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A B S T R A C T   

Currently, renewable energies and electric vehicle charging stations are essential for energy sustainability. 
However, the variable generation from renewable sources, such as photovoltaic systems, can lead to power peaks 
that impact the stability of the grid. This challenge is exacerbated by the increasing demand in fast-charging 
stations. Addressing these demand peaks is crucial to ensure the stability of the electrical grid. This paper in
troduces the predictive-flex smoother, an innovative method designed to mitigate power fluctuations in grid- 
connected photovoltaic systems while optimizing energy management in electric vehicle charging stations. 
The predictive-flex smoother method incorporates a hybrid energy storage system comprising supercapacitors 
and vanadium redox flow batteries to respond rapidly to electric vehicle charging stations demands, enhance grid 
electricity purchase optimization, and improve energy quality delivery. The proposed method integrates two 
control strategies: photovoltaic fluctuation reduction strategy and peak demand reduction strategy for electric 
vehicle charging stations. By leveraging prediction algorithms and machine learning techniques, the predictive- 
flex smoother method achieves precise power fluctuation forecasts, allowing efficient utilization of super
capacitors and vanadium redox flow batteries to smooth photovoltaic power fluctuations and reduce electrical 
vehicles peak demand. Comprehensive experimental investigations and simulations validate the method’s per
formance under various operational conditions. The results demonstrate the effectiveness of the predictive-flex 
smoother method, significantly improving the quality of power delivered to the grid while reducing costs. The 
experimental platform, validates the real-time response of the proposed method, with response times under 500 
ms. The experimental results further confirm the efficiency of the method in power smoothing and charging 
strategies with varying electrical vehicles models and connection coefficients.   

Symbology  

PSC Supercapacitor power 
CSC Cost of SC 
CPV Cost of PV 
NEV Number of EVs 
CVR Cost of VRFB 
ΔtEV Charging time of EV 
t Time 

(continued on next column)  

(continued ) 

ΔtSC SC time interval 
PSC

ref Reference power value for the SC 
PVR

ref Reference power value for the VRFB 
ΔtVR VRFB time interval 
t (t) Index for time periods 
Xt Output power of the PV installation (without smoothing) at instant 

t 
Xt− NMASC+t− 1 Predicted PV values for a very short time interval for SC 

(continued on next page) 
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(continued ) 

Xt− NMAVR+t− 1 Predicted PV values for a very short time interval for VRFB 
ηSC

C SC performance during the storage charge process 
ηSC

D SC performance during the storage discharge process 
ηVR

C VRFB performance during the storage charge process 
ηVR

D VRFB performance during the storage discharge process 
CC SC reference power correction intensity modulation coefficient 
RSC

max SC maximum ramp value control 
RVR

max VRFB maximum ramp value control 
SOCSC

min SC minimum state of charge 
SOCSC

max SC maximum state of charge 
SOCVR

min VRFB minimum state of charge 
SOCVR

max VRFB maximum state of charge 
P Nominal power of the renewable PV system 
NMASC Number of periods used to calculate the SC moving average 
NMSSC Number of periods used to calculate the variation in the energy 

contained in the SC storage 
NMAVR Number of periods used to calculate the VRFB moving average 
NMSVR Number of periods used to calculate the variation in the energy 

contained in the VRFB storage 
vsSC

t Power transferred from the PV panels to SC storage in period t (cut 
peaks) 

vsSC
t− NMSSC+t− 1 Power transferred from SC storage to the grid in very short time 

interval 
srSC

t Power transferred from SC storage to the grid in period t (fill gaps) 
srSC

t− NMSSC+t− 1 Power transferred from the PV panels to SC storage in very short 
time interval 

SOCSC
t Energy contained in SC storage at the end of period t 

vsVR
t Power transferred from the PV panels to VRFB storage in period t 

(cut peaks) 
vsVR

t− NMSVR+t− 1 Power transferred from VRFB storage to the grid in very short time 
interval 

srVR
t Power transferred from VRFB storage to the grid in period t (fill 

gaps) 
srVR

t− NMSVR+t− 1 Power transferred from the PV panels to VRFB storage in very short 
time interval 

SOCVR
t Energy contained in VRFB storage at the end of period t 

p̂t
SC SC reference power prediction value using the moving average 

method 
p̂t

VR VRFB reference power prediction value using the moving average 
method 

Δsoct
SC Value of the average variation of power in SC storage 

Δsoct
VR Value of the average variation of power in VRFB storage 

PEV Power of EV charging 
SOCEV EV battery state of charge 
SY Average annual mileage of an EV 
TEV Number of days an electric vehicle drives per year 
SD Range of EV battery 
XEV Electric demand for charging power of EVs 
MEV EV connection coefficient, which is between 0 and 1 
λEV Current forecast number of EVs 
γEV EV charging time per day 
pt PV power value obtained in real time 
pt(t + 1) PV power value obtained in the subsequent time step 
PGPV Peak PV power considers for full EV charge 
fpv(t) PV power fluctuation calculated at two-time instants 
dpt(t)

dt 
Change rate of power value obtained in real time 

Δt Time interval. 
Pn Nominal PV power 
CC Modulation coefficient 
pt Instant renewable power 
fpv(n) d − dimensional vectors 
Sfpv Elements are the PV fluctuations fpv(j) represented by data vectors 
E(μi) The objective function representing the sum of squared distances of 

each fluctuation group from its cluster centroid 
k The total number of clusters or centroids 
μi Centroid of k-means algorithm 
FT Cumulative EV consumption until time T 
m Maximum coefficient of sales on the market 
p Innovation coefficient 
q Imitation coefficient 
PGRID Power from the grid 
PPFS Output power of the FPS method 
k#positive Number of positive fluctuations 
k#negative Number of negative fluctuations  

1. Introduction 

1.1. Context and motivation 

Environmental concerns, technological advancements, and cost re
ductions are driving the expansion of renewable energy sources (RES) 
and electric transportation [1]. Among various RES photovoltaic (PV) 
technology has experienced significant growth, playing a crucial role in 
achieving a sustainable future [2]. However, the intermittent nature of 
PV and sporadic electric vehicle (EV) demands pose challenges to power 
supply stability and reliability [3]. These power fluctuations affect en
ergy delivery, calling for power smoothing methodologies to enhance 
grid or localized system quality and reliability [4]. Integrating energy 
storage systems (ESS), electric vehicle charging stations (EVCS), and PV 
systems offers a promising solution for power smoothing [5]. Super
capacitors (SC) have garnered attention due to their high-power density 
and responsiveness, effectively attenuating fluctuations in RES [6]. 
Recent studies confirm the effectiveness of SCs in mitigating load peaks 
and ensuring stable energy output [7,8]. 

Flow batteries, such as vanadium redox flow batteries (VRFB), are 
another attractive option due to their energy density and prolonged 
storage capacity. They allow flexible energy management by gradually 
releasing stored energy to address fluctuations [9]. Moreover, these 
batteries are non-degradable over time, providing an almost unlimited 
number of charge and discharge cycles without efficiency loss, unlike 
lead-acid or lithium batteries. In PV systems supplying grid-connected 
EVs, ensuring energy quality and reliability requires optimizing the 
ESS’s operability. This paper focuses on PV systems with hybrid storage 
(SC + VRFB) that supply EVs through EVCSs. 

