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ARTICLE INFO ABSTRACT
Keywords: Currently, renewable energies and electric vehicle charging stations are essential for energy sustainability.
Power fluctuations However, the variable generation from renewable sources, such as photovoltaic systems, can lead to power peaks

Renewable energy systems
Photovoltaic technology
Electric vehicle demand
Power smoothing

that impact the stability of the grid. This challenge is exacerbated by the increasing demand in fast-charging
stations. Addressing these demand peaks is crucial to ensure the stability of the electrical grid. This paper in-
troduces the predictive-flex smoother, an innovative method designed to mitigate power fluctuations in grid-
connected photovoltaic systems while optimizing energy management in electric vehicle charging stations.
The predictive-flex smoother method incorporates a hybrid energy storage system comprising supercapacitors
and vanadium redox flow batteries to respond rapidly to electric vehicle charging stations demands, enhance grid
electricity purchase optimization, and improve energy quality delivery. The proposed method integrates two
control strategies: photovoltaic fluctuation reduction strategy and peak demand reduction strategy for electric
vehicle charging stations. By leveraging prediction algorithms and machine learning techniques, the predictive-
flex smoother method achieves precise power fluctuation forecasts, allowing efficient utilization of super-
capacitors and vanadium redox flow batteries to smooth photovoltaic power fluctuations and reduce electrical
vehicles peak demand. Comprehensive experimental investigations and simulations validate the method’s per-
formance under various operational conditions. The results demonstrate the effectiveness of the predictive-flex
smoother method, significantly improving the quality of power delivered to the grid while reducing costs. The
experimental platform, validates the real-time response of the proposed method, with response times under 500
ms. The experimental results further confirm the efficiency of the method in power smoothing and charging
strategies with varying electrical vehicles models and connection coefficients.
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Predicted PV values for a very short time interval for VRFB

SC performance during the storage charge process

SC performance during the storage discharge process

VRFB performance during the storage charge process

VRFB performance during the storage discharge process

SC reference power correction intensity modulation coefficient
SC maximum ramp value control

VRFB maximum ramp value control

SC minimum state of charge

SC maximum state of charge

VRFB minimum state of charge

VRFB maximum state of charge

Nominal power of the renewable PV system

Number of periods used to calculate the SC moving average
Number of periods used to calculate the variation in the energy
contained in the SC storage

Number of periods used to calculate the VRFB moving average
Number of periods used to calculate the variation in the energy
contained in the VRFB storage

Power transferred from the PV panels to SC storage in period t (cut
peaks)

Power transferred from SC storage to the grid in very short time
interval

Power transferred from SC storage to the grid in period t (fill gaps)
Power transferred from the PV panels to SC storage in very short
time interval

Energy contained in SC storage at the end of period t

Power transferred from the PV panels to VRFB storage in period t
(cut peaks)

Power transferred from VRFB storage to the grid in very short time
interval

Power transferred from VRFB storage to the grid in period t (fill
gaps)

Power transferred from the PV panels to VRFB storage in very short
time interval

Energy contained in VRFB storage at the end of period t

SC reference power prediction value using the moving average
method

VRFB reference power prediction value using the moving average
method

Value of the average variation of power in SC storage

Value of the average variation of power in VRFB storage

Power of EV charging

EV battery state of charge

Average annual mileage of an EV

Number of days an electric vehicle drives per year

Range of EV battery

Electric demand for charging power of EVs
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Current forecast number of EVs

EV charging time per day

PV power value obtained in real time

PV power value obtained in the subsequent time step

Peak PV power considers for full EV charge

PV power fluctuation calculated at two-time instants

Change rate of power value obtained in real time
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Nominal PV power

Modulation coefficient

Instant renewable power

d — dimensional vectors

Elements are the PV fluctuations f,,(j) represented by data vectors
The objective function representing the sum of squared distances of
each fluctuation group from its cluster centroid

The total number of clusters or centroids

Centroid of k-means algorithm
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Power from the grid
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1. Introduction
1.1. Context and motivation

Environmental concerns, technological advancements, and cost re-
ductions are driving the expansion of renewable energy sources (RES)
and electric transportation [1]. Among various RES photovoltaic (PV)
technology has experienced significant growth, playing a crucial role in
achieving a sustainable future [2]. However, the intermittent nature of
PV and sporadic electric vehicle (EV) demands pose challenges to power
supply stability and reliability [3]. These power fluctuations affect en-
ergy delivery, calling for power smoothing methodologies to enhance
grid or localized system quality and reliability [4]. Integrating energy
storage systems (ESS), electric vehicle charging stations (EVCS), and PV
systems offers a promising solution for power smoothing [5]. Super-
capacitors (SC) have garnered attention due to their high-power density
and responsiveness, effectively attenuating fluctuations in RES [6].
Recent studies confirm the effectiveness of SCs in mitigating load peaks
and ensuring stable energy output [7,8].

Flow batteries, such as vanadium redox flow batteries (VRFB), are
another attractive option due to their energy density and prolonged
storage capacity. They allow flexible energy management by gradually
releasing stored energy to address fluctuations [9]. Moreover, these
batteries are non-degradable over time, providing an almost unlimited
number of charge and discharge cycles without efficiency loss, unlike
lead-acid or lithium batteries. In PV systems supplying grid-connected
EVs, ensuring energy quality and reliability requires optimizing the
ESS’s operability. This paper focuses on PV systems with hybrid storage
(SC + VREFB) that supply EVs through EVCSs.

1.2. Literature review

The literature review reflects a growing interest in developing effi-
cient and reliable solutions to address power fluctuations in RES. These
methods have gained significant attention due to the challenges posed
by intermittent generation and the variability of RES. A notable
contribution, as outlined in [10], the authors introduce a multipurpose
control mechanism that not only prevents reverse power flow but also
optimally manages the state of charge (SOC) of batteries through a so-
phisticated energy smoothing system at the substation level. Simulation
studies support the efficacy of this mechanism in achieving precise
control objectives, identifying optimal locations for battery energy
storage systems (BESS), and determining suitable types of BESS. Further
enriching the literature, [11] explores an exponential linear smoothing
technique for power smoothing, guided by a reference signal. The po-
tential for refinement through predicting power fluctuations with higher
precision is emphasized. Advanced algorithms and operation strategies,
as discussed in [12], leveraging real-time data on power generation,
load demand, and relevant parameters. Research on a hybrid energy
storage system (HESS) composed of SCs and BESS, as presented in [13],
introduces an optimization feedback control mechanism fortified by
dual Kalman filters and a robust predictive control model. This intricate
control paradigm not only enhances BESS longevity but also effectively
mitigates power variations, thereby alleviating strain on SCs. Despite
these advances, there is a limited analysis of the cost implications
associated with energy storage devices, especially energy smoothing
storage systems [14]. This study addresses this gap by proposing an
innovative approach that leverages EV demand prediction to effectively
smooth PV power and EV demand, avoiding the need for excessively
large-scale traditional battery swapping stations.

