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A B S T R A C T

The introduction of fifth-generation (5G) technology marks a significant milestone in next-generation networks,
offering higher data rates and new services. Achieving optimal performance in 5G and beyond 5G (B5G)
systems requires addressing key requirements like increased capacity, high efficiency, improved performance,
low latency, support for many connections, and quality of service. It is well-known that suboptimal network
configuration, hardware impairments, or malfunctioning components can degrade system performance. The
physical layer of the radio access network, particularly channel estimation and synchronization, plays a crucial
role. Hence, this paper offers an in-depth evaluation of the 5G Physical Downlink Shared Channel (PDSCH),
along with its related channel models such as the Clustered Delay Line (CDL) and the Tapped Delay Line
(TDL). This work assesses 5G network performance through practical and IA-based channel estimation and
synchronization techniques, and anticipates numerologies for B5G networks. Extensive simulations leveraging
the Matlab 5G New Radio (NR) toolbox assess standardized channel scenarios in both macro-urban and indoor
environments, following configurations set by the 3rd Generation Partnership Project (3GPP). The numerical
results offer valuable insights into achieving the maximum achievable throughput across various channel
environments, including both line-of-sight (LoS) and non-line-of-sight (NLoS) conditions. The throughput
comparisons are performed under assumptions of ideal, realistic, and convolutional neural networks (CNN)-
based channel estimation with both perfect and realistic synchronization conditions. Importantly, the study
pinpoints certain physical layer elements that have a pronounced impact on system performance, providing
essential insights for devising effective strategies or refining CNN-based methods for forthcoming mobile B5G
networks.
1. Introduction

The transition from 4G to 5G faces challenges due to compatibil-
ity issues between 4G base stations (BSs) and 5G New Radio (NR)
specifications. Phase 1 of 5G, non-standalone (NSA) 5G, transforms
existing 4G networks incrementally to reduce costs and risks, whereas
Phase 2 requires a complete re-inspection of the current 4G network
infrastructure and significant financial investment to realize 5G. This
gradual transition is expected to continue from the 5G to Beyond 5G
(B5G) and 6G networks [1].

6G networks will revolutionize mobile communications with im-
provements in reliability (from 99.999% in 5G to 99.99999%), capacity
(from 10 Gbps in 5G to 1 Tbps), and extremely massive connectivity.
These advancements are driven by novel transmission technologies,
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enhanced security, and AI integration [2]. Meticulous planning and
a complete overhaul of 5G networks are vital to meet 6G’s require-
ments. Performance analysis is necessary to evaluate 5G and B5G
configurations for expected performance.

A thorough review of 5G standards identifies components that
may impair network performance (e.g., channel model, estimation,
synchronization). An essential aspect of NR is the development of chan-
nel models, which have received considerable attention and impact
from the research community [3,4]. The primary models of the 3rd
Generation Partnership Project (3GPP) standard are Clustered Delay
Line (CDL) and Tapped Delay Line (TDL) with variations for Line of
Sight (LoS) and Non-Line of Sight (NLoS) scenarios [5]. These models
https://doi.org/10.1016/j.adhoc.2024.103609
Received 30 May 2024; Received in revised form 15 July 2024; Accepted 22 July 2
vailable online 26 July 2024 
570-8705/© 2024 Elsevier B.V. All rights are reserved, including those for text and
024

 data mining, AI training, and similar technologies. 
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play a crucial role in wireless mobile networks, especially in the new
5G radio (5G-NR), impacting areas such as channel estimation and
simulation outcomes [6]. It is worth highlighting that the CDL and
TDL channel models have been broadly tested and validated through
real-world measurement campaigns at different frequency operations
(e.g., at millimeter wave for 5G and beyond networks). In this con-
text, in [7], the authors proposed an enhanced version of the CDL
model, namely, a geometry-based clustering approach to accurately
characterize the total number of clusters of scatterers produced by
surrounding walls or objects obtained from outdoor measurements
at 28–30 GHz for both LoS and NLoS scenarios. Herein, the results
showed that the proposed approach based on the CDL premises is more
physically interpretable despite the complex propagation environment.
On the other hand, the empirical COST 207, ITU-R, or WINNER II
models, which are based on extensive measurement campaigns, help to
refine the TDL model to match real-world observations better. So, this
validation procedure guarantees that TDL models accurately describe
the multipath propagation of wireless channels. In this regard, in [8],
measurement campaigns at 3–4 and 38–40 GHz for industrial internet-
of-things were introduced, where the WINNER II (which is linked to
the TDL model) accurately fits the channel characteristic parameters,
including path loss and delay spread. Likewise, CDL and TDL, together
with other channel models belonging to the 3GPP standard (e.g., Knife
Edge Diffraction, ASTER, and Dominant Path model), are being used
by cellular operators for network planning for different 5G-NR urban
macro environments, as described in [9,10].

