.07 0.0088 0.0024

𝑠 0.43 2.37 0.0034 0.0005

CV 0.23 0.398 0.39 0.20

solid bricks obtained from testing units from three manufacturers (mean 
of 10 tests). The statistical parameters show that solid bricks are more 
resistant than hollow bricks, with five times higher average compressive 
strength. A reason for the relatively low strength of hollow bricks lies 
in the manufacturing process. Most units are handmade, meaning the 
pieces often have imperfections along the longitudinal voids (Fig. 14a). 
During the experimental tests, the inner faces of the bricks are expected 
to crack at relatively low stress, leading to complete failure of the brick.

On the other hand, the compressive tests on mortar cubes yield a 
mean compressive strength of 7.24 MPa, a median of 7.27 MPa, a stan-

dard deviation of 1.17 MPa, and a coefficient of variation of 16.09. For 
the strain 𝜖p, the mean is 0.0055, the standard deviation is 0.0012, and 
the coefficient of variation is 21.8%.

Since experimental testing introduces several sources of uncertainty, 
it is preferred to fit log-normal probability distribution functions (PDFs). 
These functions can be fitted using the statistical parameters for bricks 
and mortar derived from the experimental tests. The PDFs can be used 
to sample 𝑓c and the corresponding strain 𝜖p to account for uncertainty 
due to the variability in the compressive strength and strain of units and 
mortar.

The fitted log-normal probability distribution functions are used to 
sample one hundred values of 𝑓c and 𝜖p for units and mortar. The 
number of samples is considered sufficient to study the variability. The 
remaining parameters required for the damage model (section 2) are 
derived as in subsection 2.2 for the corresponding values of 𝑓c and 𝜖p. 
Table 4 presents the derived material properties of the two bricks and 
the mortar obtained from the average 𝑓c and 𝜖p.

4.3. RVE analyses

Fig. 16 presents the geometry of RVEs composed of hollow (Fig. 16a) 
and solid (Fig. 16b) bricks. 10 mm quadrilateral elements discretize the 
domain using 376 and 1729 nodes, and 682 and 945 elements, for hol-

low bricks and solid bricks respectively. The geometrical characteristics 
replicate the wall’s pattern, i.e., joining RVEs form a typical masonry 
wall. The element type, boundary conditions, numerical solution under 
plane stress, and goal of each analysis are the same as in section 3.3.1. 
We discuss the response of three illustrative RVEs below.

The first analysis concerns the RVE with hollow bricks under ten-

sile loading perpendicular to bed joints. The force-displacement curve 
in Fig. 17 highlights two distinctive states: the maximum tensile force 
(4.16 kN) and the force previous to the residual strength (0.40 kN). 
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Fig. 12. Tensile damage evolution of wall J2G (color bar) at meaningful points identified by horizontal top-displacements of (a) 𝑢x = 0.26 mm (initiation of inelastic 
behavior), (b) 𝑢x = 1.73 mm (peak shear force and initiation of softening), (c) 𝑢x = 6.93 mm (initiation of residual strength), and (d) 𝑢x = 20.0 mm (ultimate 
displacement). The displacement is scaled with a factor of 10.

Fig. 13. Minimum principal stress evolution of wall J2G in MPa (color bar) at meaningful points identified by horizontal top-displacements of (a) 𝑢x = 0.26 mm 
(initiation of inelastic behavior), (b) 𝑢x = 1.73 mm (peak shear force), (c) 𝑢x = 6.93 mm (initiation of softening), and (d) 𝑢x = 20.0 mm (ultimate displacement). The 
10

displacement is scaled with a factor of 10.
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Table 4

The material properties of hollow bricks, solid bricks, and mortar defined using aver-

age compressive strength 𝑓c and strain at peak strength 𝜖p.