1.2. Literature review 

The literature review reflects a growing interest in developing effi
cient and reliable solutions to address power fluctuations in RES. These 
methods have gained significant attention due to the challenges posed 
by intermittent generation and the variability of RES. A notable 
contribution, as outlined in [10], the authors introduce a multipurpose 
control mechanism that not only prevents reverse power flow but also 
optimally manages the state of charge (SOC) of batteries through a so
phisticated energy smoothing system at the substation level. Simulation 
studies support the efficacy of this mechanism in achieving precise 
control objectives, identifying optimal locations for battery energy 
storage systems (BESS), and determining suitable types of BESS. Further 
enriching the literature, [11] explores an exponential linear smoothing 
technique for power smoothing, guided by a reference signal. The po
tential for refinement through predicting power fluctuations with higher 
precision is emphasized. Advanced algorithms and operation strategies, 
as discussed in [12], leveraging real-time data on power generation, 
load demand, and relevant parameters. Research on a hybrid energy 
storage system (HESS) composed of SCs and BESS, as presented in [13], 
introduces an optimization feedback control mechanism fortified by 
dual Kalman filters and a robust predictive control model. This intricate 
control paradigm not only enhances BESS longevity but also effectively 
mitigates power variations, thereby alleviating strain on SCs. Despite 
these advances, there is a limited analysis of the cost implications 
associated with energy storage devices, especially energy smoothing 
storage systems [14]. This study addresses this gap by proposing an 
innovative approach that leverages EV demand prediction to effectively 
smooth PV power and EV demand, avoiding the need for excessively 
large-scale traditional battery swapping stations. 

As we transition from the literature review to a comprehensive 
exploration of possible application fields, it is essential to note the 
various methods researchers have employed for power smoothing using 
SCs and BESSs. The authors in [15] provide a solution to the intermittent 
and stochastic nature of renewable energy management using HESS to 
maximize energy production and ensure service continuity. 
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Additionally, [16,17] introduce approaches to mitigate the impact of EV 
charging, such as smart charging or grid-to-vehicle (G2V) and vehicle- 
to-grid (V2G). Effective energy control, as discussed in [18], can 
harness the significant storage resources provided by EVs, influencing 
future electrical grid operation and expansion plans. However, chal
lenges persist in providing demand response through V2G and G2V, 
primarily due to uncertainties regarding EV availability and the poten
tial impact of V2G system aging on expensive EV batteries. While some 
studies introduce energy allocation methods considering power fluctu
ations of PV and BESS [19], there is a risk of overlooking future power 
peaks, leading to oversized BESSs and increased system costs. In [20], a 
fuzzy logic-based control system is presented to level daily load based on 
V2G capacity, relying primarily on the current battery SOC. Steady-state 
applications utilizing EV capacities, such as load management and 
power smoothing, have been extensively explored in the literature 
[21–23]. However, few studies propose EV demand prediction systems 
to proactively reduce the power peaks they generate, and there is a 
notable lack of research on predicting applications of VRFB for EVs [24]. 
VRFBs have been evaluated for energy storage and fast EV charging. 
Important advantages are highlighted such as large storage capacity, 
greater design flexibility, nearly unlimited lifespan, and the ability to 
reuse deactivated underground gas tanks for installation at service sta
tions, supporting the transition to electric mobility. 

To further enrich the literature review, several studies have inves
tigated the collective impact of individual RES on power smoothing. A 
study in [25] emphasizes the implementation of grid-connected ESS 
with SOC control for PV systems, demonstrating the efficacy of power 
smoothing methodologies in attenuating RES variability. Mathematical 
verification and case studies with power systems computer aided design 
(PSCAD) software simulations support the logical proof of methodology 
effectiveness. Similarly, [26] focuses on evaluating power smoothing 
techniques for PV output, introducing a comprehensive methodology for 
systematic evaluation. This study not only compares the performance of 
different power smoothing methods but also considers their impact on 
the BESS lifetime. The findings highlight the effectiveness of Fourier 
analysis-based power smoothing methods and emphasize the crucial 
role of SOC in influencing battery capacity loss. In the context of grid- 
integrated PV systems, [27] proposes an adaptive smoothing frame
work to address power fluctuations caused by passing clouds. The study 
introduces a predictive and adaptive controller with two layers, effec
tively reducing stress on the ESS by dynamically adjusting filter time 
constants based on real-time power RR. The results demonstrate 
improved power smoothing and reduced battery degradation compared 
to fixed time constant-based techniques. Furthermore, [28] investigates 
the stability and power-smoothing performance of a HESS integrated 
with a large-scale hybrid wind and PV farm. The proposed HESS, con
sisting of a VRFB and a SC, effectively enhances system stability and 
mitigates power fluctuations. The study employs steady-state and tran
sient simulations to validate the positive impact of the HESS on power 
smoothing. 

Considering the impact of RES on the reliability of PV inverters in 
active distribution grids, [29] introduces a PV inverter reliability- 
constrained control method. This approach incorporates power 
smoothing to ensure efficient power loss minimization while addressing 
uncertainties in PV generation and loads. The study employs a penalty 
convex-concave programming method, demonstrating the high effi
ciency of the proposed method in both minimizing power losses and 
enhancing PV inverter reliability. In the realm of wear-out analysis, [30] 
explores the implications of BESS converters performing peak shaving 
and harmonic current compensation operations. The study reveals a 
trade-off, with harmonic current compensation operations enhancing 
grid power quality but affecting the reliability of the BESS converter. 
The findings underscore the need for careful consideration of the bal
ance between enhanced power quality and BESS reliability. Lastly, [31] 
introduces a HESS employing a VRFB and SC for grid-integrated PV 
systems. The proposed control strategy, incorporating a mixed-order 

generalized integrator and improved sparrow search algorithm tuned 
tilt integral–derivative with filter controller, effectively manages power 
fluctuations. The study demonstrates the overall effectiveness of the 
proposed control strategy under various conditions, highlighting its 
potential for high-energy and power support. 

The authors in [32] present an innovative power smoothing tech
nique using fuzzy logic in electric vehicle batteries to optimize self- 
consumption and reduce power fluctuations for island power systems. 
The behavior of the battery energy storage system of EVs has also been 
studied as a control strategy to smooth out the fluctuations of wind 
energy composed of several EVAs with different response parameters 
[33]. This study highlights the adaptive SOC method and the energy 
production limits restricted by maximum operating areas. Recent 
studies also propose multi-agent deep reinforcement learning for fast 
charging stations for electric vehicles, which smoothes the spatial dis
tribution of electric vehicle charging demands and reduces traffic 
congestion in the electrical grid [34]. 

The reviewed research provides practical applications in the field of 
renewable energies and energy fluctuation control. The multipurpose 
approach of [10] presents applications in efficient battery management 
and the mitigation of challenges associated with intermittent genera
tion. The exponential linear smoothing technique of [11] emphasizes 
the improvement in the accuracy of predicting energy fluctuations. 
Advanced algorithms and real-time operational strategies, as described 
in [12], are applicable to energy smoothing in PV systems, explored in 
[13]. The prediction of EV demand to smooth solar energy generation, 
proposed in [14], offers a practical application for optimizing EV 
charging infrastructure. These applications illustrate the possibilities 
derived from the literature review in the field of renewable energies and 
energy storage. 

1.3. Research gaps 

In the literature review, a growing interest has been observed in the 
development of efficient and reliable solutions to address power fluc
tuations in RES. However, there are still some research gaps. The main 
identified gaps are as follows:  

• Although BESS have been proposed to reduce power fluctuations in 
PV and EVCS, the disadvantages related to their lifespan and 
replacement costs due to deep charge/discharge cycles have been 
overlooked [10,11].  

