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the execution time.

Based on soil erosion and sediment transport processes, CAMF (Cellular Automata-based heuristic for Mini-
mizing Flow) selects sites for afforestation to minimize sediment influx at a catchment’s outlet. CAMF uses a
raster representation of the catchment and a steepest ascent hill-climbing optimization heuristic, safeguarding
spatial interaction. Its execution time can be prohibitively long for large data-sets. Parallelization results in a
speedup of 20 to 24 on 28 cores. We present variants of the optimization method to reduce the number and
cost of the iterations. We present a tuning algorithm for the meta-parameters of these variants. The results
obtained for two contrasting catchments illustrate that the accelerations reduce the cost by a factor larger
than 100, with negligible effect on the afforested cells and magnitude of the sediment reduction. The results
indicate that higher levels of spatial interaction have a stronger impact on the accuracy of the results and/or

Software availability

Name of the software: A-CAMF 1.0

Developer: Grethell Castillo Reyes

Contact: Data Representation and Analysis Center, University of In-
formatic Sciences, San Antonio de los Bafios Km 21/2, Cuba; Department
of Computer Science, KU Leuven, Celestijnenlaan 200A box 2402, 3001
Leuven, Belgium.

Year First Available: 2022

Hardware requirements: A multi-core processor.

Program language: C++

Software required: A-CAMF is implemented in C++ and can be
executed on either Linux or Windows. The required libraries to run
A-CAMF are: The Geographic Data Abstraction Library (GDAL) and
OpenMP.

Program size: 187 KB

The source code is available at https://gitlab.kuleuven.be/u012367
4/acamf

1. Introduction

Spatial optimization problems play an important role in land use
planning and land management; for example, to locate the optimal
sites to perform a certain intervention (Witlox, 2005; Nguyen et al.,
2017; Strauch et al., 2019), aimed at maximizing financial and/or
ecological benefits, expressed at the local (on-site) or global (off-site)
level. Different types of spatial optimization problems arise, depending
on the decision variables, the objective function(s), and constraints.
Therefore, an appropriate optimization method should be selected for
each problem type (Kaim et al., 2018). Spatial interaction, also called
spatial inter-dependency, must be taken into account to solve such
problems. Changing the state of a site may influence the state of other
sites (Hayes and Wilson, 1971), so that the effect of an intervention at
a site cannot be determined independently of the interventions in other
sites (Gersmehl, 1970; Wang, 2017).

Some spatial optimization problems can be formulated as Linear
Programming (LP) or Integer Programming (IP) problems, allowing to
compute the global optimum using standard mathematical software,
see e.g. Fischer and Church (2003), Karterakis et al. (2007), Orsi et al.
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(2011) and Sarma et al. (2015). The execution time depends on many
factors, including the number of decision variables and constraints. LP
and IP formulations have been extensively explored when the number
of decision variables and constraints is small, as in Sarma et al. (2015)
and Fischer and Church (2003). Even then, the execution time required
to solve the LP or IP problem can be very long.

Hence, spatial optimization problems are typically solved by heuris-
tic methods (Borges et al., 2002; Li, 2007; Maier et al., 2014). For
example, Bettinger et al. (2003) present a comparison of eight heuristic
planning techniques (including random search, simulated annealing,
great deluge, threshold accepting, tabu search, and genetic algorithms)
in terms of solution quality and the effort required to obtain a solution,
illustrating the challenges of using heuristic methods for forest plan-
ning. Similar studies are presented in Heinonen and Pukkala (2004),
Bachmatiuk et al. (2015) and Dong et al. (2015), where several heuris-
tic techniques to solve harvest scheduling problems are compared. Shan
et al. (2009) present general trends in using heuristics methods in
spatial forest planning, suggesting a shift from exact analytical solution
techniques to heuristics in this field.

For example, Genetic algorithms (GAs) are frequently used to op-
timize the application and combination of Best Management Prac-
tices (Kaini et al., 2012; Panagopoulos et al., 2013; Chichakly et al.,
2013; Yang and Best, 2015). While GAs can be used for a variety
of search and optimization problems, the successful exploration of
large search spaces requires a large population size and many itera-
tions, causing long execution times (Cibin and Chaubey, 2015). The
performance of GAs can be sensitive to the values of the parameters
used (mutation probability, ...) (Arabi et al., 2006), and tuning these
parameters can be expensive. Hence, spatial optimization problems
solved by a GAs typically have a small set of decision variables. For
large problems, special techniques are proposed, such as multi-level
spatial optimization (Cibin and Chaubey, 2015).

This paper discusses a method and its corresponding software imple-
mentation, designed to identify the cells in a raster representation of a
study area for an intervention meant to optimize an objective function
that is subject to spatial interaction. The type of study area considered
in this paper is a hydrological catchment, the intervention considered
is afforestation and the objective is the minimization of the cumulative
sediment loss, also called sediment yield and denoted as SY, from the
catchment at its outlet, as a result of the afforestation of a predefined
(constrained) number of to-be-identified cells.

The SY is determined by the local sediment production in the
catchment and the sediment flow towards the outlet. Local sediment
production refers to the amount of detached soil particles that are
available at each site of the catchment to be transported to other
sites. The sediment locally produced at a site depends, among other
factors, on the land cover, and it is lower in afforested sites than in
agriculture/pasture sites. Hence, afforesting a site ultimately reduces
SY. Various models to simulate soil erosion, sediment production, and
sediment transport are proposed in the literature, e.g. Wischmeier et al.
(1965), Renard et al. (1991), Van Oost et al. (2000), Van Rompaey
et al. (2001), Vanegas (2010), Kumar et al. (2022) and Domingues et al.
(2020). These models vary in complexity and often contain parame-
ters that must be calibrated with experimental data, determining the
accuracy of the simulations.

The focus of this paper, however, does not lie on such models,
but on the optimization method to solve the site-location problem,
i.e. to select those sites that minimize SY when covered by forest,
where the area to be afforested or the required reduction in SY are
given as constraints. Domingues et al. (2020) mention ‘precision forest
restoration’.

For the afforestation problem considered in this paper, an IP for-
mulation is presented in Vanegas et al. (2009, 2012). The sediment
accumulation in each raster cell is based on locally produced sediment,
the Single Flow Direction (SFD) model (the D8 variant O’Callaghan
and Mark, 1984), and a convex piecewise linear function modeling
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the sediment transport between cells. Solving this IP problem is only
feasible for small data-sets (Vanegas et al., 2012). Therefore, Vanegas
(2010) introduced a heuristic method, called Cellular Automata based
heuristic for Minimizing Flow (CAMF).

In each iteration of CAMF, typically, only one candidate cell is
selected for afforestation, namely the cell for which afforestation maxi-
mizes the reduction of SY. Hence, the optimization heuristic in CAMF is
a steepest ascent hill climbing method (Michalewicz and Fogel, 2000).
However, since afforesting a cell reduces SY, special techniques to
escape local minima are not needed in this case, which simplifies the
optimization process. Details are presented in Section 2, with emphasis
on the convergence of the iterative process and the computational cost.

Vanegas et al. (2012) report on the application of CAMF to locate
optimal sites for afforestation in a small catchment. Using the same
local sediment production and sediment transport models as in the IP
formulation, the afforested cells were identical to those obtained by
solving the IP formulation using the Lingo software, while the execution
time was shorter.

The CAMF method was further extended in several directions, in-
cluding the introduction of Multiple Flow Direction (MFD) models
in Estrella (2015) and Castillo-Reyes et al. (2023a). Note that in princi-
ple the IP formulation in Vanegas et al. (2009) could be adapted for a
MFD model, but it is impractical since the number of constraints would
be immense (Vanegas et al.,, 2012). In Castillo-Reyes et al. (2023a)
we showed that the CAMF heuristic converges fast, i.e. SY decreases
drastically as a function of the number of selected cells, since it selects
in each iteration those cells for which the marginal contribution to the
sediment yield reduction by afforestation is the highest. In addition, the
method is robust since it is deterministic and its performance does not
depend on algorithmic parameters.