Property Values Units

Hollow bricks Solid bricks Mortar

Compressive strength 𝑓c 1.9 6.07 7.24 [MPa]

Strain at peak strength 𝜖p 0.0088 0.0024 0.0055 [-]
Young’s modulus 𝐸 432 5058 2633 [MPa]

Poisson’s ratio 𝜈 0.18 0.17 0.2 [-]
Tensile strength 𝑓t 0.13 0.42 0.51 [MPa]

Tensile fracture energy 𝐺t 0.004 .012 0.06 [N/mm]

Compressive elastic strength 𝑓c0 0.63 2.02 2.41 [MPa]

Compressive residual strength 𝑓r 0.19 0.61 0.72 [MPa]

Compressive fracture energy 𝐺c 3.04 9.71 13 [N/mm]

Fig. 14. Geometrical parameters: length 𝐿, height ℎ, and width 𝑏 of (a) hollow 
tochana and (b) solid panelón bricks used in Cuenca, Ecuador.

Figs. 18 and 19 present the damage states and stresses corresponding to 
these two points. At tensile strength, damage localizes around the mor-

tar interfaces (Fig. 18a). Immediately after reaching the peak strength, 
the model presents a quasi-brittle response with increasing damage in 
the same areas. However, the damage index reaches 1, indicating com-

plete damage in tension. This damage state corresponds to detachment 
along the mortar joints. Fig. 19a shows the highest tensile stresses at 
values of 0.2 MPa along the brick-mortar vertical interfaces (top and 
bottom) and the middle-right side of the RVE. Under increasing load, 
Fig. 19b shows a state of relaxation due to the failure of most parts of 
the RVE. However, there are small areas with residual stresses along the 
horizontal brick-mortar interface.

The second analysis concerns the RVE with solid bricks under com-

pressive loading perpendicular to head joints. Fig. 20 presents the 
force-displacement curve. In this case, it is possible to identify four 
distinctive points. The first (159.44 kN) corresponds to the beginning 
of a strongly inelastic response. Then, the curve shows the maximum 
strength (200.58 kN) followed by a third point highlighting the loss of 
stiffness (marked softening). Finally, the fourth point signals the resid-

ual strength. Fig. 21 shows the compressive damage at the three latter 
points. Fig. 21a confirms the onset of a marked non-linear response, with 
small areas showing minor compressive damage. The maximum strength 
state (Fig. 21b) shows an increase of damage distributed around the 
RVE, with higher damage values 𝑑− for the bricks. Fig. 21c illustrates 
the damage state under softening behavior. At this stage, the damage 
around the previous areas increases, reaching values closer to 1. The 
final state (Fig. 21d), at the onset of residual strength, shows complete 
failure (𝑑− = 1), consistent with the failure of specimens in compression 
[73].

Fig. 22a shows higher compressive stresses for the bricks than for 
the mortar at the onset of a marked inelastic response. The compressive 
stresses acting on the bricks, conforming most of the RVE, are higher 
than the mortar since stiffer elements require more load to achieve 
equal displacement. The compressive stresses along the vertical mor-

tar joints are, on average, 67% lower. The state of stress (Fig. 22b) that 
results in the maximum strength is characterized by equal compressive 
stresses transmitted between the bricks. Subsequently, softening is trig-

gered due to damage from a new displacement increment, reducing the 
stress (Fig. 22c). The final state (Fig. 22d) presents small residual stresses 
with damage in most elements.

Finally, the third study concerns the RVE with solid bricks un-

der shear loading parallel to the bed joints. Fig. 23 shows the force-

displacement curve. The model shows an inelastic response at an early 
stage for a displacement of 0.04 mm. The inelastic stage is character-

ized by a small stiffness decay with minor tensile damage localized on 
the bottom-left and top-right corners (Fig. 24a). Moreover, at the onset 
of a marked inelastic response, the minimum principal stress (Fig. 25a) 
is positive and relatively small (close to zero). A lateral displacement 
of 0.17 mm marks the maximum strength. It produces an increase of 
damage in areas around the compressed diagonal (Fig. 24b), where 
compressive stresses are higher, reaching values of 6 MPa around the 
corners (Fig. 25b). Under increasing load, compressive damage spreads, 
e.g., in the bottom-right corner (Fig. 24c). This damage induces a strain-

softening response and thus a change of behavior, with lower compres-

sive stresses and higher tensile stresses (Fig. 25c). The RVE softens after 
exceeding a lateral displacement of 0.38 mm. Finally, at a horizontal dis-

placement of 1 mm, damage spreads (Fig. 24d), and compressive stresses 
reduce (Fig. 25d) along the compressed diagonal. In general, the RVE 
shows a relatively high strength capacity. This response is characteristic 
of bearing walls [66] supporting high compressive forces under in-plane 
lateral loading.

