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Abstract: The integration of renewable energy sources into isolated microgrids introduces significant
power fluctuations due to their intermittent nature. This study addresses the need for advanced
power smoothing methods to enhance the stability of isolated networks. An innovative adaptive
strategy is presented, combining photovoltaic solar generation with vehicle-to-grid technology,
utilizing an enhanced adaptive moving average filter with fuzzy logic control. The primary objective
is to dynamically optimize the time frame of the Li-ion battery energy storage system for immediate
power stabilization, leveraging the high energy density and rapid response capabilities inherent in
electric vehicle batteries. The methodology encompasses data acquisition from photovoltaic panels,
definition of fuzzy logic control rules, and implementation of the proposed method within a computer-
controlled system connected to a bidirectional three-phase inverter. Experimental results highlight
the proposed method’s superiority over conventional moving averages and ramp-rate filters.

Keywords: renewable energy integration; electric vehicle batteries; power smoothing techniques;
vehicle-to-grid; low-inertia power systems

1. Introduction

The current literature extensively examines the reduction of fluctuations in the elec-
trical grid caused by the intermittent behavior of renewable sources [1–4]. For instance,
studies such as [5] have evaluated spline-based control methods for smoothing photovoltaic
(PV) power, demonstrating that effective smoothing effects can reduce the required capacity
of energy storage systems (ESS). Additionally, advanced filters like the Savitzky-Golay (S-G)
filter have shown significant improvements. Research such as [6] has compared moving
average (MA) and low-pass filter methods. Another promising approach involves moving
regression (MR) filters with state of charge (SoC) control. Studies like [7] have shown that
the MR filter can reduce PV power variability without increasing ESS capacity, making it
more effective than other methods, such as MA and median filters.

Improving energy quality is crucial in microgrids (MG) and isolated systems [8–11].
Research such as [12] has proposed smoothing methods using supercapacitor ESS. Studies
like [13] have used smoothing techniques such as MA and ramp rate control to determine
optimal battery capacity, providing empirical models for project feasibility assessment.
The application of MA filters has also extended to wave energy conversion plants, as
described in [14]. Research such as [15] uses enhanced optimization algorithms to tailor
hybrid ESS to solar power variations, highlighting the effectiveness of adaptive control
in energy management. Power ramp compensation is also essential in MG with high PV
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penetration. Studies like [16] have developed compensation strategies based on multilevel
ESS, using ramp rate control methods to smooth solar power fluctuations and meet rapid
load demands. Another promising approach to ensure network stability is using linear
programming techniques with priorities. A recent study proposed a power management
method based on linear programming for a multi-feeder ultra-fast DC charging station.
This approach maximizes the efficiency of renewable resources, local storage solutions, and
electric vehicles to minimize their grid impact while also observing charging priorities and
power flow limitations. Simulation results confirm that this approach effectively enhances
grid stability amidst significant fluctuations in load [17]. Furthermore, optimizing hybrid
power generation plants, as in [18], has shown how the optimal combination of wind, solar,
and ESS can reduce output fluctuations and enhance system reliability in grid-connected
systems. Thus, energy quality is notably enhanced [19–21].

Implementing Fuzzy Logic Controller (FLC)-based energy management systems has
been highlighted in the literature for its effectiveness in smoothing power profiles in electro-
thermal MG. A recent study [22] designed an EMS using FLC to smooth the power profile
in a residential MG. Using year-long measured data, they demonstrated an 11.4% reduction
in peak network power absorption and a significant decrease in power profile ramp rates
compared to previous studies. Study [23] proposed a system integrating a PV Battery
Energy Storage System (BESS) with doubly fed induction generator systems, employing
an FLC optimized by moth-inspired optimization algorithms to maximize active power
and smooth power transfer to the grid converter. Combining fuzzy logic-based maximum
power point tracking (MPPT) with active power management offers fast and accurate
tracking, reducing output power fluctuations and improving system efficiency compared
to classical methods, as demonstrated in [24,25]. Additionally, using FLC for MPPT and
voltage compensation, authors in [26] demonstrated notable effectiveness in enhancing
energy efficiency and power quality across various operational conditions.

Managing PV/diesel/BESS hybrid systems in isolated systems has been optimized
using fuzzy logic-based power management systems (PMS) [27]. This study proposed an
adaptive PMS using fuzzy logic to ensure smooth transitions between different operating
modes, showing significant improvements in PV generator efficiency and system stability.
In DC-bus MG, energy stability and quality have been improved using FLC-ESS [28]. This
study investigated the use of superconducting magnetic energy storage (SMES) and battery
systems controlled by FLC to mitigate voltage and power fluctuations, demonstrating
improved stability and rapid response to climate and load variations. Finally, optimal
regulation of energy flow in PV systems with BESS has been achieved using adaptive
FLC [29,30], highlighting FLC robustness and smooth performance in DC-bus voltage
regulation and efficient energy flow management among PV systems, BESS, and loads.
Similarly, studies [31,32] demonstrate that fuzzy logic applied to improve the quality of
renewable systems is promising.