We also analyzed the scalability of the method when the raster size
increases. Especially when using the MFD model, the execution time per
iteration grows faster than linearly with the raster size. This restricts the
applicability of CAMF to mid-sized geo-databases.

Domingues et al. (2020) use a GA to solve a very similar problem
as the one addressed in this paper, namely to locate raster cells for
afforestation, to minimize soil erosion and deposition, simulated by the
Unit Stream Power Based Erosion Deposition (USPED) model. A large
population and many GA iterations are needed for a moderately large
raster data-set, resulting in long execution times with no guarantee of
finding the global optimum.

To be able to compute optimal sites for intervention in large geo-
databases, we introduce in this paper adaptations to the steepest ascent
hill climbing method used in CAMF, to reduce its execution time,
while still considering the off-site impact. The latter depends on spatial
interaction; thus, reflecting the real nature of sediment flow. The
adaptations that we propose are based on the following hypothesis:
(a) by selecting multiple cells per iteration, the number of iterations
can substantially be reduced, and (b) by computing the effect on SY
of tentatively afforesting each cell of only a subset of the candidate
cells, the cost per iteration can be reduced. These adaptations affect
the optimization result, but we show that they have only a limited
effect on the solution quality. We also present a tuning algorithm to
appropriately choose the values of the meta-parameters of the new
algorithmic variants. We show that the execution time can further be
reduced by executing the simulations, performed in each iteration, in
parallel on a multi-core processor.

This paper is organized as follows: Section 2 summarizes the char-
acteristics of CAMF and describes the computation of the sediment
accumulation in a raster cell and presents the accelerations imple-
mented to reduce the execution time. In Section 3 the data-sets for the
experiments are described. The results of the experiments are presented
in Section 4 and discussed in Section 5. Conclusions are given in
Section 6.
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2. The CAMF and A-CAMF methodology
2.1. The original CAMF method

The CAMF method, presented in Vanegas (2010) and subsequent
papers, uses a raster geo-database describing several properties of the
catchment. To apply it to the case of afforestation to minimize sediment
loss, it requires a Digital Elevation Model (DEM), a land cover map,
and the mean annual amount of sediment produced locally in each
cell (tonha™! yr~!). Since afforestation reduces the sediment production,
two values are required for each cell i: a! and o? denoting respectively
the original sediment production and the production in case cell i would
be afforested.

The sediment accumulated in cell i, denoted by S4;, is the sum of
the locally produced sediment and the sediment flowing into that cell
from up-slope cells. The latter depends on the flow direction model
(SFD, MFD-FD8 and MFD-Doo are implemented in CAMF) and the
sediment transport model. Several transport models are available in
CAMF. In this paper, we use the model presented in Vanegas (2010)
and also used in Estrella (2015) and Castillo-Reyes et al. (2023a): the
amount of sediment leaving cell i is a convex piece-wise linear function
of SA;, depending on six parameters: retention capacity p¥, flow factor
yi" and saturation threshold o‘ik, where k = 1 in case cell i is not
afforested and k = 2 if afforested.

When a cell is afforested, the retention capacity and saturation
threshold increase (p? > p!, 67 > ¢!), and the local sediment production
and flow factor decrease (a? < a!, y? < y!). As a result, afforesting a cell
reduces the sediment in that cell and also the sediment that flows into
the down-slope cells, and eventually into the outlet cell(s). Details of
the computation of the sediment accumulation raster, further denoted
as SA, can be found in Vanegas (2010), Castillo-Reyes et al. (2023a)
and in Appendix A.

For optimization purposes, CAMF uses an iterative heuristic to
select the cells that, when afforested, minimize the amount of sediment
reaching the target cell(s), constrained by a predefined number of cells
to be afforested or a target sediment yield reduction. Only a subset of
the cells, which we designate as ‘candidate cells’ (typically the cells
under specific land use types, e.g., agriculture and pasture lands) can be
selected. In each iteration, each candidate cell is tentatively afforested
(one by one) and the SA raster is recomputed. Hence the sediment
yield SY, i.e., the sediment accumulated in the target cell(s), due to
the afforestation of each candidate cell separately, is computed. The
candidate cells are ranked according to the achieved SY and the cell(s)
leading to the minimal SY, thus the maximal potential reduction of SY,
denoted by SYR, are selected and marked as afforested. Typically, only
one cell is selected in each iteration (Vanegas, 2010; Vanegas et al.,
2012, 2014; Castillo-Reyes et al., 2023a).

Note that the CAMF method has been already adapted in different
ways, including the selection of compact and contiguous sites in Vane-
gas et al. (2014) and Castillo-Reyes et al. (2023), and a simplification of
the iterative process based on on-site criteria in Estrella et al. (2014b).
In the latter variant, the results can differ strongly from those obtained
with the original version of CAMF, since in that case spatial interaction
is completely disregarded.

2.2. Optimization procedure in CAMF

We now present in detail the iterative process to select the cells
where afforestation should take place to minimize the sediment yield
SY at target cell(s), e.g. at the outlet, and thus to maximize the
sediment yield reduction SYR.

The selected cells can be represented by a binary array x of length
n, with n the number of candidate cells and x; = 1 or 0 if the candidate
cell i is afforested or not, respectively. x is the decision variable of the
optimization problem. Initially x; = 0 for each candidate cell i. The
constrained optimization problem is to find the array x that minimizes
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SY = F(x) where the function F is determined by the sediment
production and transport models, constrained by e.g. the number of
candidate cells that should be afforested or by a given reduction in SY.
Starting with x = 0, x is iteratively updated to minimize SY = F(x).
Assume that the value of x at the beginning of iteration step k is x~1.
By tentatively afforesting every candidate cell i, the corresponding sed-
iment yield reduction ASY} = SY(x*™!) - SY(x*~! +¢,) is computed,
with e; the ith unit vector, which represents the discrete analog of the
partial derivative of SY w.r.t. x; in x*~1. ASY* > 0 for each cell i,
since afforestation of a cell reduces SY. If ASYJ." = max; ASYF, cell j is
selected in iteration k, and x* = x*~! +e;, i.e., a step in the jth direction
in the decision variable x is taken.

This iterative heuristic is a steepest ascent hill climbing method to
solve the discrete binary constrained optimization problem. When a
convex transport function is used, as in this paper, CAMF will converge
to the global optimum of the convex problem (Vanegas et al., 2012).

Due to spatial interaction, the effect of afforesting a particular cell
on the achieved SY can vary in subsequent iterations. Therefore, if the
flow paths to the target cell(s) of selected cell j and a not yet afforested
cell i partly coincide, then in the next iteration, SY(x* + e;) must be
computed, requiring the computation of the sediment accumulation
S A, for all cells p on these flow paths; otherwise SY (x*+e;) = SY (x*~1+
e;). Checking whether j and i have partly coinciding flow paths is
simple when the SFD method is used, but it is prohibitively expensive
when MFD is used. Therefore, in our implementation, every not yet
afforested candidate cell is tentatively afforested in each iteration.

Castillo-Reyes et al. (2023a) reported on using CAMF for dealing
with the afforestation problem in two river catchments with different
properties, while analyzing the scalability of this method for different
problem sizes. To fully take into account spatial interaction, in each
iteration k, SY (x*~!+e;) and thus the sediment accumulation matrix SA
must be computed for a large number of candidate cells. As discussed
in Castillo-Reyes et al. (2023a), the latter requires traversing a large
fraction of the cells in case a MFD model is used. Hence, in the worst
case, the computational cost of one iteration is quadratic in function of
the number of raster cells, since the number of the candidate cells can
be nearly equal to the total number of cells. In addition, typically, each
iteration selects only one cell, hence many iterations are executed to
solve the constrained optimization problem.

However, in case the impact of spatial interaction is rather weak,
the optimization heuristic described above could be relaxed. Indeed,
Table 1 shows, for 10 iterations of CAMF for a real data-set, the 10 best-
ranked candidate cells, according to the potential SY R that would be
achieved by afforesting each cell separately. These highest-ranked cells
are identified in iteration 1, and there is no need to iteratively rank
them.