As we transition from the literature review to a comprehensive
exploration of possible application fields, it is essential to note the
various methods researchers have employed for power smoothing using
SCs and BESSs. The authors in [15] provide a solution to the intermittent
and stochastic nature of renewable energy management using HESS to
maximize energy production and ensure service continuity.
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Additionally, [16,17] introduce approaches to mitigate the impact of EV
charging, such as smart charging or grid-to-vehicle (G2V) and vehicle-
to-grid (V2G). Effective energy control, as discussed in [18], can
harness the significant storage resources provided by EVs, influencing
future electrical grid operation and expansion plans. However, chal-
lenges persist in providing demand response through V2G and G2V,
primarily due to uncertainties regarding EV availability and the poten-
tial impact of V2G system aging on expensive EV batteries. While some
studies introduce energy allocation methods considering power fluctu-
ations of PV and BESS [19], there is a risk of overlooking future power
peaks, leading to oversized BESSs and increased system costs. In [20], a
fuzzy logic-based control system is presented to level daily load based on
V2G capacity, relying primarily on the current battery SOC. Steady-state
applications utilizing EV capacities, such as load management and
power smoothing, have been extensively explored in the literature
[21-23]. However, few studies propose EV demand prediction systems
to proactively reduce the power peaks they generate, and there is a
notable lack of research on predicting applications of VRFB for EVs [24].
VRFBs have been evaluated for energy storage and fast EV charging.
Important advantages are highlighted such as large storage capacity,
greater design flexibility, nearly unlimited lifespan, and the ability to
reuse deactivated underground gas tanks for installation at service sta-
tions, supporting the transition to electric mobility.

To further enrich the literature review, several studies have inves-
tigated the collective impact of individual RES on power smoothing. A
study in [25] emphasizes the implementation of grid-connected ESS
with SOC control for PV systems, demonstrating the efficacy of power
smoothing methodologies in attenuating RES variability. Mathematical
verification and case studies with power systems computer aided design
(PSCAD) software simulations support the logical proof of methodology
effectiveness. Similarly, [26] focuses on evaluating power smoothing
techniques for PV output, introducing a comprehensive methodology for
systematic evaluation. This study not only compares the performance of
different power smoothing methods but also considers their impact on
the BESS lifetime. The findings highlight the effectiveness of Fourier
analysis-based power smoothing methods and emphasize the crucial
role of SOC in influencing battery capacity loss. In the context of grid-
integrated PV systems, [27] proposes an adaptive smoothing frame-
work to address power fluctuations caused by passing clouds. The study
introduces a predictive and adaptive controller with two layers, effec-
tively reducing stress on the ESS by dynamically adjusting filter time
constants based on real-time power RR. The results demonstrate
improved power smoothing and reduced battery degradation compared
to fixed time constant-based techniques. Furthermore, [28] investigates
the stability and power-smoothing performance of a HESS integrated
with a large-scale hybrid wind and PV farm. The proposed HESS, con-
sisting of a VRFB and a SC, effectively enhances system stability and
mitigates power fluctuations. The study employs steady-state and tran-
sient simulations to validate the positive impact of the HESS on power
smoothing.

Considering the impact of RES on the reliability of PV inverters in
active distribution grids, [29] introduces a PV inverter reliability-
constrained control method. This approach incorporates power
smoothing to ensure efficient power loss minimization while addressing
uncertainties in PV generation and loads. The study employs a penalty
convex-concave programming method, demonstrating the high effi-
ciency of the proposed method in both minimizing power losses and
enhancing PV inverter reliability. In the realm of wear-out analysis, [30]
explores the implications of BESS converters performing peak shaving
and harmonic current compensation operations. The study reveals a
trade-off, with harmonic current compensation operations enhancing
grid power quality but affecting the reliability of the BESS converter.
The findings underscore the need for careful consideration of the bal-
ance between enhanced power quality and BESS reliability. Lastly, [31]
introduces a HESS employing a VRFB and SC for grid-integrated PV
systems. The proposed control strategy, incorporating a mixed-order
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generalized integrator and improved sparrow search algorithm tuned
tilt integral-derivative with filter controller, effectively manages power
fluctuations. The study demonstrates the overall effectiveness of the
proposed control strategy under various conditions, highlighting its
potential for high-energy and power support.

The authors in [32] present an innovative power smoothing tech-
nique using fuzzy logic in electric vehicle batteries to optimize self-
consumption and reduce power fluctuations for island power systems.
The behavior of the battery energy storage system of EVs has also been
studied as a control strategy to smooth out the fluctuations of wind
energy composed of several EVAs with different response parameters
[33]. This study highlights the adaptive SOC method and the energy
production limits restricted by maximum operating areas. Recent
studies also propose multi-agent deep reinforcement learning for fast
charging stations for electric vehicles, which smoothes the spatial dis-
tribution of electric vehicle charging demands and reduces traffic
congestion in the electrical grid [34].

The reviewed research provides practical applications in the field of
renewable energies and energy fluctuation control. The multipurpose
approach of [10] presents applications in efficient battery management
and the mitigation of challenges associated with intermittent genera-
tion. The exponential linear smoothing technique of [11] emphasizes
the improvement in the accuracy of predicting energy fluctuations.
Advanced algorithms and real-time operational strategies, as described
in [12], are applicable to energy smoothing in PV systems, explored in
[13]. The prediction of EV demand to smooth solar energy generation,
proposed in [14], offers a practical application for optimizing EV
charging infrastructure. These applications illustrate the possibilities
derived from the literature review in the field of renewable energies and
energy storage.

1.3. Research gaps

In the literature review, a growing interest has been observed in the
development of efficient and reliable solutions to address power fluc-
tuations in RES. However, there are still some research gaps. The main
identified gaps are as follows:

e Although BESS have been proposed to reduce power fluctuations in
PV and EVCS, the disadvantages related to their lifespan and
replacement costs due to deep charge/discharge cycles have been
overlooked [10,11].

Despite the usefulness of SCs in mitigating fluctuations in RES, their
potential has been underestimated by not fully analyzing the ad-
vantages of combining them with BESS using fluctuation prediction
algorithms [12]. In a previous work by the authors in [12], the
feasibility of the fluctuation prediction method was demonstrated,
but BESS and EVCS were not considered. In addition, for this study, a
controller is implemented that integrates the hybrid SC and VRFB
systems, enabling a reduction in the ramp rate to approximately 1 %.
This demonstrates robust response and establishes a strategy for
optimal peak reduction in EVCS. Similarly, the controller integrates
the proposed vehicle charging power prediction from [35], utilizing
hybrid storage systems to mitigate peaks in EVCS.

e HESS combining SCs, and BESS have been examined, but most
studies have focused on lead-acid and lithium-ion Dbatteries,
neglecting promising technologies like VRFB in conjunction with SCs
[19].

It is necessary to optimize the operability of HESS through long-term
fluctuation predictions, as the stochastic nature of PV energy re-
quires longer intervals to obtain accurate values [12,24].