These numerical analyses show results consistent with experimen-

tal observations [66]. Tensile failure is characterized by detachment, a 
typical failure mode for masonry piers subjected to tensile stresses. For 
the RVE under compressive loading, the results show damage concen-

trating in the central part of the pier, similar to the damage observed 
in experimental tests of masonry piers [63]. Finally, the shear analy-

sis characterizes a typical response of masonry piers under lateral and 
compressive forces [66]. Damage concentrates along the compressed di-

agonal and (here) the bottom left and right corners.

4.4. Effective properties

Having discussed and validated the response of RVEs with hollow 
bricks and solid bricks under different loading conditions, we proceed 
to generate a database of effective properties, considering the variability 
in material parameters discussed in section 4.2.

Figs. 26 and 27 show sets of stress-strain curves and force-displac-

ement curves for 100 RVEs with hollow bricks and solid bricks, respec-

tively, due to compressive, tensile, and shear loading. The curves show 
the results of RVEs with different material properties, derived from com-

pressive strength 𝑓c and strain 𝜖p values of units and mortar sampled 
from the fitted log-normal PDFs. As described in section 3.2, at each dis-

placement increment, the stress is computed by averaging the resulting 
forces and dividing by the corresponding area. Similarly, the strain is de-

termined by averaging the displacement at each increment and dividing 
by the initial height.

The simulations on RVEs with hollow brick under tensile loading 
show a brittle material behavior, as expected for this type of material. 
Additionally, the average tensile strength is significantly lower than the 
compressive strength, by a factor of ∼14. Moreover, we observe that 
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Fig. 15. (a) Experimental setup [40] on a solid brick sample. (b) Pictures of u

Fig. 16. The RVEs representing masonry composed of (a) hollow bricks and (b) 
solid bricks. Superimposed on each figure is the mesh (black borders) represent-

ing unit elements (brown fills) and mortar elements (gray fills).

Fig. 17. Force-displacement curve due to tensile loading perpendicular to the 
bed joint of the RVE with hollow bricks. The markers (red squares) correspond 
to distinctive states at vertical displacements 𝑢y = 0.10 mm (tensile strength) 
and 𝑢y = 0.14 mm (near-residual strength).

hollow bricks are stronger when compressive loading is applied per-

pendicular to the head joints compared to the same loading applied 
perpendicular to the bed joints (Figs. 26a and 26c). However, the simu-

lations show the opposite trend for tensile tests, i.e., bricks are weaker 
when pulled perpendicular to the head joints.

To verify this result, we conducted experimental tests on two spec-

imens built to characterize these RVEs under compressive loading, ap-

plied perpendicular to the bed joints or the head joints (Fig. 28). The 
average compressive strength of tochana bricks from a batch of 50 units 
is 2.2 MPa, and the average compressive strength from 15 mortar cubes 
(3 tests per group) is 6.80 MPa. Table 5 summarizes the results from 
the experimental tests. Higher compressive strength values are observed 
nits, mortar, and masonry piers from the second experimental campaign.

Fig. 18. Tensile damage 𝑑+ (color bar) due to tensile loading perpendicular to 
the bed joint of the RVE with hollow bricks at (a) 𝑢y = 0.10 mm (tensile strength) 
and (b) 𝑢y = 0.14 mm (near-residual strength).

Fig. 19. Maximum principal stresses in MPa (color bar) due to tensile loading 
perpendicular to the bed joint of the RVE with hollow bricks at (a) 𝑢y = 0.10 mm 
(tensile strength) and (b) 𝑢y = 0.14 mm (near-residual strength).