Let SY° be the original sediment yield (before starting the itera-
tions); SY{.‘ the sediment yield if cell i would be afforested in iteration
k (taking into account the afforestation of cells in iterations 1, ..., k—1);
SYR,{‘ the total sediment yield reduction if cell i would be afforested in
iteration k,

SYRF = 85Y0 - sY* (@)
1 1

Note that in Table 1, SYR{.‘ includes the reduction due to the afforesta-
tion of cells in previous iterations, but not the reduction due to the
(concurrent) afforestation of other cells in the same iteration. In the
later iterations, the SYRﬁ.‘ values do not differ much. The last column
shows the cells selected in these first 10 iterations of CAMF. The cell
selected in iteration k was at rank k in iteration 1, for k = 1,...,10.
Hence, in this case, there is no difference between executing 10 CAMF
iterations, with one cell selected per iteration, and selecting the 10
best-ranked cells in one iteration.

Although Table 1 presents an ideal situation w.r.t. the ranking of
candidate cells in subsequent iterations, the above mentioned observa-
tions form the basis for the adaptations of the optimization heuristic
presented in the next subsection.
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Table 1
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Top-10 of the candidate cells in the first iterations of an experiment with the original CAMF using a real data-set and the final selected cells to be afforested. x,y represent the
raster coordinates of the cell; SYR:‘ is the sediment yield reduction if cell at x, y would be afforested in iteration k.

k Iteration 1 Iteration 2 Iteration 3 Iteration 10 Selected cells
x,y SYR! x,y SYR? x,y SYR? x,y SYR! x,y SYR

1 180,113 93.15 145,194 183.12 169,105 271.50 174,119 728.22 180,113 93.15
2 145,194 89.97 169,105 181.53 180,116 254.64 303,96 727.91 145,194 183.12
3 169,105 88.38 180,116 164.67 170,104 249.99 174,109 727.38 169,105 271.50
4 180,116 71.52 170,104 160.02 169,104 248.68 100,246 727.18 180,116 343.02
5 170,104 66.86 169,104 158.71 94,160 248.29 251,43 726.58 170,104 409.89
6 169,104 65.55 94,160 158.32 180,114 246.29 249,39 725.22 169,104 475.45
7 94,160 65.16 180,114 156.32 286,25 245.38 94,162 725.11 94,160 540.62
8 180,114 63.17 286,25 155.41 174,119 245.29 171,104 724.58 180,114 603.79
9 286,25 62.25 174,119 155.32 303,96 244.98 151,41 722.97 286,25 666.05
10 174,119 62.17 303,96 155.01 174,109 244.45 175,109 722.49 174,119 728.22

2.3. Accelerations implemented in A-CAMF

We now describe the adaptations of the optimization heuristic
implemented in A-CAMF, the accelerated version of the CAMF method
and software.

2.3.1. Selecting several cells per iteration

If in iteration k several cells i have nearly the same potential for
sediment yield reduction, several cells can be selected in one iteration,
reducing the number of iterations, while the impact on the accuracy
of the results depends on the strength of spatial interaction in the
region. Indeed, due to spatial interaction, the set of selected cells will
not always be equal. The SYR obtained with A-CAMF can be smaller
than the SYR obtained with CAMF, and this difference in SYR should
be controlled.

A user-defined relative threshold T is used to determine how many
cells are selected in an iteration, as follows. The SY and the SYR
obtained at the end of iteration k are denoted by respectively SY* and
SY R¥; the SY and the SYR obtained in iteration k + 1 by (tentatively)
afforesting cell ¢ are denoted by SY**! and SYR**!; the extra SYR,
obtained in iteration k + 1 by (tentatively) afforesting cell ¢, is given by

ASYRM! = SYRM! — SYRF = SY* — sy*+! 2
Let cell i be the highest-ranked cell in iteration k + 1. The cells j for
which the relative difference is smaller than threshold T, i.e.

ASYR*! — ASY RS

RD
ASY REH!

<T 3

ij =
are selected in iteration k in A-CAMF.

2.3.2. Partial ranking

Building the ranking, by simulating the sediment flow for each
candidate cell, is computationally expensive. In Table 1, the top of the
ranking in subsequent iterations consists of the same cells, sometimes
in a different ordering, minus the cells that were selected in previous
iterations. A similar behavior is observed in subsequent iterations. Also,
the cells that were ranked low in iteration k are not generally ranked
high in subsequent iterations. Thus, computing the effect of afforesting
these low-ranked cells can be avoided.

Hence, to further accelerate the procedure, the complete ranking is
only calculated in iterations 1 +rXx K, r =0, 1,2, .... In the intermediate
K iterations, we only rank the ‘top-N’ cells of the ranking produced in
the last iteration in which the complete ranking was computed. Hence,
in these K iterations, only a subset of the candidate cells are ranked. We
call this acceleration method ‘partial ranking’. Since K determines how
often the complete ranking is computed and N represents the number
of cells that are ranked in the intermediate K iterations, decreasing

N and/or increasing K reduces the computational cost, but this can
increase the difference between the solution sets of CAMF and A-CAMF
and thus decrease SYR. When T > 0 and the partial ranking is used, the
number of cells selected in every iteration is limited to N.

2.3.3. Parallelization

The adaptations presented in Sections 2.3.1 and 2.3.2 aim at im-
proving the computational cost of CAMF by reducing the number of
iterations and the cost of these iterations, but still many simulations
with high computational costs are required.

In each iteration of CAMF, the sediment flow is simulated for
each (tentatively) afforested candidate cell. Since these simulations
are independent of each other, they can be executed in parallel on a
multi-core computer, resulting in a reduction of the wall clock time.

For the implementation Open Multi-Processing (OpenMP) direc-
tives (Chapman et al.,, 2007) are used in A-CAMF. The omp loop
schedule directive indicates to the compiler how the loop iterations
must be distributed among the available threads (cores). Since the
simulations for each candidate cell can have different execution times,
it is important to use dynamic scheduling, with a predefined size of the
subsets of candidate cells (chunks) handled together to minimize the
load imbalance. This ensures that no core remains idle while there are
still tasks to be executed (Fig. 1 and Algorithm 1).

Algorithm 1 shows the pseudo-code of the accelerations included in
A-CAMF.

2.3.4. Hyper-parameter tuning

We aim at setting the values of the acceleration parameters T (see
Section 2.3.1) and K, N (see Section 2.3.2), such that the execution
time is maximally reduced, while the relative difference (RD,), in SYR
values when afforesting » cells with the original CAMF and A-CAMF is
smaller than a user-defined value (RD,,,,).

In the tuning process, we afforest m cells with CAMF and A-CAMF,
with m < n, varying the acceleration parameter values such that RD,, <
RD,,,. Although this does not guarantee that RD, < RD,,,,, the results
in Section 4 indicate that this holds in general. m is set by the user.

The acceleration parameters are varied using a guided grid search.
Indeed, we aim at a compromise between the computational cost
and the accuracy of the results, which is different from the aim of
classical methods to find parameter values for which the best results
are obtained, e.g., grid search (Kim, 1997; Jiménez et al., 2007). For
large values of the relative threshold T and the number of intermediate
iterations K, the execution time of A-CAMF is strongly reduced, while
for T =0, K = 0, A-CAMF is identical to CAMF (RD,, = 0).
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Fig. 1. Representation of the parallel execution of the first iterations, using p threads and dynamic load balancing in A-CAMF.