Energy management in V2G or G2V systems must consider the
impact of PV power peaks matching with multiple EVCS charging or
discharging power peaks to improve grid stability and leverage the
benefits of fluctuation prediction through the combination of RR and
MA methods [13,17,20].
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Fig. 1. Design and architecture of the proposed hybrid renewable system.

e The proposed adaptive smoothing framework for grid-integrated PV
systems, as presented in [27], introduces a predictive and adaptive
controller to address power fluctuations. However, further investi-
gation is needed to explore the broader applicability of this frame-
work and potential refinements for diverse weather conditions.

o The HESS proposed in [31] combining a VRFB and SC shows promise
in managing power fluctuations. However, research gaps persist in
assessing the economic viability, scalability, and potential integra-
tion challenges of this specific HESS configuration in grid-integrated
PV systems.

1.4. Contributions and paper organization

To address the previously identified research gaps, this paper in-
troduces an innovative method called “predictive-flex smoother” (PES).
Its objective is to mitigate energy fluctuations in PV systems connected
to the grid by using a HESS that combines SC and VRFB. This approach
enables a rapid response to the demand of EVCS, optimizing electricity
purchase from the grid and improving the energy quality delivered to it.

The joint control system relies on two innovative strategies: the first
aims to reduce PV fluctuations, while the second targets peak demand
reduction for EVCS. To achieve this, prediction is employed to calculate
the EV charging energy demand, minimizing the impact on the grid
through VRFB storage and achieving zero consumption from the electric
grid. The method’s effectiveness and performance were evaluated
through experimental research and simulations under various opera-
tional situations and conditions.

The main scientific contributions of this approach lie in the combi-
nation of RR and MA methods with machine learning techniques to
prediction mechanism for PV-induced power fluctuations, supported by
previous research. Additionally, this novel technique seeks to smooth PV
power fluctuations and counteract EV demand patterns, resulting in a
significant improvement in the quality of power delivered to the grid
and reducing the cost. For simplicity, the main contributions are sum-
marized below:

- Development of the PFS method for PV systems with a HESS with SC
and VRFB.

- Implementation of innovative control strategies: PV fluctuations
reduction strategy and peak demand reduction strategy for EVCS.

- Utilization of prediction to calculate EV demand and minimize grid
impact through VRFB storage.

- Validation through experimental research and simulations in various
operational situations and conditions.

The structure of the article is as follows: Section 2 initially defines the
challenge of integrating renewable sources and mitigating fluctuations.
Secondly, it addresses the potential impact of EVCS on the electrical
grid. In Section 3, the proposed power smoothing method is detailed,
based on two control strategies: a) PV fluctuation reduction strategy,
and b) peak reduction strategy for EVCS. The specific analysis focuses on
the hybrid combination of SC and VRFB. Section 4 presents the appli-
cation through a case study with real charging station profiles for EVs,
including the integration of the algorithm into the supervisory control
and data acquisition system. In Section 5, the obtained results are
analyzed in comparison to other smoothing methods, providing a
comparative study under different climatic conditions over three
representative days. This is accompanied by a sensitivity analysis and a
comprehensive technical-economic study. Finally, potential future
application fields are presented, and Section 6 concludes the article.

2. Problem definition

To achieve the proposed objective in this study, several perspectives
and steps must be considered. Firstly, the reduction of PV fluctuations
has a maximum allowed rate of 10 %/min, as certified by certain energy
distribution companies [24]. To address faster fluctuations, SC are
employed. Some studies propose installing lead-acid or lithium-ion
BESSs alongside the PV system [36,37], while others suggest using SC
banks or a combination of both [27,28]. However, the approach pre-
sented in the former studies is generally not advantageous, as the costs of
BESS replacement may not generate sufficient revenue for power
smoothing applications. On the other hand, the latter approach [27,28]
shows more promise provided an appropriate energy control is imple-
mented, and fluctuations are accurately classified based on their rate of
change. This can be achieved through precise power fluctuation pre-
diction, as demonstrated in this study. For this purpose, the “PV fluc-
tuation reduction strategy” is presented, based on [12], considering PV
and SC, and generating the reference power for SC (P5C,).

Secondly, simultaneous reduction of electricity purchase from the
grid during EVCS peak demands is addressed with the assistance of SC
and VRFB. EVs are classified based on their intended purpose, including
private vehicles, official vehicles, taxis, and buses [35]. In [38] the au-
thors classify EV charging infrastructure into three levels: (i) level 1 and
2 residential charging, (ii) level 2 work and public place charging, and
(iii) level 3 dc fast charging. In this study, the prediction of demand for
public EVCSs considers only two criteria: private EVs and electric taxis
(TEVs), as official EVs and electric buses typically have their own
specialized charging facilities. To address this, the “peak reduction
strategy for EVCS” is presented, based on [12], but considering VRFB
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and the EV’s demand (Xgy). Fig. 1 illustrates the schematic diagram of
the proposed method and extensive experimental tests have been con-
ducted in the microgrid laboratory at the University of Cuenca (CCTI-B).
The proposed control system is executed through the SCADA system,
and HESS components are interconnected to an alternating current (AC)
bus, which is subsequently connected to the electrical grid.

3. Proposed PFS method

The proposed method is based on a combination of conventional
algorithms RR and MA. This combined approach provides a robust and
accurate power reference signal for the hybrid storage system (SC and
VRFB), considering predictions of power fluctuations PV, EVCS, and
energy exchange with the electrical grid. To achieve this, the proposed
PFS method introduces two control strategies, which are described
below:

3.1. PV fluctuation reduction strategy

In the first stage of this strategy, the ramp limit for the output power
is set by calculating the PV power variation during a predefined time
according to Eq. (1):

dp(1) S [pe(t+1) —pi

(®)
< o
7 | A7 < 10%Pn (€D)]

fo(t) =

where fp, (t) is the PV power fluctuation calculated at two-time instants,
D: represents the instantaneous PV power at time ¢, and its derivative
indicates the rate of change with respect to time, dt. This representation
can be calculated as the PV power value p;(t + 1) at a time t 4 1 within
the time range At, typically within a 1-minute window. The obtained
value is recommended to be within +10 %/min of the nominal power of
the installation Pn.

To reduce power fluctuations, it is necessary to identify peaks that
surpass the threshold value. For this purpose, we employ a cluster-based
machine learning technique to classify the fluctuations, and we explain
this technique here. Considering each day, to categorize groups of pos-
itive and negative power fluctuations derived from Eq. (1). The
correction method utilizes the k-means algorithm for clustering and the
selection of representative days. The primary objective is to minimize
the sum of squared distances, rglflnE (p;) » for each fluctuation group from

'
its cluster centroid. This process is executed through the following
function, as defined in Eq. (2). The power fluctuation data is represented
by vectors of real values in d dimensions (8640 per day):
{ for(1) . fv(2), .. fov(n) } The k-means algorithm determines k clusters

where the sum of distances of the data within each group, Sf,, =
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where Sf,,, are elements are the PV fluctuations fp,(j) represented by
data vectors, y; are the centroid of k-means algorithm, k represent the
total number of clusters or centroids.