The literature review reveals various studies focused on mitigating power fluctuations
in electrical grids caused by intermittent renewable sources. Studies such as [5] have
evaluated spline-based control methods and S-G filters for PV power smoothing, showing
significant reductions in variability with minimal additional storage capacity. However,
there is an opportunity to optimize these methods specifically for integration into vehicle-
to-grid (V2G) systems in isolated networks, better adapting them to variable load and
solar generation conditions [5,6]. Moreover, while lithium-ion batteries from electric
vehicles (EVs) have been used to stabilize the grid, as seen in studies like [7], there is still
room to maximize their responsiveness and efficiency in isolated MG. Solutions could
improve charge/discharge management to optimize ESS, adapting to variable demand and
generation patterns thereby enhancing V2G integration [7,12].

Furthermore, while methods like MA and ramp rate techniques for frequency control
and power smoothing have been compared, as outlined in studies such as [13], a more
detailed and comprehensive comparison of these strategies in specific MG environments
could provide additional insights into their effectiveness and adaptability. This exploration
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would be crucial for optimizing energy management strategies in variable network and
weather conditions [13,14]. Additionally, although results are validated in MG laboratories,
as demonstrated in studies like [15], there is an urgent need to investigate how these
results translate and validate in real operational scenarios outside the controlled laboratory
environment. This approach would allow for more robust validation of proposed strategies
and a deeper understanding of operational challenges in real networks and variable climate
conditions [15,16]. Finally, while methods such as MA filters and fuzzy logic-based control
for power smoothing and grid stability have been explored, specific studies have not
adapted and optimized these techniques for simultaneous integration into V2G systems in
isolated MG by adjusting the ramp rate in real time.

To overcome these challenges, this study presents an innovative adaptive strategy to
improve the stability of isolated networks by integrating renewable PV generation and en-
ergy management using V2G technology (V2GSUN method). The original contribution of
this study lies in implementing an adaptive strategy that integrates PV energy, energy man-
agement, and V2G technology to stabilize isolated networks using an enhanced adaptive
MA filter with fuzzy logic. This allows lithium-ion batteries in EVs to act as dynamic units
for ESS and supply, leveraging their high energy density and rapid response capabilities.

2. Methodology

Figure 1 provides a schematic overview of the methodology employed in this study.
The input data collection phase initially involves gathering data, including real-time output
power from PV panels observed in a laboratory setting throughout a typical day. Subse-
quently, the study introduces the V2GSUN method, which incorporates a Fuzzy Logic
controller (FLC). The key goal of this control system is to optimize the time window size of
the BESS to smooth out power fluctuations in real-time effectively.

Appl. Sci. 2024, 14, 6380 4 of 24 
 

 
Figure 1. General scheme of the proposed methodology. Reproduced with permission from [33]. 

2.1. Advancement of a Power Smoothing Methodology Using MA for Energy Applications 
The MA method employs statistical techniques rooted in time series analysis. The 

fundamental concept of the V2GSUN algorithm involves averaging a series of data points. 
The equation below illustrates the MA filter applied in this study [12]. 𝑃௉௏஼ሾ𝑘ሿ ൌ ൬1𝑁൰ ሺ𝑃௉௏ሾ𝑘ሿ ൅ 𝑃௉௏ሾ𝑘 − 1ሿ൅. . .൅𝑃௉௏ሾ𝑘 − 𝑁 ൅ 1ሿሻ (1)

Here, 
• 𝑃𝑃𝑉 denotes the PV output power; 
• 𝑃𝑃𝑉𝐶 signifies the power output smoothed via the MA method; 
• 𝑁 denotes the count of samples contained within the time frame; 
• 𝑘 serves as the iteration index. 

Upon completing a predetermined iteration, the 𝑃𝑃𝑉 is updated with the smoothed 
power 𝑃𝑃𝑉𝐶 of the PV system. The discrepancy between the smoothed and input powers 
referred to as 𝑃𝑆𝐶, is directed to the BESS power controller to compensate for the PV-gen-
erated power delivered to the grid. 

2.2. New Control Methodology 
The control strategy proposed in this study is applied within a Li-Ion BESS connected 

to the Point of Common Coupling (PCC) through a bidirectional power inverter. This in-
verter facilitates precise control over the injection and absorption of active and reactive 
power into the grid. Controlled conditions have been established to evaluate the efficacy 
of this approach. 