Algorithm 1 Determine the cells to be selected for afforestation with

A-CAMF
Input: Number of cells to be selected n, threshold for selecting
multiple cells per iteration T, interval to compute the complete
ranking K, size of partial ranking N

1. Create data structure S to store cells to be selected for afforestation
2 k<1
3. r<0

while size of S < n do
if k=1+(xK) then
Start parallelism — distribute iterations by means of the
dynamic schedule strategy
for each candidate cell i do
4. Compute SA; raster and SYRfF by tentatively afforesting
cell i
end for
End parallelism
5. Rank and select best cells by executing Algorithm 2 with
N=n
else
Start parallelism — distribute iterations by means of the
dynamic schedule strategy
for first N cells in complete ranking do
6. Compute SA; raster and SYRf.‘ by tentatively afforesting
cell i
end for
End parallelism
7. Rank ‘top N’ and select best cells by executing Algorithm 2
8. rer+1
end if

9. k—k+1
end while

Output: Set of cells selected for afforestation .S

Algorithm 2 Rank and select cells in iteration k

Input: Number of cells to be selected n, threshold for selecting
multiple cells per iteration 7, number of cells to be ranked N

1. Rank N cells according to SYR
2. Put cell(s) with highest SYR in solution set S
variable used to store the cells to be selected

> S is a global

repeat > Starting from the first cell j not selected in step 2
3. Compute RD; following Eq. (2) and (3) with i the highest
ranked cell in iteration k
4. Put cell j in solution set .S
until RD;; > T or size of S ==n

The grid search uses the following values for 7 and K:

ST = [Tyaxs Tonax = Tstep Traax = 2 X Tygepr --- 0]

max> * max

Ko —2%X K,

Kmax - Kslep’ max step> *c 0]

sK=[K

max?

The tuning process consists of the following steps:

1. CAMF is executed to select m cells.

2. We first tune T, by running A-CAMF starting with T = T,,,, and
iterating through S7, until a value for T is reached, for which
RD,, < RD,,,,. In this step K =0 and N = number of candidate
cells.

3. Once the value for T is selected, A-CAMF with partial ranking
is executed starting with K = K,,,,, iterating through SX. N is
selected as follows. Suppose that in the last iteration of A-CAMF
in step 2, R cells are selected, then in K iterations ~ K X R cells
are selected. Since in the intermediate K iterations only N cells
are ranked, the value of N should assure that all cells that will
be afforested in K iterations are ranked. We set N = K X R.

The algorithm ends when a set of parameters (7, K, N) is found, sat-
isfying the condition RD,, < RD,,,.. The tuning algorithm is presented
in Appendix B.

3. Study areas

To compare the performance of A-CAMF with the original CAMF,
we used two raster geo-databases with different characteristics rep-
resenting: (1) the Tabacay river catchment in Ecuador, and (2) the
Maarkebeek river catchment in Belgium, see also Castillo-Reyes et al.
(2023a).
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Fig. 2. Tabacay river catchment: (a) Location in Ecuador and Digital Elevation Model (Estrella et al., 2014a); (b) Initial local sediment production map a' (tonha™' yr~!) calculated
by means of RUSLE. mina' =0 tonha™' yr~!, maxa' =513 tonha™' yr~!, mean o' =2.54 tonha™'yr~'.
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Fig. 3. Tabacay river catchment: (a) Land cover map (Estrella, 2015); (b) Candidate cells (agricultural, pasture and shrubs cells) extracted from the land cover map.

To measure the difference between the set of selected cells by CAMF
and A-CAMF, we used the Relative Spatial Coincidence (RSC), defined
as

RSC:”;d, @

with »n being the number of selected cells and d being the number of
cells that were not commonly selected.

3.1. Tabacay river catchment

The catchment is represented by 73471 cells, called active cells,
within a raster with 355 x 346 cells of 30 m x 30 m. The elevation
ranges from 2 482 m to 3 731 m as.l., see the DEM in Fig. 2(a).
Agricultural and pasture land cover ~39% of the area, Fig. 3(a), leading
to large amounts of sediment produced and transported to the out-
let of the catchment, causing severe land degradation (Wijffels and

Van Orshoven, 2009). A given subset of the agriculture, pasture, and
shrubs cells are the candidate cells for afforestation (27 242 cells), see
Fig. 3(b).

The initial sediment production map «' was computed using the
Revised Universal Soil Loss Equation (RUSLE) (Renard et al., 1991),
see Fig. 2(b). We refer to Castillo-Reyes et al. (2023a) for details about
the computation and the parameters values used. For the other param-
eters in the SA calculation, i.e., retention capacities p!, p?; saturation
thresholds o', 62; flow factors y!, y? and sediment production after
afforestation «?, listed in Appendix C, Table C.1, we used the values
from Estrella (2015) and Castillo-Reyes et al. (2023a).

Additionally, we used two smaller data-sets obtained by clipping the
original data-set around the outlet. Table 2 shows the growth factor of
the number of active and candidate cells when the intermediate and
original Tabacay data-sets are compared with the smallest data-set.
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Fig. 4. Maarkebeek river catchment in Belgium: (a) Digital Elevation Model (Gabriels et al., 2022); (b) Initial local sediment production map a' (tonha™' yr~!) of the Maarkebeek
river catchment calculated by means of RUSLE. mina' =0 tonha™' yr~!, maxa' = 74.38 tonha™' yr~!, mean «' =191 tonha ' yr~'.
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Fig. 5. Maarkebeek river catchment in Belgium: (a) Land cover map (Gabriels et al., 2022); (b) Candidate cells (agricultural, pasture, and shrubs cells) extracted from the land

cover map.

Table 2

Number of active cells, candidate cells and growth factor in Tabacay data-sets. ‘Small’
and ‘Intermediate’ refers to data-sets corresponding to resp. % and i of the original
data-set; ‘Ratio 1% ratio of ‘Intermediate’ to ‘Small’; ‘Ratio 2”: ratio of ‘Original’ to
‘Small’; # active cells: number of raster cells covering the catchment; # candidate
cells: number of cells than can be afforested.

Small Intermediate  Ratio 1 Original Ratio 2
Dimensions 89 x 87 178 x 173 355 x 346
# active cells 5475 22 494 4.11 73 471 13.42
# candidate cells 2259 9859 4.36 27 246 12.06

3.2. Maarkebeek river catchment

The Maarkebeek river catchment in Belgium is represented by
129097 active cells within a raster with 464 x 438 cells of 20 m x 20
m. The elevation ranges from 14.1 m to 146.9 m a.s.l., see the DEM
in Fig. 4(a). Agriculture covers a significant part of the area, while
~10% is urbanized and ~10% is afforested (Gabriels et al., 2022) (see

the land cover map in Fig. 5(a)). The 53792 candidate cells are shown
in Fig. 5(b).

The initial local sediment production map a' (Fig. 4(b)) was also
computed by RUSLE. We refer to Castillo-Reyes et al. (2023a) for
more details about the computation of a!, the parameters used for
RUSLE and the parameters required for SA calculation. They are also
in Appendix C, Table C.2.

4. Results

All experiments have been performed on a Xeon E5-2697 v3 CPU
(2.6 GHz) with 28 cores and 128 GB of RAM, with Operating System
Ubuntu Bionic Linux. In all cases, we use the MFD-FD8 variant of CAMF
and A-CAMF.

4.1. Speedup due to parallelization

Table 3 shows the parallel execution times for one iteration on 1,
8, 16, and 28 cores when the small, intermediate, and the original
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Table 3
Parallel CPU times (in seconds) for one CAMF iteration using 1, 8, 16 and 28 cores
for the Tabacay data-sets.

# cores Tabacay data-sets
Small Intermediate Original
1 1.37 26.67 651.20
0.18 3.52 96.24
16 0.10 1.95 51.67
28 0.06 1.12 30.22
28 —= I
24 {—8—  Small i
Intermediate
w20 L. n
o —e—  Original
2 16! s
3
S 121 .
o
wn 8+ -
4 -
0 |

1 8 16 28
Number of cores (p)

Fig. 6. Speedup S, of CAMF (one iteration) using 1, 8, 16 and 28 cores for the Tabacay
data-sets.

data-sets are used. The execution time increases more than linear with
increasing number of active cells and candidate cells (Castillo-Reyes
et al.,, 2023a). For the parallel code using p CPU cores, the speedup

T,
S, = FS’ i.e., the ratio of the execution times of the sequential code T;

and the parallel code T, is shown in Fig. 6.