Fig. 20. Force-displacement curve due to compressive loading perpendicular to 
the head joints of the RVE with solid bricks. The markers (red squares) corre-

spond to distinctive states at vertical displacements 𝑢y = −0.375 mm (onset of 
inelastic behavior), 𝑢y = −0.975 mm (peak strength), 𝑢y = −1.375 mm (onset of 

softening), and 𝑢y = 3.175 mm (residual strength).
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Table 5

Compressive strength 𝑓c, maximum load 𝑃u, and gross area 𝐴 for RVEs of hollow 
bricks under compressive loading perpendicular to bed joints and head joints. The 
bottom section shows the corresponding mean 𝑥̄, standard deviation 𝑠, and coeffi-

cient of variation CV.

Load perpendicular to bed joint Load perpendicular to head joint

Group 𝑓c 𝑃u 𝐴 𝑓c 𝑃u 𝐴

[N/mm^2] [N] [mm^2] [N/mm^2] [N] [mm^2]

1 0.59 20305.72 34398 1.61 68748.48 42750

2 0.76 26083.81 34510 1.00 43896.81 43957

3 0.73 26448.74 36000 1.10 52966.15 48000

4 0.73 26882.34 36704 1.81 86605.62 47864

5 0.92 32994.95 36000 1.43 69150.69 48440

𝑥̄ 0.75 26543.11 35522.4

𝑠 0.12 4496.28 1017.6

CV 0.16 0.17 0.03

Fig. 21. Compressive damage 𝑑− (color bar) due to compressive loading per-

pendicular to the head joints of the RVE with solid bricks at (a) 𝑢y = 0.40 mm 
(inelastic behavior), (b) 𝑢y = 1.00 mm (compressive strength), (c) 𝑢y = 1.40 mm 
(softening), and (d) 𝑢y = 3.20 mm (residual strength).

for the RVE under compressive forces perpendicular to the head joints, 
agreeing with the numerical results.

The difference in strength can be due to the variation in position, 
length, and material characteristics of the mortar elements, which are 
stiffer than hollow brick elements. For instance, in the RVEs under com-

pression perpendicular to head joints, the mortar elements bear the 
forces from top to bottom. In the case of tensile loading, the strength 
highly depends on the contact area, a function of the total length of the 
mortar elements. Under loading perpendicular to bed joints and head 
joints, the mortar layer has a length of 310 mm and 200 mm, respec-

tively.

The curves from compressive and tensile analysis on RVEs with solid 
bricks show a slight difference in strength between the two configura-

tions. In this case, bricks are stiffer than mortar, reducing the effect 
of mortar position and length on the composite strength. Nevertheless, 
there is still a slight difference. Under compression, Fig. 27a shows a 
mean compressive strength of 5.75 MPa, while the mean curve from 
Fig. 27c shows a maximum strength of 5.36 MPa. For tensile loading, 
the results are the opposite. The mean curve resulting from forces per-

pendicular to the bed joints shows an ultimate tensile strength of 0.37 
MPa, while in the other case, the mean tensile strength is 0.41 MPa.
1.39 64273.55 46202.2

0.34 16474.24 2643.9

0.24 0.26 0.06

Fig. 22. Minimum principal stresses in MPa (color bar) due to compressive 
loading perpendicular to the head joints of the RVE with solid bricks at (a) 
𝑢y = 0.40 mm (inelastic behavior), (b) 𝑢y = 1.00 mm (compressive strength), (c) 
𝑢y = 1.40 mm (softening), and (d) 𝑢y = 3.20 mm (residual strength).

Fig. 23. Force-displacement curve due to shear loading parallel to the bed joints 
of the RVE with solid bricks. The markers (red squares) correspond to distinc-

tive states at imposed horizontal displacements 𝑢x = 0.04 mm (onset of inelastic 
behavior), 𝑢x = 0.17 mm (peak strength), 𝑢y = 0.38 mm (onset of softening), and 

𝑢y = 1 mm (residual strength).
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Fig. 24. Tensile damage 𝑑+ and compressive damage 𝑑− due to shear loading parallel to the bed joints of the RVE with solid bricks at (a) 𝑢x = 0.04 mm (onset of 
inelastic behavior), (b) 𝑢x = 0.17 mm (peak strength) (c) 𝑢x = 0.38 mm (softening), and (d) 𝑢x = 1.00 mm (residual strength).