The V2GSUN method fundamentally relies on the MA approach, enhanced through 
FLC. This method utilizes input parameters such as photovoltaic solar power and the grid 
generator frequency to make informed decisions. The implementation of the V2GSUN 
method involves several key steps. 

Figure 1. General scheme of the proposed methodology. Reproduced with permission from [33].

Under experimental conditions, the isolated power system is expected to experience
significant frequency variations due to handling highly variable power from renewable
generation. The operating procedures for grid networks are generally more lenient with
island system frequency standards than bulk power systems. This is due to the oper-
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ational complexity of such systems, especially when integrating renewable distributed
energy resources.

To accomplish this objective, the experimental microgrid’s data logger is used to moni-
tor the supervisory control of the BESS. The proposed method’s effectiveness is assessed
in comparison to conventional techniques such as the MA and traditional ramp-rate (R-R)
methods. For experimental testing purposes, a BESS is employed to replicate the battery
characteristics of an EV, specifically a BYD T3 electric van available in the laboratory. This
battery is known for its high energy storage density and capability to meet performance
requirements effectively. The EV’s BESS is integrated into the grid using a 50 kW bidirec-
tional three-phase inverter, applying the proposed method within the computerized control
system. The results obtained are rigorously validated through experiments under diverse
technical criteria, supplemented by a detailed analysis of variability and energy dynamics.
This comprehensive assessment underscores the reliability and practicality of the proposed
methodology in real-world applications.

2.1. Advancement of a Power Smoothing Methodology Using MA for Energy Applications

The MA method employs statistical techniques rooted in time series analysis. The
fundamental concept of the V2GSUN algorithm involves averaging a series of data points.
The equation below illustrates the MA filter applied in this study [12].

PPVC[k] =
(

1
N

)
(PPV [k] + PPV [k − 1] + ... + PPV [k − N + 1]) (1)

Here,

• PPV denotes the PV output power;
• PPVC signifies the power output smoothed via the MA method;
• N denotes the count of samples contained within the time frame;
• k serves as the iteration index.

Upon completing a predetermined iteration, the PPV is updated with the smoothed
power PPVC of the PV system. The discrepancy between the smoothed and input powers
referred to as PSC, is directed to the BESS power controller to compensate for the PV-
generated power delivered to the grid.

2.2. New Control Methodology

The control strategy proposed in this study is applied within a Li-Ion BESS connected
to the Point of Common Coupling (PCC) through a bidirectional power inverter. This
inverter facilitates precise control over the injection and absorption of active and reactive
power into the grid. Controlled conditions have been established to evaluate the efficacy of
this approach.

The V2GSUN method fundamentally relies on the MA approach, enhanced through
FLC. This method utilizes input parameters such as photovoltaic solar power and the grid
generator frequency to make informed decisions. The implementation of the V2GSUN
method involves several key steps.

First, data collection is essential, where real-time information on PV solar power
generation and grid generator frequency is obtained. Next, fuzzy logic integration is
employed to process these input parameters, guided by fuzzy rules. This integration helps
to refine the data window for the output time, ensuring effective smoothing of power
injections into the grid. The system is connected to a fixed load and an EV, where the EV’s
batteries play a critical role in mitigating power peaks caused by solar irradiation while
maintaining an optimal state of charge.

The optimization of the V2GSUN method focuses on refining the parameters used
within the fuzzy logic framework to improve decision-making efficiency. This involves
adjusting input parameters to enhance the system’s responsiveness and regularly updating
the fuzzy rules based on system performance and real-time data analysis. To illustrate the
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effectiveness of the V2GSUN method, it was applied in a scenario where it managed power
injections from a grid-connected PV solar system.

An off-grid diesel generator is incorporated into a bus bar system, operating as a three-
phase voltage source that provides frequency and voltage references for an isolated grid.
This isolated bus bar includes an inverter linked with PV energy systems and emulates an
EV-BESS. The main goal is to reduce fluctuations in PV power and enhance grid frequency
stability, achieved through the energy buffering capacity of the Li-Ion BESS.

Innovatively, the strategy enhances the MA method’s effectiveness by incorporating
an FLC. The FLC acts as a dynamic control system that adjusts the time window of the MA
power based on input parameters such as energy input, PV power, and the SoC of the BESS.
The FLC’s output offers a variable power change rate over time, providing adaptability
during periods of high loads and limited resources. The diagram of the new controller is
shown in Figure 2.
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from [33].