The ‘ideal’ speedup S, = p can be reached for completely paral-
lelized algorithms. Fig. 1 and Algorithm 1 show that in A-CAMF, part of
the operations are executed sequentially, e.g., the ranking computation.
Also, synchronization among threads is required after each iteration.
Hence, S, < p. S, is somewhat smaller for the original data-set than
for the other data-sets, but in all cases S, is close to the ‘ideal’ speedup
p, due to the dynamic load balancing.

4.2. Speedup and accuracy due to the algorithmic adaptations

The selection of multiple cells per iteration and the use of a partial
ranking, presented in Sections 2.3.1 and 2.3.2, aim at reducing the
execution time, while the effect on SYR depends on the influence of
spatial interaction. The latter can be controlled by tuning the accelera-
tion parameters 7, K and N. We evaluate the adaptations implemented
using the two catchments presented in Section 3.

4.2.1. Tabacay catchment

For the original CAMF, the predicted SY and SYR, when 5%, 10%,
20% and 30% of the candidate cells are afforested in the Tabacay data-
set, are shown in Table 4, indicating that afforestation of the first cells
has the largest effect on SYR.

For A-CAMF, we first evaluate the effect of varying the threshold T
with fixed values K = 20, N = 1500. Fig. 7(a) shows that increasing
T reduces the number of iterations and thus the execution time, while
the relative difference between SYR computed by CAMF and A-CAMF,
denoted by RD, grows, but remains small (RD < 0.4%). Indeed, as
mentioned in Section 2, the set of selected cells in CAMF and A-CAMF
can differ due to spatial interaction, leading to the observed RD.

Using even the smallest threshold (T" = 0.01) reduces the number
of iterations with a factor of 5 and 14 for afforesting respectively 5%
and 30% of the candidate cells. Fig. 7(b) shows that, for a given T,
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Table 4
SY and SYR computed by the original CAMF for afforesting 5%, 10%, 20% and 30%
of the number of candidate cells of the original Tabacay data-set. SY°: SY at initial

situation; %SYR: SYR X100
SY0
CAMF Afforested cells Sy SYR % SYR
(tonyr~1) (tonyr™")
5% = 1362 25 530 11 244 31
10% = 2724 23 829 12 945 33
Yo = -1

SYT =36 774 tonyr 20% = 5448 22 739 14 034 36

30% = 8172 22 463 14 310 36

Table 5
SY and SYR computed by the original CAMF for afforesting 5%, 10%, 20% and 30% of
the number of candidate cells of the Maarkebeek data-set. SY°: SY at initial situation;

%SYR: SYR x 100
SYo
CAMF Afforested cells SY SYR % SYR
(tonyr’]) (tonyr")
5% = 2690 22 328 8 411 27
10% = 5379 18 364 12 375 40
0 _ -1

SYT=30739 tonyr 20% = 10758 16 239 14 500 47

30% = 16 138 15 937 14 802 48

RD decreases with increasing number of afforested cells. When 30% of
the candidate cells are selected, RD becomes negligible. This can be
explained as follows. In the first iterations, the cells with the highest
potential for SYR are selected; whether a cell is selected or not can
cause a large RD. After many iterations, both CAMF and A-CAMF will
have selected all cells with a high potential for SYR, and the selection
of additional cells will not lead to a large RD.

The reduced number of iterations, due to threshold T, results in an
algorithmic speedup, denoted by AS”, which further increases with a
factor proportional to K when partial ranking is used, since the cost
of the intermediate iterations is much smaller than the cost of the
iterations in which the whole ranking is computed. AS” increases for
a given T, with increasing number of cells to be afforested. Since a
parallel speedup of ~21 is achieved on 28 cores, the total speedup
TST, ~ 21 x AST is obtained by using the parallel A-CAMF instead of
the sequential CAMF. Fig. 8(a) shows TS;8 in function of the number
of afforested cells, for several values of T while Fig. 8(b) presents TS;
as a function of T.

Fig. 9 shows the location of the selected cells, when 5% and 10%
of the candidate cells are selected by CAMF and A-CAMF with T = 0.1,
K = 20 and N = 1500. As the color codes indicate, A-CAMF selects
almost the same cells as CAMF. The relative spatial coincidence RSC,
as defined in Section 3, is presented in Fig. 10. In all considered cases
RSC > 99%.

4.2.2. Maarkebeek catchment

Table 5 shows the SY and SYR computed by the original CAMF
for afforesting 5%, 10%, 20% and 30% of the number of candidate
cells of the Maarkebeek data-set. The results of executing A-CAMF with
different values of T and K = 10, N = 2000 are presented in Figs. 11—
14. Since the Maarkebeek data-set contains more cells than the Tabacay
data-set, the execution times are substantially higher. When T' = 0 and
K =0, selecting 30% of the candidate cells on 28 cores requires ~ 26
days. The relative difference RD between the results of CAMF and A-
CAMF (up to 2.8%) is much larger than for the Tabacay data-set for
the same values of T, suggesting a stronger effect of spatial interaction
in this region than in Tabacay. However, in this case, this difference
also decreases when the number of selected cells increases, Fig. 11. The
location of the selected cells and the RSC are presented respectively in
Figs. 13 and 14, showing again the stronger effect of spatial interaction.
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Fig. 7. Performance of A-CAMF for varying threshold T: (a) Number of iterations and relative difference (RD) between SYR computed by CAMF and A-CAMF, for afforesting 5%
of the candidate cells of the Tabacay data-set, with K = 20 and N = 1500; (b) Relative difference (RD) after afforesting 5%, 10%, 20% and 30% of the candidate cells of the
Tabacay data-set, when A-CAMF is used with K =20 and N = 1500 for different values of 7.
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Fig. 8. Total speedup (TS;FS): (a) for several values of T with respect to the percentage of candidate cells selected using the Tabacay data-set when multiple cells are selected
per iteration and partial ranking is used with K =20 and N = 1500; (b) for each set of selected cells (%) with respect to T using the Tabacay data-set when multiple cells are

selected per iteration and partial ranking is used with K =20 and N = 1500.

4.2.3. Hyper-parameter tuning process

We presented results obtained with A-CAMF with several values for
T and fixed values for K and N, to evaluate how the accuracy and
the execution time are affected. In practice, these parameters should
be controlled by the tuning process presented in Section 2.3.4.

Table 6 shows the results of the hyper-parameter tuning process for
the Tabacay data-set, where CAMF and A-CAMF are used to select m
cells, where m is a small fraction (5% or 10%) of n — the number of
cells that will eventually be selected — and » varies between 5% and
30% of the candidate cells. The selected values for the parameters T', K
and N, obtained after the training iterations, ensure that for afforesting
m cells the relative difference RD,, between the SYR values computed
by CAMF and A-CAMF is less or equal to RD,,,. Table 7 presents
the performance of A-CAMF, executed with the tuned parameters T, K
and N for RD,, = 0.02%. When 20% and 30% of the cells are
afforested, the relative difference for afforesting » cells, RD, (Table 7)
is nearly equal to RD,, (Table 6), indicating that the tune parameters
are appropriately chosen. However, when 5% and 10% of the cells are
afforested, the large difference between RD, and RD,, indicates that,
in this case, m, the number of cells used in the tuning process (68 and
136, respectively) is too small to tune the acceleration parameters. As
in previous experiments, RD, decreases when n, the number of selected
cells, increases. Although 11 to 24 tuning iterations were carried out,

the algorithmic speedup AS varies between 6 and 13, and the total
speedup T'S,g varies between 123 and 279. Note that T,g, AS and TSy
include the tuning processing time. In case A-CAMF is executed several
times with similar input data, the tuning process must be executed only
once.

5. Discussion
5.1. Analysis of the impact of spatial interaction

In Section 4.2 we compared the results of CAMF and A-CAMF for
both data-sets, using RD, the relative difference in sediment yield reduc-
tion, and RSC, the relative spatial coincidence of the cells selected for
afforestation. The adaptations implemented in A-CAMF have a different
impact on the results for both regions. This difference is evident when
A-CAMF selects n cells in only one iteration (by using a high threshold
T), where n corresponds to 5% of the candidate cells. For the Tabacay
catchment (n = 1362) RD = 1.09% and RSC = 90.16%, while for the
Maarkebeek catchment (n = 2690) RD =~ 22% and RSC = 59.01%. This
difference can be attributed to the influence of spatial interaction.