Fig. 25. Minimum principal stresses in MPa (color bar) due to shear loading parallel to the bed joints of the RVE with solid bricks at (a) 𝑢x = 0.04 mm (onset of 
inelastic behavior), (b) 𝑢x = 0.17 mm (compressive strength), (c) 𝑢x = 0.38 mm (softening), and (d) 𝑢x = 1.00 mm (residual strength).

Table 6 presents the effective material properties for the damage 
model resulting from the multiple analyses. This database contributes 
toward characterizing masonry buildings using a macro-element ap-

proach. In particular, the damage model informed by effective prop-

erties can improve the characterization of masonry for the seismic as-

sessment of masonry buildings, as typical in the city of Cuenca. In this 
sense, progress has been made in defining a catalog of typical buildings 
from Cuenca’s historical center [60].

4.5. Size effects and mesh sensitivity

In the previous sections, the curves resulting from numerical anal-

yses on RVEs were used to obtain effective masonry properties in two 
in-plane directions. These properties characterized the damage model at 
the macro-scale level [58], yielding accurate and representative results.

However, it is crucial to assess the reliability of this numerical frame-

work, in particular, concerning size effects and mesh sensitivity in the 
finite element simulations during softening. The objective is to ensure 
that the derived material properties remain relatively consistent, re-

gardless of the model’s size or mesh discretization. This consistency is 
essential for validating the procedure. To this end, we compare results 
across specimens of different sizes, considering systems composed of 

1 RVE, 4 RVEs, and 16 RVEs under compressive and tensile loading 
(Fig. 29). We conduct simulations under applied displacements up to 5 
mm for compression and 0.25 mm for tension. The boundary conditions 
and numerical procedure are the same as in subsection 4.3.

Fig. 30 shows stress-strain and stress-displacement curves for the 
three specimens under compressive and tensile loading. All cases yield 
the same Young’s modulus and compressive strength from the stress-

strain curves in compression. However, the post-peak response varies 
across specimens. In particular, smaller specimens show a higher degree 
of toughness as expected. Conversely, the stress-displacement curves 
present stiffness variation, with higher stiffness for the smaller speci-

mens. The tensile test results exhibit similar behavior: the stress-strain 
curves show the same Young’s modulus and small variations in ten-

sile strength (∼3% higher for the smaller samples), while the stress-

displacement curves show higher stiffness for smaller specimens. How-

ever, in both analyses, the lower stiffness in the stress-displacement 
curves is accompanied by much larger displacements at the same stress 
level in the post-peak stage. As a result, the area under the curve, char-

acterizing the fracture energy, is similar for the three specimens.

Table 7 summarizes five key material properties that characterize 
the damage model in the linear, inelastic, and softening stages. The dif-

ferences in fracture energy between the models are reasonable (∼13% 
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Fig. 26. Stress-strain curves from 100 RVEs of hollow bricks (gray) under distributed loads perpendicular to bed joints for (a) compression and (b) tension, and 
perpendicular to head joints for (c) compression and (d) tension. Force-displacement curves for shear loading (e) parallel to bed joints and (f) parallel to head joints. 
Superimposed on each figure are the mean (blue) and the mean plus/minus one standard deviation (magenta). The curves correspond to RVEs with different material 
properties, derived from compressive strength and strain values of units and mortar sampled from the fitted log-normal PDFs.

for compressive fracture energy and >10% for tensile fracture energy), 
lower than the coefficient of variation of the energy parameters obtained 
from the numerical analyses.

Nevertheless, the difference is likely due to different failure modes 
triggered in larger samples. Fig. 31 shows the final fracture state of the 
three specimens in compression at the target displacement (5 mm). The 
fracture energy per unit area of the first two specimens (Figs. 31a and 
31b) is approximately the same. The model with 16 RVEs presents a 
slight increase in fracture energy per unit area due to a vertical crack 
(Fig. 31c). On the other hand, for tensile loading, we can observe from 
Fig. 32 that the fracture modes are similar for all three cases, with cracks 
developing in the lower section.