The algorithm samples injected active power, PV power, BESS SoC, and grid frequency
from the diesel generator at a time interval ∆T. Pre-established fuzzy rules are applied
to make determinations that directly impact the duration of the time window N × ∆T,
modifying it to suit the immediate requirements for smoothing power in real time. As a
result, the resulting output is shaped by the current status of input parameters such as PT,
SoC, and system frequency.

The time window size, WS = N∆T, is dynamically adjusted using fuzzy logic to
optimize the SoC of the Li-Ion BESS in real time. Control rules for the proposed strategy
are detailed in Table 1, outlining different levels of smoothing (HS = high smoothing,
S = smoothing, MS = moderate smoothing, LS = low smoothing, NS = no smoothing)
categorized VH (very high), H (high), M (medium), L (low) and VL (very low). Membership
functions designed for this approach are depicted in Figure 3. These functions adapt the
data window size based on real-time power, frequency, and BESS SoC changes. Triangular
and trapezoidal membership functions are utilized, with defuzzification employing the
centroid method.

It is worth noting that, in the case of the Ecuadorian electrical utility used for the
experimental tests, the nominal frequency is 60 Hz, with slight variations of ±0.15 Hz
(0.25%) during normal operation. However, the frequency tolerance for the Ecuadorian
insular grid is more lenient due to the significant challenges associated with managing
massively integrated renewable resources in a low-inertia power system. This scenario has
necessitated the exploration of solutions like the one proposed in this study.
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Table 1. FLC rules for power concerning the SoC of the BESS and grid frequency.

SoC
[%]

VH H M VL L
M MS S S MS S
VL VHS HS MS NS S
VH VHS VHS MS VHS HS
H MS HS S HS MS
L HS MS S S NS

Frequency
[Hz]

VH VHS VHS MS VHS HS
H MS HS S HS MS
M MS S S MS S
VL VHS HS MS NS S
L HS MS S S NS
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(b) Input 2: SoC, (c) Frequency, and (d) Output: data time window size (WS). Categories include
NS (no smoothing), LS (low smoothing), S (smoothing), MS (moderate smoothing), and HS (high
smoothing). Input 1 values are represented as VL (very low), L (low), M (medium), H (high), and
VH (very high). Input 2 values denote percentages: very low = 10%, low = 30%, medium = 50%,
high = 70%, and very high = 90%. Reproduced with permission from [33].

To be conservative, a broad frequency variation margin was considered when defining
the numerical values for the membership function illustrated in Figure 3c, set at ±1.5%.
This selection is tailored specifically for this system; nevertheless, it is crucial to highlight
that the actual system’s conditions where this solution is to be implemented should be
taken into account to adjust this threshold appropriately.
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The membership function’s chosen frequency values at VL (Very Low) and VH (Very
High) reflect this broader margin to accommodate potential fluctuations. These values are
not necessarily the maximum standard frequency tolerances set by the electricity provider
but are rather selected to ensure robustness in the face of variable operating conditions.

The FLC rules define the relationship between power (P), frequency (f ), and the SoC,
determining the time window size (WS). This ensures that the smoothing process adapts to
the current conditions of the PV system and the Li-Ion BESS, maintaining optimal power
smoothing and grid stability. Figure 4 illustrates the changes in the three inputs and the
output during FLC evaluation. The surface is obtained by defuzzifying the tabulated
membership functions using the centroid method, which calculates the output by finding
the center of the area under the curve of the aggregated fuzzy set. This method provides
a precise control action and is ideal for applications requiring fine-tuned and responsive
control, such as the proposed power smoothing technique.
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3. Study on Real-Time Testing of an Isolated Microgrid
3.1. Test Bench for the Experimental Implementation

This study employed MATLAB algorithms to perform real-time tests on an isolated
MG at the University of Cuenca’s Micro-Grid Laboratory in Ecuador [34]. The MG setup
includes 15 kWp polycrystalline PV panels and a 44 kWh lithium-ion BESS. Figure 5
illustrates the configuration, which comprises solar panels (PPV), a thermal diesel generator
(GD) with delivered power (PGD), a three-phase programmable load, and an electric vehicle
charging station (EVCS) featuring a BYD electric vehicle (EV). A constant 20 kW load was
applied to the programmable load to maintain system power balance, ensuring laboratory
conditions where power fluctuations originate solely from intermittent PV injection. This
method effectively manages the possibility of reverse power flow to the diesel generator
when there is excess renewable energy, thus maintaining the safe and consistent operation
of the test bench.
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The laboratory includes a BYD T3 van featuring a 300 kW power output and a 100 kW
electric motor, specifically the BYD-1814TZ-XS-B35KW model. The LiNIMnCo battery
boasts a 50.3 kWh capacity and functions at a combined voltage of 438 VDC. It is structured
with 12 modules housing 120 cells and includes a CCS2-type connector. For V2G emulation
in a controlled experimental environment, a lithium-ion battery bank consisting of 11 cells
with a voltage output of 642 VDC and a capacity of 44 kWh (Samsung model ELPT392-0002)
was utilized. This setup is linked to a 50 kW power converter engineered to simulate a
bidirectional charger, enabling the BESS to inject energy back into the grid. The setup
supports G2V and V2G operation modes, facilitating efficient energy management and
peak demand control. This precise control and testing environment provides a robust
platform for validating V2G strategies. It allows emulation of various operational scenarios
and accurate power flow management to evaluate system performance comprehensively.
This evaluation is essential for demonstrating the practical feasibility of V2G concepts
in isolated MG setups, showcasing benefits such as enhanced grid stability, increased
renewable energy integration, and efficient ESS utilization.