As observed by Castillo-Reyes et al. (2023a), the first cells selected
by CAMF are typically concentrated in areas with high sediment pro-
duction, as seen in the distribution of the selected cells in Fig. 9. A
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(a) 5% of the candidate cells. T = 0.1; K =20; N = 1500 (b) 10% of the candidate cells. T = 0.1; K = 20; N = 1500

[ ]catchment boundary [JRivers [lllCommon cells
.Cells selected by CAMF-FD8 but not by A-CAMF
.Cells selected by A-CAMF but not by CAMF-FD8

Fig. 9. Spatial coincidence of the afforested cells by CAMF and A-CAMF. Afforestation of (a) 5% and (b) 10% of the candidate cells in the Tabacay catchment, with 7 = 0.1,
K =20 and N =1500. The color code indicates which cells are selected by both algorithms and which are selected by only one algorithm (visible when zooming in). The areas
with larger differences are highlighted with orange rectangles.
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Fig. 10. Relative spatial coincidence (RSC) after afforesting 5% and 10% of the candidate cells of the Tabacay data-set, when A-CAMF is used with K =20 and N = 1500 for
different values of T'. Acceleration 1: when multiple cells are selected per iteration; Acceleration 1+2: when additionally, partial ranking is used.

Table 6
Results of the hyper-parameter tuning process for the Tabacay catchment, with RD,,,. = 0.02%;T,,, = 0.3;K,,, = 50;T,,, = 0.01; K, = 5. Afforested cells n: 5%, 10%, 20% and
30% of the candidate cells; m: fraction of the afforested cells used in the tuning process; T,;: CPU time (s) of the training process on 28 cores; RD,,: relative difference between

the results of CAMF and A-CAMF (in %) T K; N: parameter values after tuning.

# Afforested m SYR (tonyr~") # training T SYR (tonyr~') RD,, (%) T;K; N
cells n (CAMF) iterations (A-CAMF)
506 = 1362 5% = 68 3406.49 24 5 818.02 3406.08 0.01 0.17; 0; O
0= 10% = 136 5214.95 11 6 677.84 5214.95 0.00 0.3; 0, 0
10% = 2724 5% = 136 5214.95 11 6 619.81 5214.95 0.00 0.3;0; 0
v = 10% = 272 6980.42 11 12 787.49 6979.83 0.01 0.3; 5; 185
20% = 5448 5% = 272 6980.42 11 12 479.57 6979.83 0.01 0.3; 5; 185
0= 10% = 544 8675.75 11 24 392.72 8674.12 0.02 0.3; 0, 0
30% = 8172 5% = 408 7955.06 13 19 458.01 7954.95 0.00 0.28; 0; O
0= 10% = 817 9782.24 21 42 424.60 9782.68 0.02 0.2, 0; 0

10
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Fig. 11. Relative difference (RD) after afforesting 5%, 10%, 20% and 30% of the candidate cells of the Maarkebeek data-set, when A-CAMF is used with K = 10 and N = 2000
for different values of T.
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Fig. 12. Total speedup (TS?S): (a) for several values of T with respect to the percentage of candidate cells selected using the Maarkebeek data-set, when multiple cells are selected
per iteration and partial ranking is used with K = 10 and N =2000; (b) for each set of selected cells (%) with respect to T using the Maarkebeek data-set, when multiple cells
are selected per iteration and partial ranking is used with K =10 and N =2000.

Table 7

Performance of A-CAMF when multiple cells are selected per iteration and partial ranking is used with the set of parameters T; K; N selected
in the hyper-parameter tuning process (Table 6) for the Tabacay catchment. Afforested cells n: 5%, 10%, 20% and 30% of the candidate cells;
m: fraction of the afforested cells used in the tuning process; RD,: relative difference between the results of CAMF and A-CAMF (in %); TZ”S':
CPU time (s) on 28 cores; ASZTS: Algorithmic Speedup; TS;: Total Speedup.

# Afforested cells n m SYR (tonyr™') RD, (%) T ASY TSk
% =
50 = 1362 5% = 68 11 170.23 0.65 6 475.49 6 137
10% = 136 11 204.15 0.35 6 985.48 6 127
5% = 136 12 907.09 0.29 7 005.01 12 253
10% = 272

0% 724 10% = 272 12 934.97 0.08 12 962.93 6 137
5% = 272 14 031.61 0.02 12 729.62 13 279

% =
20% = 5448 10% = 544 14 030.74 0.02 24 792.00 7 143
5% = 408 14 306.94 0.02 20 016.97 12 166

% =
30% = 8172 10% = 817 14 306.67 0.02 43 139.51 6 123

11
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-+ 3

(a) 5% of the candidate cells. T = 0.1; K = 10; N = 2000
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(b) 10% of the candidate cells. T = 0.1; K = 10; N = 2000

|:|Catchment boundary [ JRrivers [ll Common cells
.Cells selected by CAMF-FD8 but not by A-CAMF
.Cells selected by A-CAMF but not by CAMF-FD8

Fig. 13. Spatial coincidence of the afforested cells by CAMF and A-CAMF. Afforestation of 5% (a) and 10% (b) of the candidate cells in the Maarkebeek catchment, when both
algorithmic accelerations are active with K =10 and N =2000. The color code indicates which cells are selected by both algorithms and which are selected by only one algorithm
(visible when zooming in). The areas with larger differences are highlighted with orange rectangles.
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005% - Acceleration 1 005% - Acceleration 142
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Fig. 14. Relative spatial coincidence (RSC) after afforesting 5% and 10% of the candidate cells of the Maarkeebeek data-set, when A-CAMF is used with K =10 and N = 2000
for different values of T. Acceleration 1: when multiple cells are selected per iteration; Acceleration 1+2: when additionally, partial ranking is used.

comparison of the sediment production maps a' for Tabacay (Fig. 2(b))
and Maarkebeek (Fig. 4(b)) shows that in Tabacay, these cells are con-
centrated in the lowest region of the catchment, with a high probability
of sharing the same path to the outlet. In Maarkebeek, these cells are
distributed throughout the whole catchment, following various paths
to the outlet. Using CAMF, (tentatively) afforesting cell i in iteration k
has the same effect on sediment yield reduction (SYR) as in iteration
k—1, in which cell j was selected, except when cells i and j share partly
coinciding flow paths, see Section 2. Consequently, if many high-ranked

12

cells are interconnected via flow paths, as in Maarkebeek, their ranking
can substantially change in subsequent CAMF iterations. This change
in ranking is not taken into account when A-CAMF selects multiple
cells in one iteration, resulting in significant differences in selected
cells compared to CAMF and causing a large RD. In Tabacay, fewer
high-ranked cells are interconnected via flow paths, resulting in fewer
changes in the ranking in CAMF and thus a smaller RD when A-CAMF
selects multiple cells. We conclude that differing hydrological config-
urations and/or differing spatial distribution of candidate cells with
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Fig. 15. Convergence of CAMF and A-CAMF heuristic methods and evolution of SYR (tonyr~'). Horizontal lines: maximum attainable SY R by afforesting all candidate cells in:

(a) Tabacay and (b) Maarkebeek.

high potential for SYR lead to different effects of spatial interaction in
CAMF and A-CAMF, resulting in larger or smaller differences in solution
quality.

However, when suitable values for the parameters 7, K and N are
chosen, RD is less than a few percent — see Figs. 10 and 14, and Ta-
ble 7. Consequently, the error resulting from applying the accelerated
version of CAMF is probably smaller than the typical modeling error,
due to uncertainties in the erosion model as described in Larsen and
MacDonald (2007) and Benavidez et al. (2018).

5.2. Analysis of algorithmic speedup

From Figs. 8 and 12, representing the total speedup on 28 cores
(TS2TX) and Fig. 6, indicating that the speedup due to parallelization
varies between 21 and 24, we observe that the speedup due to the
algorithmic adaptations varies drastically with the selected parameters,
ranging from 19 to 1959 for the Tabacay catchment and from 8 to 768
for the Maarkebeek catchment (see tables in Appendix D).