• Despite the usefulness of SCs in mitigating fluctuations in RES, their 
potential has been underestimated by not fully analyzing the ad
vantages of combining them with BESS using fluctuation prediction 
algorithms [12]. In a previous work by the authors in [12], the 
feasibility of the fluctuation prediction method was demonstrated, 
but BESS and EVCS were not considered. In addition, for this study, a 
controller is implemented that integrates the hybrid SC and VRFB 
systems, enabling a reduction in the ramp rate to approximately 1 %. 
This demonstrates robust response and establishes a strategy for 
optimal peak reduction in EVCS. Similarly, the controller integrates 
the proposed vehicle charging power prediction from [35], utilizing 
hybrid storage systems to mitigate peaks in EVCS.  

• HESS combining SCs, and BESS have been examined, but most 
studies have focused on lead-acid and lithium-ion batteries, 
neglecting promising technologies like VRFB in conjunction with SCs 
[19].  

• It is necessary to optimize the operability of HESS through long-term 
fluctuation predictions, as the stochastic nature of PV energy re
quires longer intervals to obtain accurate values [12,24].  

• Energy management in V2G or G2V systems must consider the 
impact of PV power peaks matching with multiple EVCS charging or 
discharging power peaks to improve grid stability and leverage the 
benefits of fluctuation prediction through the combination of RR and 
MA methods [13,17,20]. 
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• The proposed adaptive smoothing framework for grid-integrated PV 
systems, as presented in [27], introduces a predictive and adaptive 
controller to address power fluctuations. However, further investi
gation is needed to explore the broader applicability of this frame
work and potential refinements for diverse weather conditions.  

• The HESS proposed in [31] combining a VRFB and SC shows promise 
in managing power fluctuations. However, research gaps persist in 
assessing the economic viability, scalability, and potential integra
tion challenges of this specific HESS configuration in grid-integrated 
PV systems. 

1.4. Contributions and paper organization 

To address the previously identified research gaps, this paper in
troduces an innovative method called “predictive-flex smoother” (PFS). 
Its objective is to mitigate energy fluctuations in PV systems connected 
to the grid by using a HESS that combines SC and VRFB. This approach 
enables a rapid response to the demand of EVCS, optimizing electricity 
purchase from the grid and improving the energy quality delivered to it. 

The joint control system relies on two innovative strategies: the first 
aims to reduce PV fluctuations, while the second targets peak demand 
reduction for EVCS. To achieve this, prediction is employed to calculate 
the EV charging energy demand, minimizing the impact on the grid 
through VRFB storage and achieving zero consumption from the electric 
grid. The method’s effectiveness and performance were evaluated 
through experimental research and simulations under various opera
tional situations and conditions. 

The main scientific contributions of this approach lie in the combi
nation of RR and MA methods with machine learning techniques to 
prediction mechanism for PV-induced power fluctuations, supported by 
previous research. Additionally, this novel technique seeks to smooth PV 
power fluctuations and counteract EV demand patterns, resulting in a 
significant improvement in the quality of power delivered to the grid 
and reducing the cost. For simplicity, the main contributions are sum
marized below:  

- Development of the PFS method for PV systems with a HESS with SC 
and VRFB.  

- Implementation of innovative control strategies: PV fluctuations 
reduction strategy and peak demand reduction strategy for EVCS.  

- Utilization of prediction to calculate EV demand and minimize grid 
impact through VRFB storage.  

- Validation through experimental research and simulations in various 
operational situations and conditions. 

The structure of the article is as follows: Section 2 initially defines the 
challenge of integrating renewable sources and mitigating fluctuations. 
Secondly, it addresses the potential impact of EVCS on the electrical 
grid. In Section 3, the proposed power smoothing method is detailed, 
based on two control strategies: a) PV fluctuation reduction strategy, 
and b) peak reduction strategy for EVCS. The specific analysis focuses on 
the hybrid combination of SC and VRFB. Section 4 presents the appli
cation through a case study with real charging station profiles for EVs, 
including the integration of the algorithm into the supervisory control 
and data acquisition system. In Section 5, the obtained results are 
analyzed in comparison to other smoothing methods, providing a 
comparative study under different climatic conditions over three 
representative days. This is accompanied by a sensitivity analysis and a 
comprehensive technical-economic study. Finally, potential future 
application fields are presented, and Section 6 concludes the article. 

2. Problem definition 

To achieve the proposed objective in this study, several perspectives 
and steps must be considered. Firstly, the reduction of PV fluctuations 
has a maximum allowed rate of 10 %/min, as certified by certain energy 
distribution companies [24]. To address faster fluctuations, SC are 
employed. Some studies propose installing lead-acid or lithium-ion 
BESSs alongside the PV system [36,37], while others suggest using SC 
banks or a combination of both [27,28]. However, the approach pre
sented in the former studies is generally not advantageous, as the costs of 
BESS replacement may not generate sufficient revenue for power 
smoothing applications. On the other hand, the latter approach [27,28] 
shows more promise provided an appropriate energy control is imple
mented, and fluctuations are accurately classified based on their rate of 
change. This can be achieved through precise power fluctuation pre
diction, as demonstrated in this study. For this purpose, the “PV fluc
tuation reduction strategy” is presented, based on [12], considering PV 
and SC, and generating the reference power for SC (PSC

ref ). 
Secondly, simultaneous reduction of electricity purchase from the 

grid during EVCS peak demands is addressed with the assistance of SC 
and VRFB. EVs are classified based on their intended purpose, including 
private vehicles, official vehicles, taxis, and buses [35]. In [38] the au
thors classify EV charging infrastructure into three levels: (i) level 1 and 
2 residential charging, (ii) level 2 work and public place charging, and 
(iii) level 3 dc fast charging. In this study, the prediction of demand for 
public EVCSs considers only two criteria: private EVs and electric taxis 
(TEVs), as official EVs and electric buses typically have their own 
specialized charging facilities. To address this, the “peak reduction 
strategy for EVCS” is presented, based on [12], but considering VRFB 

Fig. 1. Design and architecture of the proposed hybrid renewable system.  
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and the EV’s demand (XEV). Fig. 1 illustrates the schematic diagram of 
the proposed method and extensive experimental tests have been con
ducted in the microgrid laboratory at the University of Cuenca (CCTI-B). 
The proposed control system is executed through the SCADA system, 
and HESS components are interconnected to an alternating current (AC) 
bus, which is subsequently connected to the electrical grid. 

3. Proposed PFS method 

The proposed method is based on a combination of conventional 
algorithms RR and MA. This combined approach provides a robust and 
accurate power reference signal for the hybrid storage system (SC and 
VRFB), considering predictions of power fluctuations PV, EVCS, and 
energy exchange with the electrical grid. To achieve this, the proposed 
PFS method introduces two control strategies, which are described 
below: 

3.1. PV fluctuation reduction strategy 

In the first stage of this strategy, the ramp limit for the output power 
is set by calculating the PV power variation during a predefined time 
according to Eq. (1): 

fpv(t) =
dpt(t)
dt

= ±

⃒
⃒
⃒
⃒
pt(t + 1) − pt(t)

Δt

⃒
⃒
⃒
⃒ ≤ 10%Pn (1)  

where fpv(t) is the PV power fluctuation calculated at two-time instants, 
pt represents the instantaneous PV power at time t, and its derivative 
indicates the rate of change with respect to time, dt. This representation 
can be calculated as the PV power value pt(t + 1) at a time t + 1 within 
the time range Δt, typically within a 1-minute window. The obtained 
value is recommended to be within ±10 %/min of the nominal power of 
the installation Pn. 