3.2. Practical Implementation of the Proposal

The pseudo-code in Algorithm 1 illustrates a ramp rate control process in a power
system using fuzzy logic, incorporating generator frequency as an input. Initially, devices
are connected via Modbus to read initial values. A Fuzzy Inference System (FIS) is then de-
fined with three input variables: state of charge of the supercapacitor (SCSOC), photovoltaic
power (PPV), and generator frequency (Frequency). An output variable for the desired
time window size (WS) is established, and triangular membership functions (trimf) are
configured for these variables. Subsequently, fuzzy rules are added to the FIS to determine
the data window size (Algorithm 2) based on the inputs. During real-time processing,
a continuous loop at regular intervals of 100 ms reads current values from the Modbus
devices, applies the FIS to determine the desired data window size (WS), and uses a mov-
ing average method to smooth the power output. Finally, the compensated power values
(P PVC) are written back to the Modbus device, and the SCSOC state of charge is monitored,
repeating this process indefinitely to ensure efficient and real-time power control.
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Algorithm 1: Pseudo-code for implementing the V2GSUN method

Input:
SCSOC, PPV , Frequency
Membership functions for SCSOC, PPV , Frequency
Fuzzy rules
Sampling time t
Initial window: WindowSize (WS)

Output:
window: WindowSize (WS)

Process:
Initialization:

Connect to Modbus devices at IP and port.
Read initial values from SCSOC, PPV and Frequency system.

Define Fuzzy Logic System:
input variables (PPV ) with ranges [0–15].
input variables (SCSOC ) with ranges [0–100].
input variables (Frequency ) with ranges [59.1–60.9].
output variable output variable (WS ) with range [100–1000].
membership functions for PPV , SCSOC, Frequency
fuzzy rules for decision-making [PPV , SCSOC, Frequency].

Real-time Data Processing (loop indefinitely):
Measure elapsed time (t = 100 [ms])
Read current SCSOC, PPV and Frequency from Modbus.
Inputs = [SCSOC, PPV , Frequency]
WS = evalfis(inputs, fis)
window = WS
PPVC= PS(PPV , WS)
Update Modbus with new power values (PPVC).

End
End

Algorithm 2: Pseudo-code for implementing the WS feature

PS(PPV , ma, WS)
Add new sample PPV to moving average vector ma.
Adjust length of vector ma to match WS.
Calculate moving average (PPV) of V2GSUN.

The main flowchart (see Figure 6) describes the implementation of the proposed
method. This algorithm begins by connecting to the Modbus system via TCP/IP. Initial
data, including PPV , Frequency, SoC, and WS, are input. These data are read and processed
in a loop, with an index (i) incrementing in each iteration.

In each cycle, the algorithm applies a power smoothing (PS) technique to the input data
to obtain compensated photovoltaic power (PPVC). This smoothing technique considers
the moving window size (WS), allowing the system’s response to adjust according to the
PV production and demand variability. The loop continues iterating until a specific stop
condition is met, indicated by a decision block with the instruction “break”.

The flowchart breaks down the subroutine PS(PPV, ma, WS), which calculates the
moving average of the PV power data (ma). If the current length of the moving average
exceeds the window size (WS), the moving average is adjusted by removing the oldest
data and adding the new PV power data (PPV). Finally, the average of the compensated PV
power (PPVC) is calculated to smooth the power output and enhance system stability.
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3.3. Case Base Implementation under Actual Laboratory Conditions