As discussed in Section 4.1, in the first iteration(s), cells with the
largest potential for sediment yield reduction (SYR) are selected, while
in later iterations, the differences in potential for SYR for highly-
ranked cells are small. Hence, in later iterations, more cells are selected
since T is fixed during the iterations and the algorithmic speedup
obtained with A-CAMF increases when more cells are afforested. How-
ever, the number of cells selected per iteration, and thus the algorithmic
speedup, also depend on the properties of the catchment. For example,
comparing the number of iterations needed to afforest 5% and 10% of
the candidate cells in Tables D.1 and D.2 in Appendix D, shows that,
for T = 0.1, only 8 iterations are needed to select at least 1362 cells in
the Tabacay catchment, while for Maarkebeek 17 iterations are needed
to select 2689 cells.

5.3. Optimality, convergence and robustness of the optimization heuristics
To assess the optimality and the convergence of the optimization

heuristics in CAMF and A-CAMF, we simulated the afforestation of all
candidate cells in both study regions, and monitored the evolution of
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SYR in function of the number of selected cells, Fig. 15. For CAMF we
observed fast convergence to SYR,,,,. (all candidate cells afforested):
SYR,,, is nearly reached after selecting ~4000 cells (14.7% of the
candidate cells) in the Tabacay catchment, and ~7000 cells (9.5% of
the candidate cells) in the Maarkebeek catchment. The convergence of
A-CAMF is similar to the convergence of CAMF, but fewer iterations
are required to achieve approximately SYR,,,.: 50 and 41 iterations to
select 4000 and 7000 cells in Tabacay and Maarkebeek respectively.

The optimization heuristic in CAMF is robust since no parameters
must be set. In A-CAMF, three parameters must be set, but we presented
a simple yet robust tuning procedure. Other optimization heuristics
typically involve multiple parameters, such as the specific GA used
in Domingues et al. (2020) for a similar problem. To find the optimal
sites for afforesting 9331 = 20% of the raster cells, the GA begins with
an initial population of rasters with 20% afforested cells, randomly
allocated. The GA operators alter the positions of the afforested cells to
optimize the fitness function, based on the USPED erosion/deposition
model. Several scenarios for the GA are used by varying the values
of the GA parameters: population size and number of iterations. The
solution quality strongly depends on the scenario. The best result
is obtained with population size 500 and 60000 iterations. In this
scenario, the USPED model is executed 3- 107 times, with no guarantee
to be close to the optimal solution.

Several studies (Domingues et al., 2020; Cibin and Chaubey, 2015)
propose evolutionary algorithms for solving spatial optimization prob-
lems similar to the one addressed in this paper. Our results indicate that
the adapted steepest ascent hill climbing method is a valid and efficient
alternative solution suitable for this type of problem. For example,
CAMF and A-CAMF have been used to identify locations for land cover
changes to minimize downstream river flood hazard (Gabriels et al.,
2021, 2022), minimize loss of radioactively contaminated sediment in
a watershed through afforestation (Abrams et al., 2023) and maximize
reduction of runoff discharge volume and peak discharge at the outlet
of a watershed (Rosier et al., 2024c).

5.4. Limitations

The results obtained with CAMF and A-CAMF strongly depend on
the soil erosion and sediment transport models used. In this paper,
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we used the RUSLE model (Renard et al., 1991) for soil erosion. To
obtain accurate predictions of erosion rates for different land covers,
the model parameters should be tested and calibrated for the specific
area (Issazadeh et al., 2012). Similarly, the use of a piece-wise linear
function based on retention capacity and saturation threshold to de-
scribe sediment transport between cells is a simplification of a more
complex process involving other environmental factors (Wainwright
et al., 2015).

However, other models to estimate soil erosion can be used in
CAMF/A-CAMF, as the sediment production map is computed offline
beforehand, and then entered as an input for these methods. Addi-
tionally, the calculation of the sediment accumulation (SA matrix) is
organized in a manner that allows to easily plug in other models to
simulate sediment transport, such as the model based on transport
capacity proposed by Van Oost et al. (2000) and Van Rompaey et al.
(2001). Nevertheless, as mentioned in e.g. Domingues et al. (2020), to
estimate erosion risk levels and plan mitigation measures, understand-
ing patterns within the landscape is more important than obtaining the
exact values.

Finally, the CAMF and A-CAMF optimization heuristics are limited
to a single objective, neglecting other objectives that can also be impor-
tant in spatial optimization problems, such as financial cost or spatial
relations in the selection process, as in Domingues et al. (2020). While
the methods have already been adapted to select contiguous or compact
sites in Vanegas et al. (2014), Castillo-Reyes et al. (2023b) and Castillo-
Reyes et al. (2023), how multi-objective optimization strategies can be
incorporated into the A-CAMF software requires further exploration.

6. Conclusions

The effectiveness of interventions aimed at minimizing damage at
target sites within a hydrological catchment is highly location-specific,
due to the spatial variability of soil erosion intensity and the spatial
interaction in sediment transportation processes. The CAMF method
selects in a raster representation of the catchment those cells where
an intervention, such as afforestation, minimizes sediment loss at the
outlet, under given constraints. This spatial optimization problem is
solved by a steepest ascent hill climbing method, providing a robust
and fast converging alternative to exact and other heuristic methods.
However, the computational cost of CAMF substantially increases with
increasing problem size and hence may become prohibitive for large
catchments.

In this paper, we introduced A-CAMF, which incorporates adapta-
tions to the CAMF selection algorithm and efficient parallelization for
multi-core processors, substantially reducing execution time without
compromising the solution quality. Results obtained for two river catch-
ments with different properties illustrate that A-CAMF can be several
orders of magnitude faster than CAMF, depending on the strength of the
spatial interaction in the catchment and the values of the parameters
that control the adaptations. While sequential CAMF software may
require hours or days to solve the test cases discussed herein, A-CAMF
can solve these problems in less than 1 h on a multi-core computer
with 28 cores, producing outcomes that are largely similar to those
of the original CAMF, in terms of both cells to be afforested and
magnitude of the sediment loss reduction. Furthermore, the results
indicate that higher levels of spatial interaction within the catchment
result in a greater impact on the relative accuracy of A-CAMF versus
CAMF. We also developed a tuning algorithm to automatically select
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suitable values for the parameters that control the adaptations of the
optimization algorithm in CAMF. Executing the tuning procedure and
subsequently A-CAMF with the tuned parameters is still substantially
faster than executing CAMF.

In conclusion, the CAMF/A-CAMF optimization approach is suit-
able for real-world intervention planning applications encompassing
not only the minimization of sediment loss, water discharge, or ex-
port of contaminants from a catchment but also the minimization
of accumulation of sediment, water, or contaminants at target sites
within the catchment. In future research, A-CAMF will be extended to
locate sites surrounding urban areas in mountainous catchments where
deforestation should be avoided to minimize negative effects at city
borders.
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Appendix A. Sediment accumulation

The amount of sediment D; leaving cell i is determined as in
Vanegas (2010) and Castillo-Reyes et al. (2023a). If SA; is below
the retention capacity, no sediment flows into neighboring cells. If
SA; is between the retention capacity and the saturation threshold,
a fraction, denoted as the flow factor, of the sediment not retained
in the cell flows into down-slope cells. If .SA; is above the saturation
threshold, the amount of sediment above the threshold is fully delivered
to down-slope cells, i.e.

0, if SA; < pf
D; ={yk(SA; - pb). if pf < SA; <of
rEef — )+ (SA; —cf), if SA; > of

(A.1)
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The amount of sediment flowing to a down-slope neighbor cell j is

given by

D;;=D;x F (A.2)

with F;; the fraction of sediment flowing from i to j, calculated by
the flow direction model used.