The channel estimation method is a key aspect of practical wire-
less communication systems. Typically, channel estimation relies on
pilot signals or reference signals such as Channel State Information
Reference Signal (CSI-RS) and Demodulation Reference Signal (DM-RS)
signals [11]. The 3GPP standard provides 5G channel estimation guide-
lines mainly based on the configuration of CSI-RS and DM-RS signals,
which significantly impact CDL and TDL models [12]. Alternative tech-
niques like the least squares estimator (LS) and CSI-RS-based schemes
have been explored to enhance precision and efficiency beyond stan-
dard specifications [13]. Thus, studying the channel model, the accu-
racy of channel estimation, and UE-BS synchronization is crucial in the
research community.

5G technology is being explored for its potential to achieve high effi-
ciency in modern networks. In [14], the authors investigated Multiple-
Input Multiple-Output (MIMO) hardware using a CDL channel emulator
for NLoS scenarios based on 3GPP 5G specifications. They used a test
bench and an anechoic chamber to determine the optimal wavelength
for 5G network compatibility. In [15], researchers assessed the perfor-
mance of a 5G MIMO system with frequency domain precoding in a TDL
channel model under LoS conditions. The study suggests that spatial
correlation in realistic systems can have a positive effect at high Delay
Spread (DS) values, enhancing future network performance and reli-
ability. Likewise, channel models have been extensively studied. [16]
develops a TDL model for railway and high-speed train environments,
establishing power, delay, and Doppler spectrum parameters. [17]
examines CDL channel models, focusing on delay spread and angle of
arrival in rural areas for MIMO with SP and DP antennas. [18] enhances
CDL model precision and validates improvements with mm-Wave band
measurements.

Regarding channel estimation, the authors of [19] showed that
an efficient management of the pilot signal system can significantly
reduce energy consumption. An alternative channel estimation method
is presented in [20], where the estimation is enhanced using two-phase
intelligent reflective surfaces (IRS). In Phase 1, the reflection phase
shifts of IRS 1 are fixed, while the phase shifts of IRS 2 are dynamically
adjusted to facilitate the end-to-end channel estimation. In Phase 2,
both the double and single reflection channels are efficiently estimated
by exploiting the intrinsic relationship between them, thereby reducing
signal overload and achieving high estimation precision. Similarly,

under the same channel estimation principle for IRS, [21] employs a
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design based on a Minimum Variance Unbiased Estimator to reduce
computational complexity and improve estimation accuracy.

With respect to synchronization, the method in [22] simplified
SSB beamforming and additional data/control transmission initiation.
Precise time–frequency synchronization is critical for PDSCH decoding;
errors can impair system performance and require multiple SSB mea-
surements, potentially increasing energy consumption. To address these
challenges, [23] proposed an improved paging monitoring approach
to reduce interruptions in idle mode reception. Precise time–frequency
synchronization is vital for reliable PDSCH decoding and requires
optimization through multiple SSB measurements.

Artificial Intelligence (AI) is revolutionizing various domains by
enhancing problem-solving and data processing. In communication
systems, AI-driven techniques improve performance, efficiency, and
reliability. Deep learning algorithms enable new methods for chan-
nel estimation, offering more accurate communication in challenging
environments. In 5G networks, [24] introduced a deep learning al-
gorithm for channel estimation using a 2D image to represent the
time–frequency channel response. The authors utilized deep convo-
lutional neural networks (CNN) for high-resolution image recovery,
employing super-resolution and image restoration to estimate channel
responses from DM-RS signals. Their algorithm outperformed classical
channel estimation techniques.

Likewise, the authors in [25] employ deep neural networks (DNN)
for channel estimation within massive MIMO systems, leveraging deep
image prior (DIP) for denoising and least-squares (LS) estimation.
The DNN architecture adapts to 3D communication signals, reducing
pilot signals by learning from interference-free ones. Neural networks
for channel estimation require careful training consideration due to
their sensitivity [26]. Similarly, [27] proposes a method where the
neural network assigns pilot signals non-uniformly across subcarriers,
reducing overload and enhancing channel estimation via pilot signal
diversity.