The variability in daily PV generation profoundly impacts isolated system operations
and the design of BESS or management systems. Analyzing the daily solar energy pro-
duction curve with high and low fluctuations is crucial for optimizing PV equipment to
suit specific project conditions. For emulation purposes, a power curve (PPV) selected for
this study (see Figure 6, highlighted in red) exhibits significant variability influenced by
weather, location, and system characteristics. Figure 7 depicts the daily power curve based
on actual measurements from the Micro-Grid Laboratory in Cuenca, Ecuador (geographical
coordinates: −2.891918819933002, −79.03857439068271). Choosing a highly variable gen-
eration profile is essential as it represents worst-case conditions for rigorously testing the
V2G strategy and validating corrective actions. Managing grid stability and ESS efficiently
under such variability poses substantial challenges, making it imperative to assess system
response comprehensively under realistic conditions.
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Figure 8 shows the results of applying one hour of high variability PV production
in the test system. As expected, integrating a generation source with high variability
(Figure 8a) forces the operational synchronous generation to compensate for such power
imbalances (Figure 8b). Due to this case’s severe power control requirements, the grid
frequency varies substantially (Figure 8c). Additionally, the voltage of each phase at the
PCC also experiences significant fluctuations, adversely affecting the power quality of the
isolated system. This experiment demonstrates the need to mitigate the operational issues
of high-variability PV power integration in weak and isolated power systems.
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4. Data Analysis and Interpretation

This research investigated the implementation and performance of an advanced
method for smoothing power fluctuations, specifically the Moving Average (MA) filter, by
adjusting the data acquisition time window using an FLC. A comparative analysis was
carried out with two popular power smoothing solutions previously tested by the authors
in [12], the Ramp-Rate (R-R) and MA filters, to assess the effectiveness of the proposal. Two
realistic scenarios comprise our research:

• Study Scenario 1-Li-Ion Storage System with Moderate SoC level: aimed to maintain
the Li-Ion BESS’s SoC within the range of 20% to 80% initially.

• Study Scenario 2-Li-Ion Storage System with Low SoC level: In this undercharging
scenario, the Li-Ion BESS began with an SoC below 20%, prioritizing EV charging.

4.1. Study Scenario 1: Li-Ion Storage System with Moderate SoC Level

Figure 9 presents an overview of the experimental findings from the MA method,
showing various power profiles: the renewable PV production (in blue colored line), the
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power response of BESS (in black line), and the compensated power delivered to the grid (in
green colored line). The dynamic behavior of the thermal GD power is depicted in Figure 9a,
emphasizing the MA method’s effectiveness in stabilizing power fluctuations. Figure 9b
demonstrates the improved smoothing of power output achieved by the MA method.
Additionally, Figure 9c shows the enhanced frequency response of the GD, indicating
improved stability, while Figure 9d illustrates the mitigated voltage fluctuations. These
results underscore the MA method’s effectiveness in enhancing both frequency and voltage
responses, validating its utility in improving operational stability.
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The experimental outcomes of the RR method are depicted in Figure 10, showcasing
various power profiles. Figure 10a displays the GD power response, highlighting the R-R
method’s relief in load tracking by the thermal unit. The effectiveness of power smoothing
provided by the R-R method is evidenced in Figure 10b. Moreover, Figure 10c illustrates
the improved frequency response of the GD, indicating enhanced stability, while Figure 10d
presents the minimized voltage fluctuations at the GD. These findings emphasize how the
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RR method contributes to optimizing both frequency and voltage responses, validating its
application in enhancing system performance.
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The experimental outcomes of the V2GSUN method employing a variable time win-
dow size through FLC are summarized in Figure 11. This figure illustrates the emu-
lated power profiles. Figure 11a presents the GD power response, where the impact of
the V2GSUN method on power stability is evident. Compared to previous approaches,
Figure 11b demonstrates improved effectiveness In power smoothing tasks. Additionally,
Figure 11c shows the improved GD frequency response, indicating significantly reduced
frequency variability compared to the baseline case. Figure 11d displays the GD voltage
response, illustrating minimized fluctuations. These results underscore the capability of the
V2GSUN method to enhance both frequency and voltage stability, affirming its suitability
for optimizing grid-connected systems.
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In the comparative analysis conducted so far, the proposed V2GSUN method demon-
strates superior performance in stabilizing power fluctuations and maintaining consistent
voltage levels compared to the traditional MA and RR methods. Incorporating an FLC
to adjust the time window size dynamically allows for more precise power smoothing,
resulting in improved grid stability and efficiency. These findings underscore the potential
benefits of implementing advanced control strategies in V2G systems to optimize renewable
energy integration and enhance overall energy management in isolated MG. Figure 12
depicts the frequency variability after implementing the proposed method and compares
it with the other two reference methods and the base case study. Figure 12 shows the
frequency response using the MA, R-R, and MA methods enhanced with FLC (V2GSUN).
The V2GSUN method demonstrates satisfactory performance by significantly reducing
frequency variation, thereby maintaining system operation within safe frequency values
and highlighting its effectiveness in this specific case. This underscores the ability of the
proposed method to enhance grid stability by effectively managing power fluctuations.
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In this analysis, we began by calculating the variance for each method: the base case
variance (Equation (2)), the moving average method variance (Equation (3)), the ramp-
rate method variance (Equation (4)), and the V2GSUN method variance (Equation (5)).
Then, these variance values were grouped into a variance vector (Equation (6)). Finally,
the percentage reduction in variance relative to the base case variance was calculated
(Equation (7)).