Finally, Fig. 30b and Fig. 30d assess the effect of mesh discretization, 
showing results for element sizes of 1 mm, 10 mm, and 15 mm. The 
results are indistinguishable up to the peak and show slight variation 
in the softening stage. Signs of convergence are seen when comparing 
results across different mesh sizes: discrepancies are smaller between 
the 1 mm and 10 mm meshes than between 10 mm and 15 mm. This 
trend suggests that the results progressively converge towards a stable 
solution as the mesh size decreases.

These results highlight promising aspects of the present framework. 
The composite maximum strengths are objectively captured and can 
therefore be well estimated, including the tensile strength, which is com-

monly a critical parameter for failure analysis, further influencing the 
wall’s shear capacity. Consequently, the results suggest that the prop-

erties obtained from analyzing small samples (one or a few RVEs) may 
provide reasonable approximations of the effective properties of the con-

tinuum material. Moreover, since one RVE represents a relatively small 
model, it is possible to use a fine discretization with limited computa-

tional cost.

5. Conclusion

We have presented a simple framework for determining effective 
masonry properties, for use in macro-model structural simulations. It 
was shown that these properties may be estimated in a relatively sim-

ple manner, without resorting to rigorous homogenization methods. 
Specifically, a damage model was used to conduct direct numerical sim-

ulations on RVEs, including a practical procedure for defining the base 
material properties from experimental tests on units and mortar. The 
micro-model results were then used to derive the effective properties re-
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Fig. 27. Stress-strain curves from 100 RVEs of solid bricks (gray) under distributed loads perpendicular to bed joints for (a) compression and (b) tension, and 
perpendicular to head joints for (c) compression and (d) tension. Force-displacement curves for shear loading (e) parallel to bed joints and (f) parallel to head joints. 
Superimposed on each figure are the mean (blue) and the mean plus/minus one standard deviation (magenta). The curves correspond to RVEs with different material 
properties, derived from compressive strength and strain values of units and mortar sampled from the fitted log-normal PDFs.

Fig. 28. RVEs of hollow bricks prior to and after being tested under compressive 
loading perpendicular (a) to bed joints and (b) to head joints.

quired for the macro-model directly. Using both stress-strain and stress-

displacement curves was crucial to alleviate the size dependence of the 
effective parameters, particularly concerning fracture energy. Moreover, 
a conventional fracture energy-based regularization method proved ef-

fective in preventing mesh sensitivity. The analyses are performed in 
two directions, accounting for orthotropic behavior, which was shown 
to be essential for reproducing experimental observations.

The validation of the macro-model informed by the derived effective 
properties showed accurate predictions of the global response, kinemat-

ics, stresses, and damage states, consistent with direct micro-modeling 
results and experimental observations of masonry walls. Furthermore, 
the present framework was applied to compute the effective properties 
of two types of masonry walls, typical of masonry buildings in Cuenca, 
Ecuador. The resulting properties comprise a database that may be used 
for future regional investigations.

The present study contributes to the calibration of macro-models for 
accurate characterizations of masonry walls. The methodology, being 
simple to apply, can adapt to the modeling of masonry in 3D structures 
for design and assessment. One limitation is that the damage model 
requires several material parameters. Additionally, the material prop-

erties were derived from empirical relations, not experimental testing. 
Finally, the proposed methodology lacks a theoretical background; thus, 
it is not shown to be valid for boundary and loading conditions beyond 
the present analyses. Further research is therefore required for more 
complex walls under different loading conditions. It would also be inter-

esting to compare the present framework with other, perhaps rigorous, 
homogenization methods. Additional experimental testing is also nec-
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Fig. 29. Masonry piers with solid bricks composed of (a) 1 RVE, (b) 4 RVEs, and (c) 16 RVEs.