In this way, the modulation coefficient (CC) can be established for
the number of cycles required for the BESS optimization as the sum of
the clusters k that exceed the +10 % threshold and is calculated as the
number of positive fluctuations kupesiive divided by the number of
negative fluctuations kyunegarive (CC = Kupositive/K#negative)- In the second
stage of reducing PV fluctuations, the reference power for SC operation
is determined using the MA method to predict the value (ﬁtsc) as shown
in Eq. (3).
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This prediction represents the expected SC operation for the next
time instant (t + 1) based on the current time (t). The prediction window
is short-term, typically around 10 min, and can be adjusted based on the
user-defined interval (NMASS). The choice of NMAS® depends on the
desired precision and the ramp rate of fluctuation, which in this case is
10 % per minute. In Eq. (3), the term X, ysc., ; represents the pre-
dicted PV power values for a very short time interval from input vector
X;. Subsequently, using the RR method described in Egs. (4)-(7), the
energy storage variation in SC is calculated while considering the pre-
scribed allowable ramp rate &R,,q.°C for a specific time interval At5C. The
efficiencies of charging and discharging, 7.5¢ and 7,5 respectively, are
considered in these calculations. Additionally, the coefficient of modu-
lation CC allocates the adjustment parameter based on a comprehensive
cluster analysis of the charging/discharging cycles using the k-means
algorithm as defined in Eq. (2). Ultimately, the reference power value for
the SC system, denoted as Pscrgf, is established through these computa-
tions [12]. This configuration allows optimizing the use of super-
capacitors in the performance of charge/discharge cycles.

¢ = max{0,X, — (p; + P-Rya*-60-A°C) } @
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where p;5¢ i
average method, NMASC represent the number of periods used to

calculate the SC moving average, X, y,usc.,_; is the predicted PV values

is the SC reference power prediction value using the moving

for a very short time interval, vs5¢ is the power transferred from the
photovoltaic panels to SC storage in period t (cut peaks), X, is output
power of the PV installation (without smoothing) at instant t, p, is PV
power value obtained in real time, P is the nominal power capacity of the
PV system, At5C represents SC time interval, sr,°C is the power trans-
ferred from SC storage to the grid in period t (fill gaps), Aggesc is the

value of the average variation of power in SC storage, NMS®C represents
the number of periods used to calculate the variation in the energy
contained in the SC storage, vs5¢,_yssc._; is the power transferred from
the PV panels to SC storage in very short time interval and

ST s o1+
3.2. Peak reduction strategy for EVCS

In this second strategy, the reference power for the VRFB is gener-
ated considering the reduction of PV fluctuations and the optimal energy
management for the EVCS. To obtain the prediction of fluctuations, note
that Eq. (8) is similar to (3), but with the difference that now the initial
memory NMAR is calculated with respect to the VRFB instead of the SC.
Likewise, the MA method is used, and consequently, the RR method is
applied to limit fluctuations, which are commonly slower and beyond
the reach of the SC, as represented in Eqgs. (9)-(11).
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where p; "R is the VRFB reference power prediction value using the MA
method, NMA'R is the number of periods used to calculate the VRFB
moving average, X, yyavr_,_; is the predicted PV values for a very short
time interval in VRFB, vs;'R is the power transferred from the PV panels
to VRFB storage in period t (cut peaks), Rmax '} is VRFB maximum ramp
value control, At'R is VRFB time interval, sr,'® is the power transferred
from VRFB storage to the grid in period t (fill gaps), Agocir is the value of

the average variation of power in VRFB storage, NMS'® represents the
number of periods used to calculate the variation in the energy con-
tained in the VRFB, 7."R and 57,"R VRFB performance during the storage
charge and discharge process respectively, vs'®,_ o=, ; represents the
power transferred from the PV panels to VRFB storage in very short time
interval, sr'R,_ o ,,; is the power transferred from the PV panels to
VREFB storage in very short time interval.

Subsequently, to generate the reference power for the VRFB (P'%,),
it is necessary to consider the coefficient of the demand prediction
model of the EVCS, (Xgy). This coefficient assigns the adjustment
parameter and is calculated using Eq. (13). Then, to reduce the impact of
EVs, an estimation of the EV demand is used through the charging de-
mand characteristics of EVs as expressed in Eq. (15).

By considering various factors affecting the location of EVCSs, a
relationship between quantitative factors and the mathematical model is
established, ultimately obtaining a reasonable and reliable scale for the
EVCS expressed in Eq. (13). It is worth noting that the Ry 'R values
differ for each storage system. To leverage greater energy accumulation
in the VRFB, its RR must be set higher 4Ry "">> + Rya,>C. Finally, the
reference power value of the VRFB (PVRref) is established, considering
the mitigation of SC fluctuations already executed in the previous
strategy (Agocue + P5C,¢) and the power of the EVCS Py as shown in Eq.

(12) [35]. This configuration enables effective control of SOC for VRFB.
Consequently, it facilitates regenerative energy accumulation to miti-
gate the impact of peaks generated during vehicle charging on the grid.
Moreover, it allows for the adjustment of EVs demand prediction with
characteristic tuning parameters tailored to each specific case.

P, = 5" + Xpy-Dgoem + Py — Pry (12)

Subsequently, to generate the reference power for the VRFB (PR ),
it is necessary to consider the coefficient of the demand prediction
model of the EVCS, Xgy. This coefficient assigns the adjustment
parameter and is calculated using Eq. (13). Then, to reduce the impact of
EVs, an estimation of the EV demand is used through the charging de-
mand characteristics of EVs as expressed in Eq. (15) [35].

Xpy = Mgy X Agy X Ppy X gy 13)

where Xpy the demand for charging power (kVA) of EVs, Mgy is
connection coefficient, which is between 0 and 1; Agy is the current
forecast number of EVs, Pgy is the power of a single EV, and yy is the EV
charging time per day.

SY/Tgy
Yev = sD

14)

where ygy is actual charging time of EV per day, SY is Average annual
mileage of an EV (km), Tgy is the number of days an electric vehicle
drives per year, SD is the range of electric vehicle battery (km). In the
event that the number of Electric Vehicles (EVs) is unavailable, or a
prediction is desired, the following equation proposed by [35] can be
utilized.

Fro
m

Fr=Fr +pm—Fr_1)+gq (m—Fr_y) (15)

where Fr is cumulative consumption until T, Fy_; is cumulative con-
sumption before T — 1 m is maximum coefficient of sales on the market.
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‘ Input data:

PV Power: [Ppy]
EV Power: [Pgy]
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Initial memory value for moving average: [NMA]
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Fig. 3. Flowchart illustrating the novel proposed methodology.

p is innovation coefficient, which represents the number of people who
buy products that are influenced by other consumers; q is the imitation
coefficient, which represents the number of people who buy products
[35].

In the Fig. 2, the process of the PFS Method controller is summarized.
The input values include the power of the PV system and the power of
the EV. To establish reference values for the SC and VRFB, two strategies
are generated: the PV fluctuations reduction strategy, as outlined by Egs.
(3)-(7). The controller, previously proposed by the authors in [12], has
been integrated with the EVCS, following the same concept of deter-
mining a lower ramp rate, as defined by Egs. (8)-(15).