Varcb = Var
(

f cb
GD

)
(2)

VarMA = Var
(

f MA
GD

)
(3)

VarRR = Var
(

f RR
GD

)
(4)

VarV2GSUN = Var
(

f V2GSUN
GD

)
(5)

Variances = [Varcb , VarMA , VarRR , VarV2GSUN ] (6)

Reduction percentage = 100 ×
(

1 − Variances
Varcb

)
(7)

In studies related to V2G, it is common practice to examine the behavior of the SoC of
the batteries to monitor their usage while implementing any control technique. Hence, the
behavior of the Li-Ion BESS’s state of charge for each power smoothing methodology is
summarized in Figure 13. The black line color depicts the SoC state using the MA method,
green shows the SoC response with the R-R method, and brown illustrates the SoC response
to the MA method integrated with FLC (V2GSUN).
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The V2GSUN method performs satisfactorily by keeping the storage system operation
within safe limits, which is crucial for prolonging the battery lifespan and ensuring efficient
energy management.

Figure 14 presents the resulting smoothing factor, indicated by the time window size
WS generated by the FLC. An in-depth analysis shows its compliance with the fuzzy rules
outlined in Table 1. The graph in Figure 14 offers insights into the alignment between the
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achieved smoothing factor and the predefined fuzzy rules. This alignment ensures that the
dynamic adjustments made by the FLC are consistent with the desired smoothing objectives,
leading to optimal power smoothing and enhanced grid stability. The real-time adjustment
feature of the V2GSUN algorithm facilitates a responsive and adaptive approach to alleviate
PV power fluctuations, further validating its applicability in real-world scenarios.
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(𝟓𝟎 %) 𝑺𝒐𝑪𝑺
Initial 

Variance without 
Compensation 

Variance 
with  

Compen-
sation 

Variance Re-
duction (%) 

Renewable Energy 
Delivered without 

Compensation (𝐤𝐖𝐡) 

Renewable Energy De-
livered with Compensa-

tion  (𝐤𝐖𝐡) 

Energy Differ-
ence (𝐤𝐖𝐡) 

MA 15.66 13.07 16.55 3.21 3.17 0.03 
RR 15.91 13.65 14.2 3.21 3.15 0.05 

V2GSUN 15.62 12.58 19.43 3.23 3.20 0.04 

Table 3 shows that the V2GSUN method improves the variance of the grid frequency 
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Table 2 summarizes the results from various methodologies proposed for mitigating
variability in renewable energy sources (RES) by considering the initial SoC conditions
of the storage system. Each laboratory test started with an initial SoC set at 50%. These
techniques successfully smoothed renewable power generation by adjusting the output
according to the SoC percentage within the designated range. The findings reveal that
using the proposed V2GSUN method decreased variance by 19.43%, from 15.6% without
Li-Ion integration to 12.58% with it.

Table 2. Results of energy generation were obtained by applying the power smoothing methodolo-
gies studied.

(50%) SoCSC
Initial

Variance
without

Compensation

Variance with
Compensation

Variance
Reduction

(%)

Renewable Energy
Delivered without

Compensation
(kWh)

Renewable Energy
Delivered with
Compensation

(kWh)

Energy
Difference

(kWh)

MA 15.66 13.07 16.55 3.21 3.17 0.03
RR 15.91 13.65 14.2 3.21 3.15 0.05

V2GSUN 15.62 12.58 19.43 3.23 3.20 0.04

Table 3 shows that the V2GSUN method improves the variance of the grid frequency
provided by the GD from the baseline case, reducing it from 1.5617 to 1.3782. This imple-
mentation of V2GSUN results in an improvement of 11.75%.

Table 3. Results of frequency variation when applying different power smoothing methodologies in
the V2G context.

Variance of Reduction
Frequency (%)

Case base 1.5617
MA 1.6263
RR 1.5610

V2GSUN 1.3782

4.2. Study Scenario 2: Li-Ion Storage System with Low SoC Level

In this second study scenario, the Li-Ion Storage System began operating at 20% of
the full capacity, prioritizing EV charging, as can be seen in Figure 15b. The objective is to
ensure that the lithium-ion battery is used in an electric vehicle through a Vehicle-to-Grid
(V2G) system. Figure 15b demonstrates that using the MA filter with FLC reduces variance
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by 16.05%. Figure 16 illustrates the Li-Ion battery’s SoC beginning to charge and reaching
60%, focused on its recharge over mitigating power fluctuation and effectively utilizing
peaks in renewable energy.
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Figure 16. Result of prioritized SoC charging for storage system using V2G while mitigating generated
power peaks.