To reduce power fluctuations, it is necessary to identify peaks that 
surpass the threshold value. For this purpose, we employ a cluster-based 
machine learning technique to classify the fluctuations, and we explain 
this technique here. Considering each day, to categorize groups of pos
itive and negative power fluctuations derived from Eq. (1). The 
correction method utilizes the k-means algorithm for clustering and the 
selection of representative days. The primary objective is to minimize 
the sum of squared distances, min

Sfpv

E(μi) , for each fluctuation group from 

its cluster centroid. This process is executed through the following 
function, as defined in Eq. (2). The power fluctuation data is represented 
by vectors of real values in d dimensions (8640 per day): 
{

fpv(1) , fpv(2) ,…fpv(n)
}

. The k-means algorithm determines k clusters 

where the sum of distances of the data within each group, Sfpv =
{

Sfpv(1) , Sfpv(2) ,…Sfpv(k)
}

, is minimized to its centroid point μi. 

min
Sf pv

E(μi) = min
Sf pv

∑k

i=1

∑

fpv(j)∈Sf pv(i)

⃦
⃦ fpv(j) − μi

⃦
⃦2 (2)  

where Sfpv are elements are the PV fluctuations fpv(j) represented by 
data vectors, μi are the centroid of k-means algorithm, k represent the 
total number of clusters or centroids. 

In this way, the modulation coefficient (CC) can be established for 
the number of cycles required for the BESS optimization as the sum of 
the clusters k that exceed the ±10 % threshold and is calculated as the 
number of positive fluctuations k#positive divided by the number of 
negative fluctuations k#negative (CC = k#positive/k#negative). In the second 
stage of reducing PV fluctuations, the reference power for SC operation 
is determined using the MA method to predict the value 

(
p̂t

SC) as shown 
in Eq. (3). 

p̂t SC =
1

NMASC

∑NMASC

t=1
Xt− NMASC+t− 1 (3) 

This prediction represents the expected SC operation for the next 
time instant (t + 1) based on the current time (t). The prediction window 
is short-term, typically around 10 min, and can be adjusted based on the 
user-defined interval (NMASC). The choice of NMASC depends on the 
desired precision and the ramp rate of fluctuation, which in this case is 
10 % per minute. In Eq. (3), the term Xt− NMASC+t− 1 represents the pre
dicted PV power values for a very short time interval from input vector 
Xt. Subsequently, using the RR method described in Eqs. (4)–(7), the 
energy storage variation in SC is calculated while considering the pre
scribed allowable ramp rate ±Rmax

SC for a specific time interval ΔtSC. The 
efficiencies of charging and discharging, ηC

SC and ηD
SC respectively, are 

considered in these calculations. Additionally, the coefficient of modu
lation CC allocates the adjustment parameter based on a comprehensive 
cluster analysis of the charging/discharging cycles using the k-means 
algorithm as defined in Eq. (2). Ultimately, the reference power value for 
the SC system, denoted as PSC

ref , is established through these computa
tions [12]. This configuration allows optimizing the use of super
capacitors in the performance of charge/discharge cycles. 

vstSC = max
{

0,Xt −
(
pt +P⋅Rmax

SC⋅60⋅ΔtSC
) }

(4)  

srtSC = max
{

0,
(
pt +P⋅Rmax

SC⋅60⋅ΔtSC
)
− Xt

}
(5)  

ΔSOCSC
t
=

1
NMSSC

∑NMSSC

t=1

(

ηCSC⋅vsSCt− NMSSC+t− 1 −
1

ηDSC
⋅srSCt− NMSSC+t− 1

)

(6)  

PSC
ref = p̂t SC +CC⋅ΔSOCSC

t
(7)  

where p̂t
SC is the SC reference power prediction value using the moving 

average method, NMASC represent the number of periods used to 
calculate the SC moving average, Xt− NMASC+t− 1 is the predicted PV values 
for a very short time interval, vst

SC is the power transferred from the 
photovoltaic panels to SC storage in period t (cut peaks), Xt is output 
power of the PV installation (without smoothing) at instant t, pt is PV 
power value obtained in real time, P is the nominal power capacity of the 
PV system, ΔtSC represents SC time interval, srt

SC is the power trans
ferred from SC storage to the grid in period t (fill gaps), ΔSOCSC

t 
is the 

value of the average variation of power in SC storage, NMSSC represents 
the number of periods used to calculate the variation in the energy 
contained in the SC storage, vsSC

t− NMSSC+t− 1 is the power transferred from 
the PV panels to SC storage in very short time interval and 
srSC

t− NMSSC+t− 1. 

3.2. Peak reduction strategy for EVCS 

In this second strategy, the reference power for the VRFB is gener
ated considering the reduction of PV fluctuations and the optimal energy 
management for the EVCS. To obtain the prediction of fluctuations, note 
that Eq. (8) is similar to (3), but with the difference that now the initial 
memory NMAVR is calculated with respect to the VRFB instead of the SC. 
Likewise, the MA method is used, and consequently, the RR method is 
applied to limit fluctuations, which are commonly slower and beyond 
the reach of the SC, as represented in Eqs. (9)–(11). 

p̂t VR =
1

NMAVR

∑NMAVR

t=1
Xt− NMAVR+t− 1 (8)  

vstVR = max
{

0,Xt −
(
pt +P⋅Rmax

VR⋅60⋅ΔtVR
) }

(9)  

srtVR = max
{

0,
(
pt +P⋅Rmax

VR⋅60⋅ΔtVR
)
− Xt

}
(10) 
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ΔSOCVR
t

=
1

NMSVR
∑NMSVR

t=1

(

ηCVR⋅vsVRt− NMSVR+t− 1 −
1

ηDVR
⋅srVRt− NMSVR+t− 1

)

(11)  

where p̂t
VR is the VRFB reference power prediction value using the MA 

method, NMAVR is the number of periods used to calculate the VRFB 
moving average, Xt− NMAVR+t− 1 is the predicted PV values for a very short 
time interval in VRFB, vst

VR is the power transferred from the PV panels 
to VRFB storage in period t (cut peaks), Rmax

VR is VRFB maximum ramp 
value control, ΔtVR is VRFB time interval, srt

VR is the power transferred 
from VRFB storage to the grid in period t (fill gaps), ΔSOCVR

t 
is the value of 

the average variation of power in VRFB storage, NMSVR represents the 
number of periods used to calculate the variation in the energy con
tained in the VRFB, ηC

VR and ηD
VR VRFB performance during the storage 

charge and discharge process respectively, vsVR
t− NMSVR+t− 1 represents the 

power transferred from the PV panels to VRFB storage in very short time 
interval, srVR

t− NMSVR+t− 1 is the power transferred from the PV panels to 
VRFB storage in very short time interval. 

Subsequently, to generate the reference power for the VRFB (PVR
ref ), 

it is necessary to consider the coefficient of the demand prediction 
model of the EVCS, (XEV). This coefficient assigns the adjustment 
parameter and is calculated using Eq. (13). Then, to reduce the impact of 
EVs, an estimation of the EV demand is used through the charging de
mand characteristics of EVs as expressed in Eq. (15). 

By considering various factors affecting the location of EVCSs, a 
relationship between quantitative factors and the mathematical model is 
established, ultimately obtaining a reasonable and reliable scale for the 
EVCS expressed in Eq. (13). It is worth noting that the Rmax

VR values 
differ for each storage system. To leverage greater energy accumulation 
in the VRFB, its RR must be set higher ±Rmax

VR≫ ± Rmax
SC. Finally, the 

reference power value of the VRFB (PVR
ref ) is established, considering 

the mitigation of SC fluctuations already executed in the previous 
strategy (ΔSOCVR

t
+ PSC

ref ) and the power of the EVCS PEV as shown in Eq. 