3.3. Computational implementation of the proposed algorithm

This section provides a detailed explanation and implementation of

PV System

the method. Fig. 3 shows the flowchart, illustrating the control algo-
rithm steps. Pseudocode for each step is presented below. The PV fluc-
tuation reduction strategy (items 3-5) and peak reduction strategy for
EVCS (items 6-8) are included:

1. Data Input. Real-time power data is collected for each system, and
the constant adjustment parameters of the algorithm are entered.

2. Restriction on PV inverter usage. To prevent the use of storage sys-
tems, the reference power for SC and VRFB is set to zero.

3. RR restriction for SC. The allowable upper RR is limited to 10 % of
the PV nominal power.

4. Predictor corrector (P—C) method and control system for SC. The
prediction and correction method are applied using SC [12].

Utility grid
\,

Fig. 4. Pictorial representation of the laboratory equipment (CCTI-B) used for the experiments of the proposed PFS method.
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5. SOC restriction for SC. Maximum and minimum values are estab-
lished for the SOC of SC. When the set range is exceeded, VRFB is
combined with SC.

6. RR restriction for VRFB. The allowable upper RR is limited to 1 %

Journal of Energy Storage 86 (2024) 111230

delivers energy with very fast response, combined with VRFB to
improve the PV system’s output signal and energy accumulation for
EVSC.

. SOC restriction for VRFB. Maximum and minimum values are

(adjustable heuristically) of the PV nominal power for energy
utilization.

. P—C method and control system for VRFB. The prediction and
correction method are applied using VRFB. SC initially absorbs and

Pseudocode

established for the SOC of VRFB.

1. Data Input
. Constant data: P, RyG., AtSC, NMASC, NMS5¢, 08¢, niC, CC,S0CS,,
Ry, AtVR, NMAYR, NMSVF, ni®, nt", SOCHE . SOC yfys

SOC fncam R YSrfaX’ AtSC’

. Variable data: p;, X;, SOCS¢, SOC"R, Xpy,, Py
2. Restriction of use of PV inverters:
Ifpe <0
Pep =0
. End if
3. Restriction of ramp-rate (+) and () for SC

3.1 If |pe — Peq| > P Ry - 60 - ALSC

32, Ifp,—peq >0

33. Xe =Dy + P RES, - 60 - ALSC

3.4, Else X; = p;_y — P+ R, - 60 - At5C
3.5. End if

3.6. End if

4. PV Fluctuation Reduction Strategy for SC
Data processing:
Reference PV power prediction value using the MA method.

4.1. Aptsc = NMlAsc thv:h{ASC X NmasCir—1

*NMASC initial memory time required (10 min) for SC

Power transferred from the PV panels to storage in period t (cut peaks)
4.2, v5.5¢ = max{0,X; — (p; + P RS - 60 - At5€)}

Power transferred from storage to the grid in period t (fill gaps)
4.3, s1.5¢ = max{0, (p; + P - R3S, - 60 - At5C) — X}

Value of the average variation of power in storage

sc_ _ 1 NMSSC
4.4. ASOC[ = Wztzl

*NMSSC initial memory time required (5 min) for SC
*Charge and discharge efficiency parameters 3¢ and n3¢ for SC
Reference power to SCs
4.5, PresSC =p°C + CC - Asoc,*®
*CC correction intensity modulation coefficient [0-5]
5. Restriction of SOC for SC and reference power assignment
5.1. IfSOCSE,, < SOCsc < SOC 3%
5.2. Psc = prefsc
53. ElsePsc =0
5.4. End if
6. Restriction of ramp-rate (+) and (-) for VRFB
6.1. If [p, — pe_1| > P - RYR, - 60 - AtVR

62. Ifp,—pi—1>0

6.3. Xy =pi_q +P-RVR,.-60-At'R

6.4. Else X, = p,_; — P - R}R. - 60 - AtVR
6.5.  Endif

6.6. End if

7. Peak Reduction Strategy for EVCS and control system for VRFB

SC . 1,oSC _ 1 .sc
(g™ - vs™ (_nmsSCir—1 m ST t-NMSSC4t-1)

Data processing:
Reference PV power prediction value using the MA method.

719" = NM;VR thv:MlAVR KXo NMAVR 471

*NMAVR initial memory time required (=20 min) for VRFB

Power transferred from the PV panels to storage in period t (cut peaks)
7.2. vs,"® = max{0,X, — (p, + P - R}R - 60 - AtVR)}

Power transferred from storage to the grid in period t (fill gaps)

7.3. sV = max{0, (p, + P - R}R, - 60 - AtVR) — X,}
Value of the average variation of power in storage

VR _ _ 1 NMSVR
7.4. ASOCt = WZt:l

*NMSVR initial memory time required (5 min) for VRFB
*Charge and discharge efficiency parameters n¢® and nb® for VRFB
Reference power to VRFB
7.5 Dres’® =" + Xpy - Asoc,"® + Pres*c — Py
*Xpy demand prediction model of charging stations
8. Restriction of SOC for VRFB and reference power assignment
8.1. If SOCYR , < SOCyg < SOC YR,

min’ =

82 P = pres®
83. ElsePjp =0
8.4. End if

VR . ., VR _ 1 VR
(™ - vs™ _nmsVR -1 IR ST NmMsVRyt-1)
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Fig. 5. Screenshot of the SCADA system. (a) Implementation of the proposed algorithm. (b) System response time.

Table 1 Table 2
Technical specifications of the equipment employed in the experiment. Primary technical details of the analyzed EVs.
Equipment Model Cells/ Operating Energy  Capital EV model Type  Battery Autonomy electric Regenerative
description modules voltage cost capacity range braking
PV system Monocrystalline 60 (15 x 150 Up to 870 BYD E5 BEV 60 kWh 400 km Yes
1(5 4) Vdc-450 50 (UsSb/ 300
kWp) Vde/230 kWh kW) IONIQ EV BEV 39 kWh 300 km Yes
Vac [39] KIASOUL  BEV 64 kWh 450 km Yes
PV system Polycrystalline 60 (15 x 150 Up to 857 EV
2(15 4) Vde-450 50 (USD/
kWp) Vde/230 kWh kW)
Vac [39] 4.2. Experimental validation of energy storage systems and electric
SC Maxwell 10 cells 560 Vdc/ 0.4 27.5 .
vehicles
BMOD-0130 230Vac kWh (USD/
Wh) . . . .
[12] Experimental tests on HESS and EVCSs validate their real-time
VRFB Cell Cube FB 1 48 Vde/ 100 700 functionality and response, controlled by the SCADA system using
10-100 integrated  127Vac; kWh (Usb/ MATLAB. Fig. 6(a) shows VRFB charge and discharge tests. The state of
module 230vac m};) charge of the VRFB SOCygss can be calculated based on the operating
Utility grid ~ N/A N/A 230 Vac N/A voltage as indicated in Fig. 6 where the operating range for each cluster

4. Case study
4.1. Implementation of the PFS in the experimental platform (CCTI-B)

The CCTI-B served as the experimental platform for validating the
power smoothing method. Fig. 4 illustrates the equipment configura-
tion, with further details in [28]. To ensure efficient communication, an
Ethernet Modbus TCP/IP connection and MATLAB code were designed
for seamless interaction between devices and the SCADA system,
enabling control and monitoring through a MATLAB and LabVIEW
interface [29]. Fig. 5 shows the real-time implementation of the hybrid
storage system, effectively smoothing both PV and power grid. The
proposed algorithm operates autonomously with minimal delays (500
ms). The primary technical specifications of the system components
being tested are presented in Table 1. Similarly, Table 2 presents the
technical details of the EVs employed in this experiment. Three EVs were
utilized to ensure comparative results and mitigate any potential im-
perfections that may arise.