Table 4 shows the results of Study 2, which focuses on smoother energy to reduce
the initial percentage of beef to decrease the change in beef production. This method
prioritizes charging in electric vehicles, from 20% SoC to 60% SoC. This method makes
energy production stable, and the power source adjusts according to the current status of
SoC. Outcomes show that the variance with the MA filter method compared to V2GSUN
was reduced by 16.05%. Figure 17 establishes the temporal progress with smoother factors
in FLC output WS data.

Table 4. Results of renewable energy production with the application of the compared power
smoothing methodologies.

(20%) SoCSC
Initial

Variance
without

Compensation

Variance with
Compensation

Variance
Reduction

(%)

Renewable Energy
Delivered without

Compensation
(kWh)

Renewable Energy
Delivered with
Compensation

(kWh)

Energy
Difference

(kWh)

V2GSUN 15.63 13.12 16.05 3.21 3.06 0.15
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4.3. Sensibility Analysis for Implementing V2G

Several power smoothing methods are compared in this section in terms of perfor-
mance against several key metrics: standard deviation, crest factor, form factor, ripple index,
and coefficient of variation. The methods evaluated include the baseline case, MA, RR,
and two variants of the V2GSUN method with different SoCs of 50% and 20%. Figure 18
provides a compact analysis of the power smoothing metrics achieved by the proposed
method. The standard deviation, a measure of data dispersion around the mean, showed
significant improvement with the V2GSUN method at 50% SoC, achieving the lowest value
(3.540) compared to the baseline (3.950), indicating enhanced consistency and reduced
variability in power generation. Although the crest factor, which evaluates the relation-
ship between peak values and the root mean square (RMS) value, showed no notable
improvements with the smoothing methods, the baseline case had the lowest value (1.632),
indicating fewer extreme peaks. The MA and RR methods showed higher crest factors
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(1.651 and 1.652, respectively), suggesting more frequent peaks. The form factor, which
measures the uniformity of data distribution, also highlighted the V2GSUN method at
50% SoC, with the lowest value recorded (1.061), suggesting a more consistent signal than
the baseline case (1.084). The ripple index, indicating signal variation relative to its mean,
was significantly reduced with the V2GSUN method at 50% SoC (0.354), demonstrating
smoother and more stable power generation compared to the baseline (0.418). Similarly,
the coefficient of variation, assessing variability relative to the mean, was lowest with the
V2GSUN method at 50% SoC (0.354), showing the least relative dispersion and greatest
consistency in power generation. At the same time, the baseline case had the highest value
(0.418), reflecting the most significant relative variability.
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5. Conclusions

This study introduces the innovation method, the V2GSUN soft effect method, aimed
at improving the performance of isolated electrical grids. This method is an advanced
version of the MA method integrated with FLC. There is definitely great progress once it is
approved in the laboratory.

Adapting lithium-ion storage batteries to various SoC levels demonstrated its effective-
ness in maintaining a safe operational range. The proposed method significantly reduces
power changes, asserting its ability to smooth renewable balancing capacity.

Furthermore, this study demonstrates a multifunctional approach to address specific
operational goals as the prioritization of the EV charging process. These findings show a
significant reduction in time-domain power changes and emphasize the potential of the
advanced V2GSUN method to optimize Ev charging operation. This includes achieving
efficient energy stability to ensure appropriate communities in electric vehicle batteries to
meet future user needs and improvement of the low-inertia power system operation.

The comparative analysis of two well-known traditional smoothing techniques reveals
that the proposed V2GSUN method delivers a more stable smoothing effect while reducing
the high variability of the variables of interest. Although the MA and R-R methods excel in
One-Treg, the V2GSUN method consistently produces a smoother power curve. Selecting
the appropriate method should take into account the specific characteristics of renewable
energy systems as well as the unique requirements and priorities of electric vehicles.

Finally, it must evaluate indicators such as standard deviations, final factors, shape
factors, wave index, and mutant coefficients, supporting the more significant effect of
superiority recommended for the net environment (V2G). Compared to the alternative
method, the V2GSUN method shows significantly reduced variation in consistency, im-
proves stability, and consistent energy production. This emphasizes its potential to enhance
grid stability and optimize renewable energy and electric vehicle technology integration.
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