(12) [35]. This configuration enables effective control of SOC for VRFB. 
Consequently, it facilitates regenerative energy accumulation to miti
gate the impact of peaks generated during vehicle charging on the grid. 
Moreover, it allows for the adjustment of EVs demand prediction with 
characteristic tuning parameters tailored to each specific case. 

PVR
ref = p̂t VR +XEV ⋅ΔSOCVR

t
+PSC

ref − PEV (12) 

Subsequently, to generate the reference power for the VRFB (PVR
ref ), 

it is necessary to consider the coefficient of the demand prediction 
model of the EVCS, XEV . This coefficient assigns the adjustment 
parameter and is calculated using Eq. (13). Then, to reduce the impact of 
EVs, an estimation of the EV demand is used through the charging de
mand characteristics of EVs as expressed in Eq. (15) [35]. 

XEV = MEV × λEV ×PEV × γEV (13)  

where XEV the demand for charging power (kVA) of EVs, MEV is 
connection coefficient, which is between 0 and 1; λEV is the current 
forecast number of EVs, PEV is the power of a single EV, and γEV is the EV 
charging time per day. 

γEV =
SY/TEV
SD

(14)  

where γEV is actual charging time of EV per day, SY is Average annual 
mileage of an EV (km), TEV is the number of days an electric vehicle 
drives per year, SD is the range of electric vehicle battery (km). In the 
event that the number of Electric Vehicles (EVs) is unavailable, or a 
prediction is desired, the following equation proposed by [35] can be 
utilized. 

FT = FT− 1 + p(m − FT − 1)+ q
FT − 1

m
(m − FT − 1) (15)  

where FT is cumulative consumption until T, FT− 1 is cumulative con
sumption before T − 1 m is maximum coefficient of sales on the market. 

Fig. 2. Control diagram illustrating the proposed PFS algorithm.  
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p is innovation coefficient, which represents the number of people who 
buy products that are influenced by other consumers; q is the imitation 
coefficient, which represents the number of people who buy products 
[35]. 

In the Fig. 2, the process of the PFS Method controller is summarized. 
The input values include the power of the PV system and the power of 
the EV. To establish reference values for the SC and VRFB, two strategies 
are generated: the PV fluctuations reduction strategy, as outlined by Eqs. 
(3)–(7). The controller, previously proposed by the authors in [12], has 
been integrated with the EVCS, following the same concept of deter
mining a lower ramp rate, as defined by Eqs. (8)–(15). 

3.3. Computational implementation of the proposed algorithm 

This section provides a detailed explanation and implementation of 

the method. Fig. 3 shows the flowchart, illustrating the control algo
rithm steps. Pseudocode for each step is presented below. The PV fluc
tuation reduction strategy (items 3–5) and peak reduction strategy for 
EVCS (items 6–8) are included:  

1. Data Input. Real-time power data is collected for each system, and 
the constant adjustment parameters of the algorithm are entered. 

2. Restriction on PV inverter usage. To prevent the use of storage sys
tems, the reference power for SC and VRFB is set to zero.  

3. RR restriction for SC. The allowable upper RR is limited to 10 % of 
the PV nominal power.  

4. Predictor corrector (P–C) method and control system for SC. The 
prediction and correction method are applied using SC [12]. 

Fig. 3. Flowchart illustrating the novel proposed methodology.  

Fig. 4. Pictorial representation of the laboratory equipment (CCTI-B) used for the experiments of the proposed PFS method.  
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5. SOC restriction for SC. Maximum and minimum values are estab
lished for the SOC of SC. When the set range is exceeded, VRFB is 
combined with SC.  

6. RR restriction for VRFB. The allowable upper RR is limited to 1 % 
(adjustable heuristically) of the PV nominal power for energy 
utilization.  

7. P–C method and control system for VRFB. The prediction and 
correction method are applied using VRFB. SC initially absorbs and 

delivers energy with very fast response, combined with VRFB to 
improve the PV system’s output signal and energy accumulation for 
EVSC.  

8. SOC restriction for VRFB. Maximum and minimum values are 
established for the SOC of VRFB. 

Pseudocode  
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4. Case study 

4.1. Implementation of the PFS in the experimental platform (CCTI-B) 

The CCTI-B served as the experimental platform for validating the 
power smoothing method. Fig. 4 illustrates the equipment configura
tion, with further details in [28]. To ensure efficient communication, an 
Ethernet Modbus TCP/IP connection and MATLAB code were designed 
for seamless interaction between devices and the SCADA system, 
enabling control and monitoring through a MATLAB and LabVIEW 
interface [29]. Fig. 5 shows the real-time implementation of the hybrid 
storage system, effectively smoothing both PV and power grid. The 
proposed algorithm operates autonomously with minimal delays (500 
ms). The primary technical specifications of the system components 
being tested are presented in Table 1. Similarly, Table 2 presents the 
technical details of the EVs employed in this experiment. Three EVs were 
utilized to ensure comparative results and mitigate any potential im
perfections that may arise. 

4.2. Experimental validation of energy storage systems and electric 
vehicles 

Experimental tests on HESS and EVCSs validate their real-time 
functionality and response, controlled by the SCADA system using 
MATLAB. Fig. 6(a) shows VRFB charge and discharge tests. The state of 
charge of the VRFB SOCVRFB can be calculated based on the operating 
voltage as indicated in Fig. 6 where the operating range for each cluster 
A, B is between 42.7 V and 62.89 V, which indicates an approximate 
variation of 20 V in energy storage in concentration of vanadium ions 
and protons. The VRFB can be regularly deep discharged (0 % charge 
level) without damaging itself. However, as for all electrochemical 
batteries, output power (kW) and capacity (kWh) may be affected by 
temperature and other operating conditions [40], while Fig. 6(b) depicts 
SC charge and discharge performance at different power settings. 
Response times, <500 ms, align well with mathematical models, 
ensuring reliable practical operation. The time of energy use by SCs is 
reduced in the order of seconds, however they have a very fast response 
to large amounts of energy, which is their main advantage within HESS. 

Results for various EV models, including the KIA SOUL, are presented 
in Fig. 7(a), evaluating power smoothing with semi-fast and fast char
gers. Fig. 7(b) illustrates the power demand of EV charging, denoted as 
(XEV), utilizing Eqs. (16) and (17). This characterization is based on EVs 
with an average annual mileage of SY = 200.000 km, estimating TEV =

300 days of EV operation per year, and an electric vehicle battery range 
SD = 200 km per charge. The power of each EV (PEV = 45 kW) with a 
charging time of 30 min. The graph explores a range of λEV = 1 to 10 EVs, 
and the connection coefficient MEV is varied from 0.1 to 1. These ana
lyses provide insights into charging strategies and the real-world 

Fig. 5. Screenshot of the SCADA system. (a) Implementation of the proposed algorithm. (b) System response time.  

Table 1 
Technical specifications of the equipment employed in the experiment.  