A, B is between 42.7 V and 62.89 V, which indicates an approximate
variation of 20 V in energy storage in concentration of vanadium ions
and protons. The VRFB can be regularly deep discharged (0 % charge
level) without damaging itself. However, as for all electrochemical
batteries, output power (kW) and capacity (kWh) may be affected by
temperature and other operating conditions [40], while Fig. 6(b) depicts
SC charge and discharge performance at different power settings.
Response times, <500 ms, align well with mathematical models,
ensuring reliable practical operation. The time of energy use by SCs is
reduced in the order of seconds, however they have a very fast response
to large amounts of energy, which is their main advantage within HESS.

Results for various EV models, including the KIA SOUL, are presented
in Fig. 7(a), evaluating power smoothing with semi-fast and fast char-
gers. Fig. 7(b) illustrates the power demand of EV charging, denoted as
(Xgy), utilizing Eqgs. (16) and (17). This characterization is based on EVs
with an average annual mileage of SY = 200.000 km, estimating Try =
300 days of EV operation per year, and an electric vehicle battery range
SD = 200 km per charge. The power of each EV (Pgy = 45 kW) with a
charging time of 30 min. The graph explores a range of 1zy =1 to 10 EVs,
and the connection coefficient Mgy is varied from 0.1 to 1. These ana-
lyses provide insights into charging strategies and the real-world
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performance of EVs.

Table 3 summarizes the adjustment parameters of the case study for
the implementation of the proposed algorithm as established in Section
3.3.

5. Results and discussions
5.1. Power smoothing results

This section presents the results of the proposed PFS method.
Initially, the PV/EVCS system’s conventional behavior connected to the
grid is shown in Fig. 8(a), without any power smoothing methods or ESS
(SC and VRFB). In the red box, it becomes evident that the PV power
alone cannot fully meet the demand of the connected EVs. As a result,
additional power from the grid (Pgrip > 0) is required to fulfill the EVs’
demand. Moreover, the PV power fluctuations exceed the maximum

10

allowed RR (10 %/min), causing disturbances in the grid throughout a
typical day.

To address this issue, Fig. 8(b) demonstrates the application of the
PFS method for the same study day, now considering the HESS (SC +
VRFB). In the red box, it can be observed that the power sent to the grid
(Pgrip = 0) is skillfully smoothed, exhibiting a RR that remains below 1
%/min of the nominal PV power. To achieve this, the SC actively con-
tributes by providing reference power (Psc), guided by the PFS algo-
rithm, while the integration of VRFB (Pyr) notably enhances the power
output delivered to the grid (Pgrip), assisting the SC in peak reduction
and satisfying the EV demand. As a result, the algorithm’s capability to
effectively mitigate PV fluctuations at 1 %/min is evident, harnessing
this control strategy to minimize the adverse impact of EVCS.

In pursuit of enhanced efficiency and optimal sizing of VRFB and SC,
the algorithm maintains the VRFB power reference (ps'?) at approxi-
mately 50 % of the VRFB state of charge (SOCyr). This approach ensures
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Table 3
Adjustment parameters for the control algorithm.
Description Symbol  Parameter Considerations
value
Charging time of EV Atgy 30 min Semi-rapid or rapid
charger type
SC time interval AtSC 1 min
VRFB time interval AR 1 min
SC performance during the s 95 % Validate with
storage charge process experimental tests
SC performance during the e 96 % Validate with
storage discharge process experimental tests
VRFB performance during the neR 90 % Validate with
storage charge process experimental tests
VRFB performance during the — pJR 92 % Validate with
storage discharge process experimental tests
SC reference power correction cc [0-5] Previous analysis with
intensity modulation fluctuation cluster
coefficient
SC Maximum Ramp Value RSC. 10 % x P Allowed ramp-rate
Control according to nominal
power
VRFB Maximum Ramp Value RR. 1% xP Allowed ramp-rate
Control according to nominal
power
SC minimum state of charge socsS, 0-5% Requires initial
preload
SC maximum state of charge socs¢. 95 %-100 Set by manufacturer
%
VRFB minimum state of charge socﬁn 0-5% Set by manufacturer
VRFB maximum state of SOCYR, ~ 98%-100%  Set by manufacturer
charge
Nominal power of the P 30 kW
renewable photovoltaic
system
Number of periods used to NMASC 10 min Time window for
calculate the SC moving smoothing 10 %
average
Number of periods used to NMSSC 5 min Time window for
calculate the variation in the smoothing 10 %
energy contained in the SC
storage
Number of periods used to NMAR 20 min Time window for
calculate the VRFB moving smoothing 1 %
average
Number of periods used to NMS'R 20 min Time window for
calculate the variation in the smoothing 1 %
energy contained in the
VREFB storage
Average annual mileage of an SY 200.000 km  Estimated value of EV
EV (km) models
EV connection coefficient Mgy 0.8 Estimated value of EV
models
Number of days an electric Trv 300 Estimated value of EV
vehicle drives per year models
Range of EV battery (km) SD 200 km Estimated value of EV
models
Current forecast number of Apv 5 Range of VE used by
EVs CcS

that the VRFB system is sufficiently equipped to handle the impact
associated with Pgy and the PV fluctuations that the SC cannot cover
throughout the day, regardless of specific time frames. Additionally, the
charging and discharging states of VRFB are autonomously regulated by

(p,erR) in response to PV fluctuations, guaranteeing seamless

compensation. This logic prevents unnecessary operation of the SC, as it
is backed up by VRFB. This storage system SOC control strategy has been
explained in steps 5 and 8 of the flowchart and pseudocode.

The power required for charging the EV averages Pgy = 50 kW, with
an accumulated energy of 20 kWh. This energy needs to be supplied by
the grid and the PV generation during the hours of the charging station’s
operation. In other words, Pgrip = Ppy — Pgy. In the strategy formula-
tion, the contribution from the grid is minimized to zero due to the
contribution provided by the ESS: Pgrip = Ppy+ Psc+ Pyr — Pgy.