Fig. 30. Stress-strain curves for (a) compression and (c) tension and stress-displacement curves for (b) compression and (d) tension on 1 RVE (solid blue lines), 4 
RVEs (dashed blue lines), and 16 RVEs (dash-dot blue lines), discretized with a mesh size of 10 mm. The results of using a mesh size of 1 mm (green lines) and 15 
mm (red lines) are superimposed on the stress-displacement curves.

Fig. 31. Failure pattern in compression at an imposed displacement of 5 mm on (a) 1 RVE, (b) 4 RVEs, and (c) 16 RVEs representing masonry piers with solid bricks 
and an element size of 10 mm.
17
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Table 6

Mean 𝑥̄, standard deviation 𝑠, and coefficient of variation CV of effective properties for masonry 
obtained from compression, tensile, and shear analyses on RVEs: Young’s modulus 𝐸̄, shear modulus 
𝐺̄, tensile strength 𝑓t , tensile fracture energy 𝐺̄t , compressive elastic strength 𝑓c0, compressive 
strength 𝑓c , compressive residual strength 𝑓r , compressive fracture energy 𝐺̄c and strain at peak 
strength 𝜖p .

𝐸̄ 𝐺̄ 𝑓t 𝐺̄t 𝑓c0 𝑓c 𝑓r 𝐺̄c 𝜖p
[MPa] [MPa] [MPa] [N/mm] [MPa] [MPa] [MPa] [N/mm] [-]

RVEs 𝑦 direction (hollow bricks)

460.58 93.57 0.096 0.0023 0.656 1.328 0.226 2.834 0.0056

297.95 64.97 0.05 0.00 0.52 0.71 0.13 1.65 0.002

0.65 0.69 0.53 0.66 0.80 0.54 0.55 0.58 0.36

RVEs 𝑥 direction (hollow bricks)

514.66 133.23 0.068 0.0009 0.48 1.770 0.260 3.56 0.008

283.73 92.03 0.02 0.00 0.28 0.72 0.10 2.01 0.003

0.55 0.69 0.34 0.47 0.58 0.41 0.38 0.57 0.302

RVEs 𝑦 direction (solid bricks)

5086.0 1620.2 0.42 0.015 2.42 5.90 1.16 9.04 0.002

1933.8 617.6 0.11 0.002 0.75 1.61 0.31 2.20 0.001

0.4 0.4 0.27 0.166 0.31 0.27 0.27 0.24 0.57

RVEs 𝑥 direction (solid bricks)

5093 1029 0.42 0.009 2.35 5.92 1.13 8.73 0.004

2258 424 0.12 0.003 0.82 1.57 0.37 2.52 0.002

0.4 0.4 0.29 0.383 0.35 0.27 0.32 0.29 0.57

Table 7

Effective properties: Young’s modulus 𝐸̄, compressive strength 𝑓c, tensile strength 𝑓t , compressive 
fracture energy 𝐺̄c , and tensile fracture energy 𝐺̄t , resulting from compressive and tensile analyses 
on 1 RVE, 4 RVEs, and 16 RVEs representing masonry piers with solid bricks. The first three rows 
present the results of RVEs with an element size of 10 mm, while the last three rows present the 
results of RVEs with an element size of 15 mm.

# RVEs 𝐸̄ 𝑓c 𝑓t 𝐺̄c 𝐺̄t
[MPa] [MPa] [MPa] [N/mm] [N/mm]

1 4098 5.59 0.396 13.7 0.02

4 4098 5.57 0.390 13.8 0.018

16 4098 5.57 0.382 16.0 0.02

1 4098 5.59 0.396 11.7 0.015

4 4098 5.57 0.390 13.5 0.017

16 4098 5.57 0.382 17.0 0.019

Fig. 32. Failure pattern in tension at an imposed displacement of 0.25 mm on (a) 1 RVE, (b) 4 RVEs, and (c) 16 RVEs representing masonry piers with solid bricks 
and an element size of 10 mm.
18
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essary to improve the calibration of numerical models concerning the 
fracture energy parameters, the shear-compression reduction, and the 
compressive bi-axial strength factors (here, the latter two parameters 
were assumed from the literature according to the type of units and 
mortar). Studying other possible brick configurations, such as interlock-

ing units [39], is also worth considering.
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