Equipment 
description 

Model Cells/ 
modules 

Operating 
voltage 

Energy Capital 
cost 

PV system 
1 (15 
kWp) 

Monocrystalline 60 (15 ×
4) 

150 
Vdc–450 
Vdc/230 
Vac 

Up to 
50 
kWh 

870 
(USD/ 
kW) 
[39] 

PV system 
2 (15 
kWp) 

Polycrystalline 60 (15 ×
4) 

150 
Vdc–450 
Vdc/230 
Vac 

Up to 
50 
kWh 

857 
(USD/ 
kW) 
[39] 

SC Maxwell 
BMOD-0130 

10 cells 560 Vdc/ 
230Vac 

0.4 
kWh 

27.5 
(USD/ 
Wh) 
[12] 

VRFB Cell Cube FB 
10–100 

1 
integrated 
module 

48 Vdc/ 
127Vac; 
230Vac 

100 
kWh 

700 
(USD/ 
kWh) 
[12] 

Utility grid N/A N/A 230 Vac N/A   

Table 2 
Primary technical details of the analyzed EVs.  

EV model Type Battery 
capacity 

Autonomy electric 
range 

Regenerative 
braking 

BYD E5 
300 

BEV 60 kWh 400 km Yes 

IONIQ EV BEV 39 kWh 300 km Yes 
KIA SOUL 

EV 
BEV 64 kWh 450 km Yes  
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performance of EVs. 
Table 3 summarizes the adjustment parameters of the case study for 

the implementation of the proposed algorithm as established in Section 
3.3. 

5. Results and discussions 

5.1. Power smoothing results 

This section presents the results of the proposed PFS method. 
Initially, the PV/EVCS system’s conventional behavior connected to the 
grid is shown in Fig. 8(a), without any power smoothing methods or ESS 
(SC and VRFB). In the red box, it becomes evident that the PV power 
alone cannot fully meet the demand of the connected EVs. As a result, 
additional power from the grid (PGRID ≥ 0) is required to fulfill the EVs’ 
demand. Moreover, the PV power fluctuations exceed the maximum 

allowed RR (10 %/min), causing disturbances in the grid throughout a 
typical day. 

To address this issue, Fig. 8(b) demonstrates the application of the 
PFS method for the same study day, now considering the HESS (SC +
VRFB). In the red box, it can be observed that the power sent to the grid 
(PGRID = 0) is skillfully smoothed, exhibiting a RR that remains below 1 
%/min of the nominal PV power. To achieve this, the SC actively con
tributes by providing reference power (PSC), guided by the PFS algo
rithm, while the integration of VRFB (PVR) notably enhances the power 
output delivered to the grid (PGRID), assisting the SC in peak reduction 
and satisfying the EV demand. As a result, the algorithm’s capability to 
effectively mitigate PV fluctuations at 1 %/min is evident, harnessing 
this control strategy to minimize the adverse impact of EVCS. 

In pursuit of enhanced efficiency and optimal sizing of VRFB and SC, 
the algorithm maintains the VRFB power reference (pref

VR) at approxi
mately 50 % of the VRFB state of charge (SOCVR). This approach ensures 

Fig. 6. (a) Experimental of the VRFB under various power settings. (b) Experimental tests of the SC under various power settings.  

Fig. 7. (a) Results of the charge/discharge experiment for various illustrative EV charging profiles 0 to 100 %. (b) Calculation of EV charging power demand.  
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that the VRFB system is sufficiently equipped to handle the impact 
associated with PEV and the PV fluctuations that the SC cannot cover 
throughout the day, regardless of specific time frames. Additionally, the 
charging and discharging states of VRFB are autonomously regulated by 
(

pref
VR
)

in response to PV fluctuations, guaranteeing seamless 

compensation. This logic prevents unnecessary operation of the SC, as it 
is backed up by VRFB. This storage system SOC control strategy has been 
explained in steps 5 and 8 of the flowchart and pseudocode. 

The power required for charging the EV averages PEV = 50 kW, with 
an accumulated energy of 20 kWh. This energy needs to be supplied by 
the grid and the PV generation during the hours of the charging station’s 
operation. In other words, PGRID = PPV − PEV . In the strategy formula
tion, the contribution from the grid is minimized to zero due to the 
contribution provided by the ESS: PGRID = PPV + PSC + PVR − PEV . 

Consequently, the mitigation of PV fluctuations is significantly reduced 
to <1 %/min, minimizing the direct impact of EVCS on the grid. It is 
worth noting that the SOC control for the VRFB is directly determined by 
a hybrid control algorithm combined with the SC. This hybrid approach 
allows for an oscillatory range of charging and discharging periods close 
to 50 % to address variable disturbances effectively. In Fig. 9(a), the 
spectral analysis of the smoothed signal with respect to PV power shows 
a significant reduction of 30 dB in the analysis range. The reduction in 
fluctuations at this stage maintains values below 1 %/min, facilitating 
the appropriate control of SC and VRFB within the specified maximum 
and minimum SOC ranges. This is achieved through the hybrid combi
nation of these rapid and robust systems. Moving on to Fig. 9(b), the RR 
analysis from Eq. (1) is presented, examining three days: little cloudi
ness, clear day, and semi-clear day. Various RR percentages per minute 
are analyzed, projecting energy utilization below 10 % for energy 
storage and EVCS usage. The accumulated energy within this range al
lows for an additional 10 kWh to be generated, which can be stored 
while reducing the RR to as low as 1 % using the proposed method. 

Therefore, the Table 4 presents a comparison of energy purchased 
from the grid under three different weather conditions. It shows the total 
daily energy generated by the PV system in kWh, the energy consumed 
by EV to charge them from 0 to 100 % in kWh, the PV energy used to 
charge the EVs in kWh, and the percentage of this energy relative to the 
total daily PV energy. In each condition, it is evident how the amount of 
energy purchased from the grid varies based on PV energy generation 
and EVCSs demand, highlighting the system’s efficiency in different 
weather scenarios. 

5.2. Comparison with other methods of power smoothing 

5.2.1. Smoothing response analysis 
This section compares the novel proposed method with two 

commonly used methods (MA and RR) as shown in Fig. 10(a). The MA 
method averages current power fluctuations without considering any 
prediction, leading to an exaggerated output signal. In contrast, the RR 
method only applies the ramp limit without considering the energy 
reserve for the ESS, unlike the proposed PFS method, potentially causing 
oversizing of the HESS. Fig. 10(b) illustrates that the proposed algorithm 
compensates the power profile of the EVCS directly with the VRFB, 
resulting in negative power curves if fpv(t) < PEV . The SOC is optimized 
for the SC and VRFB through predictive fluctuation analysis, as depicted 
in Fig. 11. The novel PFS method ensures optimized operability of the SC 
without erratic behavior observed in other power smoothing methods. 
The VRFB assists by providing energy during periods of lower power 
demand, enhancing the SC system’s performance. These findings high
light the superiority of the proposed strategies over the commonly used 
methods, showcasing the effectiveness of energy accumulation analysis 
in SC and VRFB systems. 

The comparative analysis in Fig. 12 demonstrates that the proposed 
PFS method outperforms the RR and MA methods in smoothing the PV 
power signal while staying within the 10 %/min limit. While all three 
methods meet the RR requirement, PFS achieves better power smooth
ing, thanks to its predictive capabilities and real-time correction stra
tegies. The RR method lacks energy reserve management and response 
to rapid fluctuations, leading to potential oversizing and inadequate 
performance. Similarly, the MA method introduces averaging errors and 
delayed response times, making it less efficient in handling dynamic 
power profiles. 

5.2.2. Analysis under different weather conditions 
The PV system’s daily power generation can exhibit unpredictability 

due to the intermittent nature of cloud cover. The comparison with 
various weather conditions is depicted in Fig. 13, where a comprehen
sive evaluation is performed by comparing the outcomes obtained with 
the MA and RR methods. It is important to note that during periods of 
negative power output (PPFS ≤ 0), the VRFB play a crucial role in 

Table 3 
Adjustment parameters for the control algorithm.  