11
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Consequently, the mitigation of PV fluctuations is significantly reduced
to <1 %/min, minimizing the direct impact of EVCS on the grid. It is
worth noting that the SOC control for the VRFB is directly determined by
a hybrid control algorithm combined with the SC. This hybrid approach
allows for an oscillatory range of charging and discharging periods close
to 50 % to address variable disturbances effectively. In Fig. 9(a), the
spectral analysis of the smoothed signal with respect to PV power shows
a significant reduction of 30 dB in the analysis range. The reduction in
fluctuations at this stage maintains values below 1 %/min, facilitating
the appropriate control of SC and VRFB within the specified maximum
and minimum SOC ranges. This is achieved through the hybrid combi-
nation of these rapid and robust systems. Moving on to Fig. 9(b), the RR
analysis from Eq. (1) is presented, examining three days: little cloudi-
ness, clear day, and semi-clear day. Various RR percentages per minute
are analyzed, projecting energy utilization below 10 % for energy
storage and EVCS usage. The accumulated energy within this range al-
lows for an additional 10 kWh to be generated, which can be stored
while reducing the RR to as low as 1 % using the proposed method.

Therefore, the Table 4 presents a comparison of energy purchased
from the grid under three different weather conditions. It shows the total
daily energy generated by the PV system in kWh, the energy consumed
by EV to charge them from 0 to 100 % in kWh, the PV energy used to
charge the EVs in kWh, and the percentage of this energy relative to the
total daily PV energy. In each condition, it is evident how the amount of
energy purchased from the grid varies based on PV energy generation
and EVCSs demand, highlighting the system’s efficiency in different
weather scenarios.

5.2. Comparison with other methods of power smoothing

5.2.1. Smoothing response analysis

This section compares the novel proposed method with two
commonly used methods (MA and RR) as shown in Fig. 10(a). The MA
method averages current power fluctuations without considering any
prediction, leading to an exaggerated output signal. In contrast, the RR
method only applies the ramp limit without considering the energy
reserve for the ESS, unlike the proposed PFS method, potentially causing
oversizing of the HESS. Fig. 10(b) illustrates that the proposed algorithm
compensates the power profile of the EVCS directly with the VRFB,
resulting in negative power curves if f,,(t) < Pgy. The SOC is optimized
for the SC and VRFB through predictive fluctuation analysis, as depicted
in Fig. 11. The novel PFS method ensures optimized operability of the SC
without erratic behavior observed in other power smoothing methods.
The VRFB assists by providing energy during periods of lower power
demand, enhancing the SC system’s performance. These findings high-
light the superiority of the proposed strategies over the commonly used
methods, showcasing the effectiveness of energy accumulation analysis
in SC and VRFB systems.

The comparative analysis in Fig. 12 demonstrates that the proposed
PFS method outperforms the RR and MA methods in smoothing the PV
power signal while staying within the 10 %/min limit. While all three
methods meet the RR requirement, PFS achieves better power smooth-
ing, thanks to its predictive capabilities and real-time correction stra-
tegies. The RR method lacks energy reserve management and response
to rapid fluctuations, leading to potential oversizing and inadequate
performance. Similarly, the MA method introduces averaging errors and
delayed response times, making it less efficient in handling dynamic
power profiles.

5.2.2. Analysis under different weather conditions

The PV system’s daily power generation can exhibit unpredictability
due to the intermittent nature of cloud cover. The comparison with
various weather conditions is depicted in Fig. 13, where a comprehen-
sive evaluation is performed by comparing the outcomes obtained with
the MA and RR methods. It is important to note that during periods of
negative power output (Pprs < 0), the VRFB play a crucial role in
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Table 4
Comparison of energy purchased from the grid.
Weather Total daily PV EVenergy (kWh)  PV-EV energy %
condition energy (kWh) 0-100 % (kWh)
Little 132.63 20.40 10.50 51.49
cloudiness
Clear day 181.63 20.40 8.22 40.29
Semi-clear 125.83 20.40 8.35 40.95
day

supporting the system. This contribution is facilitated by the imple-
mentation of the peak reduction strategy for EVCS, which optimizes the
distribution of energy required by the EVs based on their respective SOC.

By analyzing the comparative results, it becomes evident that the
proposed method effectively mitigates the adverse impact of unpre-
dictable PV generation, thereby enhancing the overall performance and
reliability of the system. The utilization of VRFB in conjunction with the
(peak reduction strategy for EVCS) demonstrates its efficacy in
addressing the dynamic energy demands and fluctuations encountered
in PV systems, particularly in scenarios characterized by varying cloud

Journal of Energy Storage 86 (2024) 111230

cover conditions In Fig. 13(a), a significant contribution from the SC and
VRFB is evident due to a high index of fluctuations present on a day with
little cloudiness. In contrast, on a clear day shows in Fig. 13(b), there is
less demand for the contribution from the VRFB. Similarly, in Fig. 13(c),
the contribution from the SC helps mitigate 10 % of the fluctuations.
However, in all the aforementioned cases, the PV generation is lower
than the power required for charging the EV, i.e., Ppy < Pgy. Conse-
quently, the contribution from the VRFB must be immediate, providing a
very high energy density of 20 kW during the EV charging period.

In summary, the Table 5 presents a comparison of different methods
based on specific criteria. The first column represents the inclusion of a
fast response with high power density in each method, denoted by “X”
for those methods that meet this requirement. The second column in-
dicates whether the method offers unlimited cycles of operation, and
again, “X” signifies the presence of this characteristic. The third column
highlights whether the method imposes a RR limitation of 10 %/min to
control fluctuations, and the fourth column indicates if the method can
supply energy to EVCS. From the Table 4, it can be observed that the PV
-+ SC combination meets the criteria of fast response and high-power
density, as well as offering unlimited cycles of operation. However, it

(b)
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requires a substantial SC capacity, which can be a drawback. The PV +
VRFB combination fulfills the rapid response, unlimited cycles, and RR
limitation criteria. On the other hand, the PV + SC + VRFB method
satisfies all the mentioned criteria, making it a comprehensive and
effective solution for power smoothing and EVCS energy supply.

5.2.3. Analysis of noise and disturbance signals

Noise signals in control systems are usually common due to the
different factors and electronic devices that make up power inverters
and controllers. This section specifically analyzes the response of the
controller under these effects. As observed in the previous figures, when
starting and ending the PV generation stage, a small noise is produced in
the PV power signal as a result of the power inverter starting. These
values are usually very short-lived until the ideal MPPT (Maximum
Power Point Tracking) value is updated. This defect is explained in
Fig. 14(a) below, where the signal value can reach up to 4 kW during 1 s
of recording. However, the proposed controller allows effective regu-
lation up to a range of 0.2 kW and for lower values it returns the value of
zero. In this way, the inappropriate use of ESS systems against this type
of defective signals is regulated.

In addition, Fig. 14(b) shows the response of the controller to
generator disturbances in long and short periods of time. It should be
noted that the PFS controller begins its configuration with a vector of
pre-registered values, therefore for disturbances that exceed 5 min it
requires a readjustment in NMSC as indicated in Table 3. On the con-
trary, for disturbance generated in periods <5 min, the controller has an
optimal response that does not affect the output signal. Likewise, the
amplitude of the disturbance is not relevant since the algorithm focuses
on smoothing the output signal. In both cases, prior to the imple-
mentation of the algorithm, stability and control tests must be carried
out on each of the pre-established parameters to guarantee its optimal
operation.