Appendix B. Algorithm for the hyper-parameter tuning process

Algorithm B.1 Selection of appropriate parameters for A-CAMF

Input: Number of cells to be used for tuning m, maximum relative
difference RD,,,, allowed by the user

max

1.t <0
2. k<0
3. SYRcamr < Compute original CAMF to select m cells.

repeat

4.T=ST

5. SYR,.camr < Compute A-CAMF to select m cells with T', K =0
and N = number of candidate cells.

6. RD,, < Compute relative difference between SYRc4p and
SYR4.camr

if RD,, > RD,,,, and S| | # 0 then

Z.t=t+1
end if
if RD,, > RD,,,, and ST =0 then

1+1
8. A-CAMF cannot select multiple cells per iteration. Continue

with acceleration 2 with T = 0.

end if
until RD,, > RD,,,,
repeat

9. K = sk

10. Select N in function of K and the R cells selected in the last
iteration with A-CAMF using T.

11. SYRy camyr < Compute A-CAMF to select m cells with T, K
and N.

12. RD,, < Compute relative difference between SYR 4y and

SYR4 camr
if RD,, > RD,,,, and S | # 0 then
13. k=k+1
end if
if RD,, > RD,,,, and ST =0 and SX | =0 then
14. Accelerations cannot be activated.
end if

until RD,, > RD

max

Output: Set of parameters for A-CAMF (T, K, N)

Appendix C. Parameter values used in the sediment transport
model

See Tables C.1 and C.2.

15

Environmental Modelling and Software 176 (2024) 106000

Table C.1
Parameter values used in the sediment transport model for the Tabacay data-set
(Estrella, 2015; Castillo-Reyes et al., 2023a).

Second value
(after afforestation)

Initial value
(before afforestation)

Parameter

Sediment production  «', calculated by RUSLE, Fig. 2(b) o> =0.83xa'
Retention capacity '=037xa' p* =061 xa'
Saturation threshold 1'=0.96x a! 62 =098 xa'
Flow factor ', normalized slope from DEM 72 =0.75x7y!

Table C.2
Parameter values used in the sediment transport model for the Maarkebeek data-set
(Castillo-Reyes et al., 2023a).

Parameter Before afforestation After afforestation
Sediment production a', calculated by RUSLE, Fig. 4(b) a? =083 xa'
Retention capacity pl=055xa p*=073xa'
Saturation threshold o' =a o2 =102xa
Flow factor y', normalized slope from DEM > =0.75x7y'

Appendix D. Performance of A-CAMF for different data-sets

The algorithmic speedup ASZ and the total speedup TS; presented
in the following tables are defined as

2; TST = i
TT

T _
ASp - P TT (D.1)
P

where T, and T, are the sequential and parallel execution times of

CAMF and T pT is the parallel time on p cores of A-CAMF with threshold
T >0.

Appendix E. Definition of variables and acronyms

List of Abbreviations

A-CAMF Accelerated-CAMF

CAMF Cellular Automata based heuristic for Minimizing Flow
DEM Digital Elevation Model

GA Genetic algorithm

GAs Genetic algorithms

IP Integer Programming

LP Linear Programming

MFD Multiple Flow Direction

MFD-Dco Multiple Flow Direction-DInfinity

MFD-FD8 Multiple Flow Direction-Fractional Deterministic Eight Neigh-
bor

RD Relative Difference

RSC Relative Spatial Coincidence

RUSLE Revised Universal Soil Loss Equation
SA Sediment Accumulated

SFD Single Flow Direction

SY Sediment Yield
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Table D.1
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Performance of A-CAMF for the Tabacay data-set when multiple cells are selected per iteration and partial ranking is used with K = 20,
N = 1500. T: threshold value; RD: relative difference between the results of CAMF and A-CAMF (in %); Tsz: CPU time (s) on 28 cores; ASZTS:
Algorithmic Speedup; T Sgg: Total Speedup; # afforested cells: 5%, 10%, 20% and 30% of the candidate cells.

# Afforested cells T # iterations SYR (tonyr™') RD (%) Th AST TSk
0.00 1362 11 243.77 0.00 2125 19 417
0.01 246 11 241.81 0.02 394 104 2 253
% =
5% = 1362 0.05 73 11 228.46 0.14 110 372 8 041
0.10 41 11 202.76 0.36 64 641 13 867
0.00 2724 12 944.78 0.00 4 116 20 431
0.01 336 12 944.19 0.00 526 157 3373
% =
10% = 2724 0.05 84 12 940.38 0.03 131 628 13 537
0.10 49 12 936.06 0.07 77 1070 23 058
0.00 5448 14 034.18 0.00 8 444 20 420
0.01 482 14 033.90 0.00 751 228 4723
0 —
20% = 5448 0.05 114 14 032.73 0.01 172 996 20 596
0.10 58 14 030.50 0.03 91 1891 39 085
0.00 8172 14 310.08 0.00 12 748 19 417
0.01 576 14 309.91 0.00 893 275 5 961
% =
30% = 8172 0.05 141 14 309.12 0.01 218 1117 24 375
0.10 81 14 308.16 0.01 126 1959 42 386
Table D.2

Performance of A-CAMF for the Maarkebeek data-set when multiple cells are selected per iteration and partial ranking is used with K = 10
and N =2000. T: threshold value; RD: the relative difference between the results of CAMF and A-CAMF (in %); TZTS: CPU time (s) on 28 cores;
AST.: Algorithmic Speedup; T.S7,: Total Speedup; # afforested cells: 5%, 10%, 20% and 30% of the candidate cells.

# Afforested cells T # iterations SYR (tonyr~') RD (%) Ty AST TSy
0.00 2 689 8 409.06 0.00 48 689 8 180
0.01 127 8 386.43 0.29 4 357 90 2 012
% =
5% = 2690 0.05 41 8 284.76 1.40 1 400 279 6 262
0.10 21 8 108.00 2.81 763 511 11 490
0.00 5 374 12 374.97 0.00 99 781 8 176
0.01 192 12 353.81 0.17 7 300 106 2 401
05 —
10% = 5379 0.05 51 12 267.24 0.83 1 868 414 9 385
0.10 38 12 118.88 1.85 1173 660 14 948
0.00 10 739 14 500.27 0.00 199 530 8 176
0.01 411 14 498.12 0.01 15 626 99 2 243
% =
20% =10 758 0.05 94 14 487.82 0.09 3 553 437 9 865
0.10 61 14 471.33 0.19 2 267 684 15 463
0.00 16 112 14 802.24 0.00 311 769 8 169
0.01 551 14 801.68 0.00 21 358 110 2 462
% =
30% =16 138 0.05 121 14 799.30 0.02 4 616 507 11 393
0.10 81 14 794.49 0.05 3 052 768 17 231
SYR Sediment Yield Reduction K Intermediate number of iterations in which the partial rank-

USPED Unit Stream Power Based Erosion Deposition

List of variables
The following list describes several variables used within the body

of the manuscript

af‘ Sediment produced locally in cell i, before afforestation (k =
1) and after afforestation (k = 2).

y[k Flow factor in cell i, before afforestation (k = 1) and after
afforestation (k = 2).

pf.‘ Retention capacity in cell i, before afforestation (k = 1) and
after afforestation (k = 2).

0':‘ Saturation threshold in cell i, before afforestation (k = 1)
and after afforestation (k = 2).

AST Algorithmic speedup for a threshold 7.

RD, The relative difference in SYR values when afforesting n
cells.

RD,,,\ A user-defined relative difference.

SA Sediment Accumulated.

SYR Sediment Yield Reduction.

SY Sediment Yield.

sY? Sediment Yield at the initial situation.

TSsT Total speedup for a threshold 7.

ing is computed.
Step value to compute the set K values used in the hyper-

step

parameter tuning process.

N Top-N of cells of the ranking produced in the last iteration
taken into account in the partial ranking acceleration.

RD Relative Difference.

sk Set of K values used in the hyper-parameter tuning process.

ST Set of threshold T values used in the hyper-parameter tun-
ing process.

S, Speedup on p CPU cores.

T Relative Threshold T.

T, Parallel time on p CPU cores.

T, Sequential time.

Tax Max value for threshold T used in the hyper-parameter
tuning process.

Tiep Step value to compute the set of threshold T" values used in
the hyper-parameter tuning process.
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