Description Symbol Parameter 
value 

Considerations 

Charging time of EV ΔtEV 30 min Semi-rapid or rapid 
charger type 

SC time interval ΔtSC 1 min  
VRFB time interval ΔtVR 1 min  
SC performance during the 

storage charge process 
ηSC

C 95 % Validate with 
experimental tests 

SC performance during the 
storage discharge process 

ηSC
D 96 % Validate with 

experimental tests 
VRFB performance during the 

storage charge process 
ηVR

C 90 % Validate with 
experimental tests 

VRFB performance during the 
storage discharge process 

ηVR
D 92 % Validate with 

experimental tests 
SC reference power correction 

intensity modulation 
coefficient 

CC [0–5] Previous analysis with 
fluctuation cluster 

SC Maximum Ramp Value 
Control 

RSC
max 10 % × P Allowed ramp-rate 

according to nominal 
power 

VRFB Maximum Ramp Value 
Control 

RVR
max 1 % × P Allowed ramp-rate 

according to nominal 
power 

SC minimum state of charge SOCSC
min 0–5% Requires initial 

preload 
SC maximum state of charge SOCSC

max 95 %–100 
% 

Set by manufacturer 

VRFB minimum state of charge SOCVR
min 0–5 % Set by manufacturer 

VRFB maximum state of 
charge 

SOCVR
max 98%–100 % Set by manufacturer 

Nominal power of the 
renewable photovoltaic 
system 

P 30 kW  

Number of periods used to 
calculate the SC moving 
average 

NMASC 10 min Time window for 
smoothing 10 % 

Number of periods used to 
calculate the variation in the 
energy contained in the SC 
storage 

NMSSC 5 min Time window for 
smoothing 10 % 

Number of periods used to 
calculate the VRFB moving 
average 

NMAVR 20 min Time window for 
smoothing 1 % 

Number of periods used to 
calculate the variation in the 
energy contained in the 
VRFB storage 

NMSVR 20 min Time window for 
smoothing 1 % 

Average annual mileage of an 
EV (km) 

SY 200.000 km Estimated value of EV 
models 

EV connection coefficient MEV 0.8 Estimated value of EV 
models 

Number of days an electric 
vehicle drives per year 

TEV 300 Estimated value of EV 
models 

Range of EV battery (km) SD 200 km Estimated value of EV 
models 

Current forecast number of 
EVs 

λEV 5 Range of VE used by 
CS  
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Fig. 8. (a) Results of the power output to the grid from the PV energy source without any smoothing or filtering applied. (b) Power smoothing of the output sent to 
the grid employing the newly proposed method. 

Fig. 9. Comparison analyses for power smoothing methods: (a) PV Power (kW), (b) Spectral (dB), (c) Limit ramp rate (%).  
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supporting the system. This contribution is facilitated by the imple
mentation of the peak reduction strategy for EVCS, which optimizes the 
distribution of energy required by the EVs based on their respective SOC. 

By analyzing the comparative results, it becomes evident that the 
proposed method effectively mitigates the adverse impact of unpre
dictable PV generation, thereby enhancing the overall performance and 
reliability of the system. The utilization of VRFB in conjunction with the 
(peak reduction strategy for EVCS) demonstrates its efficacy in 
addressing the dynamic energy demands and fluctuations encountered 
in PV systems, particularly in scenarios characterized by varying cloud 

cover conditions In Fig. 13(a), a significant contribution from the SC and 
VRFB is evident due to a high index of fluctuations present on a day with 
little cloudiness. In contrast, on a clear day shows in Fig. 13(b), there is 
less demand for the contribution from the VRFB. Similarly, in Fig. 13(c), 
the contribution from the SC helps mitigate 10 % of the fluctuations. 
However, in all the aforementioned cases, the PV generation is lower 
than the power required for charging the EV, i.e., PPV < PEV . Conse
quently, the contribution from the VRFB must be immediate, providing a 
very high energy density of 20 kW during the EV charging period. 

In summary, the Table 5 presents a comparison of different methods 
based on specific criteria. The first column represents the inclusion of a 
fast response with high power density in each method, denoted by “X” 
for those methods that meet this requirement. The second column in
dicates whether the method offers unlimited cycles of operation, and 
again, “X” signifies the presence of this characteristic. The third column 
highlights whether the method imposes a RR limitation of 10 %/min to 
control fluctuations, and the fourth column indicates if the method can 
supply energy to EVCS. From the Table 4, it can be observed that the PV 
+ SC combination meets the criteria of fast response and high-power 
density, as well as offering unlimited cycles of operation. However, it 

Table 4 
Comparison of energy purchased from the grid.  

Weather 
condition 

Total daily PV 
energy (kWh) 

EV energy (kWh) 
0–100 % 

PV-EV energy 
(kWh) 

% 

Little 
cloudiness  

132.63  20.40  10.50  51.49 

Clear day  181.63  20.40  8.22  40.29 
Semi-clear 

day  
125.83  20.40  8.35  40.95  

Fig. 10. Comparative analysis of MA, RR and PFS methods. (a) Input signal PV Power section. (b) Charging profile for EVCS.  

Fig. 11. Comparative analysis of MA, RR and PFS methods. (a) SOC for SC (b) SOC for VRFB.  
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requires a substantial SC capacity, which can be a drawback. The PV +
VRFB combination fulfills the rapid response, unlimited cycles, and RR 
limitation criteria. On the other hand, the PV + SC + VRFB method 
satisfies all the mentioned criteria, making it a comprehensive and 
effective solution for power smoothing and EVCS energy supply. 

5.2.3. Analysis of noise and disturbance signals 
Noise signals in control systems are usually common due to the 

different factors and electronic devices that make up power inverters 
and controllers. This section specifically analyzes the response of the 
controller under these effects. As observed in the previous figures, when 
starting and ending the PV generation stage, a small noise is produced in 
the PV power signal as a result of the power inverter starting. These 
values are usually very short-lived until the ideal MPPT (Maximum 
Power Point Tracking) value is updated. This defect is explained in 
Fig. 14(a) below, where the signal value can reach up to 4 kW during 1 s 
of recording. However, the proposed controller allows effective regu
lation up to a range of 0.2 kW and for lower values it returns the value of 
zero. In this way, the inappropriate use of ESS systems against this type 
of defective signals is regulated. 

In addition, Fig. 14(b) shows the response of the controller to 
generator disturbances in long and short periods of time. It should be 
noted that the PFS controller begins its configuration with a vector of 
pre-registered values, therefore for disturbances that exceed 5 min it 
requires a readjustment in NMSSC as indicated in Table 3. On the con
trary, for disturbance generated in periods <5 min, the controller has an 
optimal response that does not affect the output signal. Likewise, the 
amplitude of the disturbance is not relevant since the algorithm focuses 
on smoothing the output signal. In both cases, prior to the imple
mentation of the algorithm, stability and control tests must be carried 
out on each of the pre-established parameters to guarantee its optimal 
operation. 