5.3. Sensitivity analysis with respect to various EV characteristics

In this section, we conduct two sensitivity analyses. Firstly, we
examine the system’s impact when charging EVs to different SOC levels
in the EVCS. Secondly, we investigate the influence of the number of EVs
connected to the EVCS. On days with high solar irradiance, the system
accumulates an average of approximately 130 kWh of daily energy,
considering the 30 kWp maximum power of the CCTI-B laboratory’s PV
system, as shown in Fig. 15(a). We evaluate the maximum SOC charging
values for EVs: 20 %, 40 %, 60 %, 80 %, and 100 %. Results indicate that
a fully charged EV battery reaches a maximum of about 20.4 kWh,
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representing 15.7 % of the PV generation capacity. Importantly, there is
minimal difference between charging an EV to 20 % or 100 % SOC, due
to the presence of VRFB, which redirect surplus energy to the grid after
smoothing through the algorithm. This fixed data from the CCTI-B lab-
oratory’s equipment allows us to observe system variations and
responses.

Fig. 15(b) displays the sensitivity analysis concerning the number of
EVs connected to the EVCS. The system autonomously supports up to 5
EVs with an average photovoltaic energy generation of 100 kWh. On
higher PV generation days, it can fully charge up to 6 EVs without
requiring power grid. It is possible to see that the energy for each
additional electric vehicle is approximately 20 kWh, which has a mini-
mal impact on the system. In summary, the sensitivity analysis reveals
insights into the system’s performance in response to EV SOC levels and
the number of connected EVs in various scenarios.

5.4. Economic evaluation

In this section, a cost estimation based on Table 1 is presented for
integrated PV systems and sizing for SC and VRFB. Considering the
power of the EVCS at 20 kWh, as analyzed earlier, it is possible to
determine the cost and sizing for the PV system based on the number of
EVs (Ngv), SOCgy, and PV power (e.g., 6 kW generating 20 kWh) ac-
cording to the energy it could deliver. The details are as follows in Eq.
(16) [38].

Ngy X SOCgy X Pgpy

Crv = 100

x 870 = 8.7 X Ngy X SOCgy X Pgpy [USD/kW]
(16)

where Cpy represent the total cost of PV, Ngy is the number of EV, SOCgy
is the SOC of EV, Pgpy is the peak PV power considers for full EV charge.
Similarly, the cost and sizing estimation for VRFBs consider maintaining
the SOC of VRFB at 25 % as the limit during the charging processes at
any time of the day for the EV with power Ngy and charging time Atgy.

0.75 X Ngy x SOCpy X Pgy X Atgy «
100
= 5.25 X Ngy X SOCgy X Pgpy X Atgy [USD/kWh]

Cyg = 700

a7

where Cyg represents the total cost of VRFB. Finally, an estimated value
is established for the SC based on a 10 %/min reduction in PV fluctua-
tions with a hybrid combination of VRFB and a nominal power of the PV
system of 30 kW as follows.
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Table 5
Comparative criteria analysis of power smoothing methods.

Method Fast response Unlimited RR Energy supply
with high operating limitation10% for EVCS
power density  cycles

PV + SC X X Depends on PV Requires

nominal power significant SC
capacity
PV + — X X X
VRFB

PV + SC X X X X
+
VRFB

Ngy X Pgpy x 0.4

Cse = 30

X 27.5 % 1000 = 360 X Ngy X Pgpy [USD/KWh]
(18)

where Cgc is the total cost of SC. The results of Egs. (16)-(18) are pre-
sented in Fig. 16(a) for different numbers of EVs at full charge 0-100 %,
where the sizing of the VRFB and SC was characterized based on the
experimental tests and on-site power. For example: The demand for 4
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fully charged requires 80 kWh. Which is covered by a 21 kW PV system,
80 kWh VRFB and 0.3 kWh SC. Consequently, it would generate a total
cost of approximately Cpy + Cyr + Csc = $ 71,520 for self-sustaining
charging stations. On the other hand, Fig. 16(b) analyzes the cost
implied by the system for 4 EVs with variable EV charging values.
Considering the different charge probability of each EVs. That is, SOCgy
=90 %, 80 %, 60 %, 50 %. It can be seen how the dimensioning for VRFB
varies considerably, becoming competitive in prices with the PV system.

5.5. Future applications

Due to the gradual increase in EV within distribution electrical grids
[41], a progressive replacement and adaptation of conventional gas
stations to EVCS can be envisioned. As depicted in Fig. 17(a), this study
proposes the integration of photovoltaic systems with SC and VRFB to
mitigate power fluctuations and the impact of EV charging peaks on the
electrical grid. This process, in the future, involves replacing areas
designated for fuel storage with alternative means such as VRFB (see
Fig. 17b), ensuring efficient use of space and environmental sustain-
ability. In Fig. 17(c), the current map illustrates five charging stations in
the city with potential expansion into specific zones. The CCTI-B,
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Fig. 14. Analysis of noise and disturbance signals: (a) Controller response to noise signals. (b) Controller response to disturbance signals.
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considered as the baseline case study, will facilitate further in-
vestigations in this domain.

6. Conclusions

This paper introduces the predictive-flex smoother (PFS), a novel
method designed to mitigate power fluctuations in grid-connected
photovoltaic (PV) systems while optimizing energy management in
electric vehicle charging stations (EVCS). The PFS method incorporates
a hybrid energy storage system comprising supercapacitors (SC) and
vanadium redox flow batteries (VRFB), utilizing prediction algorithms
and machine learning techniques for precise power fluctuation forecasts.
The study demonstrates the practical efficacy of the PFS method in real-
time power smoothing, achieving minimal delays (approximately 500
ms). This results in enhanced stability by efficiently mitigating both PV
and grid power fluctuations.

The integration of SC and VRFB in the PV + SC + VRFB configuration
significantly improves power smoothing capabilities, meeting rapid
response, unlimited operating cycles, and ramp rate limitation criteria.
Comparative analyses under various weather conditions underscore the
system’s adaptability to diverse scenarios of PV energy generation and
EV charging demand. The PV + SC + VRFB method optimizes surplus
energy utilization while simultaneously reducing dependence on the
grid. Performance comparisons with common methods, such as moving
average (MA) and ramp rate (RR), highlight the superiority of the PFS
method. It not only meets the 10 %/min ramp rate limit but also ach-
ieves superior power smoothing results, enhancing the overall perfor-
mance and stability of the system.

Sensitivity analyses regarding EV state of charge (SOC) and the
number of connected EVs underscore the system’s flexibility in handling
different charging scenarios. These analyses provide valuable insights
for optimized performance and sizing, offering practical implications for
real-world applications. The economic evaluation reveals that the PV +
SC + VRFB system offers a cost-effective solution for self-sustaining
charging stations. For example, charging 4 EVs at full load requires 80
kWh, covered by a 21 kW PV system, 80 kWh VRFB, and 0.3 kWh SC,
resulting in a total cost of approximately $71,520 for self-sustaining
charging stations.
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