5.3. Sensitivity analysis with respect to various EV characteristics 

In this section, we conduct two sensitivity analyses. Firstly, we 
examine the system’s impact when charging EVs to different SOC levels 
in the EVCS. Secondly, we investigate the influence of the number of EVs 
connected to the EVCS. On days with high solar irradiance, the system 
accumulates an average of approximately 130 kWh of daily energy, 
considering the 30 kWp maximum power of the CCTI-B laboratory’s PV 
system, as shown in Fig. 15(a). We evaluate the maximum SOC charging 
values for EVs: 20 %, 40 %, 60 %, 80 %, and 100 %. Results indicate that 
a fully charged EV battery reaches a maximum of about 20.4 kWh, 

representing 15.7 % of the PV generation capacity. Importantly, there is 
minimal difference between charging an EV to 20 % or 100 % SOC, due 
to the presence of VRFB, which redirect surplus energy to the grid after 
smoothing through the algorithm. This fixed data from the CCTI-B lab
oratory’s equipment allows us to observe system variations and 
responses. 

Fig. 15(b) displays the sensitivity analysis concerning the number of 
EVs connected to the EVCS. The system autonomously supports up to 5 
EVs with an average photovoltaic energy generation of 100 kWh. On 
higher PV generation days, it can fully charge up to 6 EVs without 
requiring power grid. It is possible to see that the energy for each 
additional electric vehicle is approximately 20 kWh, which has a mini
mal impact on the system. In summary, the sensitivity analysis reveals 
insights into the system’s performance in response to EV SOC levels and 
the number of connected EVs in various scenarios. 

5.4. Economic evaluation 

In this section, a cost estimation based on Table 1 is presented for 
integrated PV systems and sizing for SC and VRFB. Considering the 
power of the EVCS at 20 kWh, as analyzed earlier, it is possible to 
determine the cost and sizing for the PV system based on the number of 
EVs (NEV), SOCEV , and PV power (e.g., 6 kW generating 20 kWh) ac
cording to the energy it could deliver. The details are as follows in Eq. 
(16) [38]. 

CPV =
NEV × SOCEV × PGPV

100
× 870 = 8.7×NEV × SOCEV ×PGPV [USD/kW]

(16)  

where CPV represent the total cost of PV, NEV is the number of EV, SOCEV 
is the SOC of EV, PGPV is the peak PV power considers for full EV charge. 
Similarly, the cost and sizing estimation for VRFBs consider maintaining 
the SOC of VRFB at 25 % as the limit during the charging processes at 
any time of the day for the EV with power NEV and charging time ΔtEV . 

CVR =
0.75 × NEV × SOCEV × PEV × ΔtEV

100
× 700

= 5.25×NEV × SOCEV ×PGPV ×ΔtEV [USD/kWh] (17)  

where CVR represents the total cost of VRFB. Finally, an estimated value 
is established for the SC based on a 10 %/min reduction in PV fluctua
tions with a hybrid combination of VRFB and a nominal power of the PV 
system of 30 kW as follows. 

Fig. 12. Comparative analysis of power smoothing methods.  
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Fig. 13. Comparative analysis of MA, RR and PFS methods. (a) Little cloudiness. (b) Clear day. (c) Semi-clear day.  
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CSC =
NEV × PGPV × 0.4

30
× 27.5× 1000 = 360×NEV ×PGPV [USD/kWh]

(18)  

where CSC is the total cost of SC. The results of Eqs. (16)–(18) are pre
sented in Fig. 16(a) for different numbers of EVs at full charge 0–100 %, 
where the sizing of the VRFB and SC was characterized based on the 
experimental tests and on-site power. For example: The demand for 4 

fully charged requires 80 kWh. Which is covered by a 21 kW PV system, 
80 kWh VRFB and 0.3 kWh SC. Consequently, it would generate a total 
cost of approximately CPV + CVR + CSC = $ 71,520 for self-sustaining 
charging stations. On the other hand, Fig. 16(b) analyzes the cost 
implied by the system for 4 EVs with variable EV charging values. 
Considering the different charge probability of each EVs. That is, SOCEV 
= 90 %, 80 %, 60 %, 50 %. It can be seen how the dimensioning for VRFB 
varies considerably, becoming competitive in prices with the PV system. 

5.5. Future applications 

Due to the gradual increase in EV within distribution electrical grids 
[41], a progressive replacement and adaptation of conventional gas 
stations to EVCS can be envisioned. As depicted in Fig. 17(a), this study 
proposes the integration of photovoltaic systems with SC and VRFB to 
mitigate power fluctuations and the impact of EV charging peaks on the 
electrical grid. This process, in the future, involves replacing areas 
designated for fuel storage with alternative means such as VRFB (see 
Fig. 17b), ensuring efficient use of space and environmental sustain
ability. In Fig. 17(c), the current map illustrates five charging stations in 
the city with potential expansion into specific zones. The CCTI-B, 

Table 5 
Comparative criteria analysis of power smoothing methods.  

Method Fast response 
with high 
power density 

Unlimited 
operating 
cycles 

RR 
limitation10% 

Energy supply 
for EVCS 

PV + SC X X Depends on PV 
nominal power 

Requires 
significant SC 
capacity 

PV +
VRFB 

− X X X 

PV + SC 
+

VRFB 

X X X X  

Fig. 14. Analysis of noise and disturbance signals: (a) Controller response to noise signals. (b) Controller response to disturbance signals.  
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Fig. 14. (continued). 

Fig. 15. Sensitivity analysis (a) EV SOC percentage. (b) Integration of EV number.  
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Fig. 16. Cost analysis for different number of EVs for self-sustaining charging stations. (a) Full charge of EV battery. (b) Variable charging of EV battery.  

Fig. 17. Future fields of application of the case study: (a) Traditional service station. (b) Proposed EVs service station. (c) Charging station map for EVs.  
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considered as the baseline case study, will facilitate further in
vestigations in this domain. 

6. Conclusions 

This paper introduces the predictive-flex smoother (PFS), a novel 
method designed to mitigate power fluctuations in grid-connected 
photovoltaic (PV) systems while optimizing energy management in 
electric vehicle charging stations (EVCS). The PFS method incorporates 
a hybrid energy storage system comprising supercapacitors (SC) and 
vanadium redox flow batteries (VRFB), utilizing prediction algorithms 
and machine learning techniques for precise power fluctuation forecasts. 
The study demonstrates the practical efficacy of the PFS method in real- 
time power smoothing, achieving minimal delays (approximately 500 
ms). This results in enhanced stability by efficiently mitigating both PV 
and grid power fluctuations. 

The integration of SC and VRFB in the PV + SC + VRFB configuration 
significantly improves power smoothing capabilities, meeting rapid 
response, unlimited operating cycles, and ramp rate limitation criteria. 
Comparative analyses under various weather conditions underscore the 
system’s adaptability to diverse scenarios of PV energy generation and 
EV charging demand. The PV + SC + VRFB method optimizes surplus 
energy utilization while simultaneously reducing dependence on the 
grid. Performance comparisons with common methods, such as moving 
average (MA) and ramp rate (RR), highlight the superiority of the PFS 
method. It not only meets the 10 %/min ramp rate limit but also ach
ieves superior power smoothing results, enhancing the overall perfor
mance and stability of the system. 

Sensitivity analyses regarding EV state of charge (SOC) and the 
number of connected EVs underscore the system’s flexibility in handling 
different charging scenarios. These analyses provide valuable insights 
for optimized performance and sizing, offering practical implications for 
real-world applications. The economic evaluation reveals that the PV +
SC + VRFB system offers a cost-effective solution for self-sustaining 
charging stations. For example, charging 4 EVs at full load requires 80 
kWh, covered by a 21 kW PV system, 80 kWh VRFB, and 0.3 kWh SC, 
resulting in a total cost of approximately $71,520 for self-sustaining 
charging stations. 
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