Conversely, the advancement of 5G testing software is crucial for
detailed analysis of 5G network performance, enabling simulations
that closely replicate real-world scenarios without the high costs of
full-scale network deployments. Well-known computational tools like
OpenAirInterface (OAI) and Matlab are well-known for their ability
to support various network configurations in evaluating 5G network
performance. The OAI platform includes the Demodulation Reference
Signal (DM-RS) configuration in the PDSCH. On the other hand, Mat-
lab’s 5G toolbox allows the use of essential 5G network parameters
such as demodulation algorithms [28], coding techniques [29], channel
estimation methods [13], and synchronization algorithms [22], among
others. These software tools offer essential resources for comprehensive
and cost-effective performance assessments.

Despite extensive 5G research, the combined effects of (𝑖) signal
strength, (𝑖𝑖) channel estimation in CDL and TDL models, and (𝑖𝑖𝑖)
synchronization on 5G performance have not been fully explored. The
key takeaways of this paper are the following:

• We analyze 5G networks under 3GPP models, focusing on channel
estimation and synchronization.

• We compare MIMO channel estimation performance using CNN
and traditional methods.

• We extend our analysis to channel estimation for B5G networks,
highlighting future mobile technologies.

We chose the MATLAB 5G Toolbox for this research because it
provides an extensive simulation environment for 5G systems, enables
the quick design and validation of algorithms, ensures the adherence
to 3GPP standards and offers advanced channel modeling capabilities.
These attributes guarantee that our simulation results are reliable and
applicable for both current and future applications.

The paper is organized as follows: Section 2 covers the theoretical

background of 5G and 5G advanced architecture, including physical
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layer components, signals for channel estimation and synchroniza-
tion, channel models, and a brief on convolutional neural networks.
Section 3 details the methodology and scenarios for simulation tests.
Section 4 discusses simulation results and insights for maximizing 5G
benefits. Finally, Section 5 presents conclusions and future research
directions.

2. Theoretical background

The 5G architecture based on 3GPP standards (release 17) is briefly
introduced in this section. Furthermore, the physical layer is described
in terms of channels and signals. Finally, the CDL and TDL channel
models are reviewed.

2.1. General aspects of 5G

5G technology represents a major advancement in mobile networks,
offering high data rates and numerous new services. It supports appli-
cations like Device-to-Device (D2D) communication, Massive Machine-
Type Communications (M-MTC), enhanced Mobile Broadband (eMBB),
Ultra-Reliable Low Latency Communication (URLLC), and Vehicle-to-
Everything (V2X) connectivity. These services necessitate exploring
new frequency bands, including millimeter waves, to meet growing
bandwidth demands and enable high-speed networks [30].

In the rapidly changing telecommunications field, the need for
highly efficient networks is paramount. As the number of connected
devices rises and data usage increases, it is important to ensure com-
munication systems meet these demands in a sustainable and resource-
efficient manner. Hence, evaluating 5G and investigating efficient
strategies is vital. By analyzing 5G performance indicators and pin-
pointing areas for optimization, we can create more effective com-
munication protocols, access techniques, and network structures. This
efficiency not only enhances connectivity and reliability for users but
also opens up possibilities for future technologies and applications [31].

2.2. 5G network architecture

The 5G network architecture is not just about fast and reliable
connectivity; it enables diverse services and applications across the
Internet. This includes new concepts in C-IoT, Vehicle-to-Everything,
and Machine-to-Machine. Both 5G and 5G Advance use the New Radio
(NR) interface, supporting all these services [30,32].

The 5G network architecture supports fast and reliable connectivity
for various Internet applications and services. It comprises the core
5G network (5GC) and the 5G access network. The core network is
segmented into network functions (NF) for task decentralization. The
access network, known as the next-generation radio access network
(NG-RAN), connects NR and LTE devices through control and user
plane protocols [30]. 5G infrastructure includes the RAN, core network,
backhaul, and transport networks. RAN dominates the 5G infrastruc-
ture market, with virtual and centralized RAN (C-RAN) deployments
increasing operational efficiency [33]. The 5G architecture uses C-
RAN for ultra-fast Internet connectivity, with the 5GC being completely
software-based and cloud-native, providing secure connectivity and
access to various services for end users [34].

Fig. 1 shows a general description of the architecture of the 5GC and
NR-RAN systems. The 5GC system is represented by interfaces based
on services and reference points, which allow modeling interactions
between architectural entities. The main NFs are described below.

• The Access and Mobility Function (AMF) manages the control
plane interface with NG-RAN and UEs, connections, registrations,
mobility, transporting messages between UEs, and the session
management function (SMF), authorize and authenticate access,
among others. In addition, it has the non-access stratum (NAS)
security and signaling feature and mobility management in the
idle state with paging control [5,30].
3 
Fig. 1. Overview of the 5G system architecture and access network.

• The Session Management Function (SMF) is the entity in charge
of the management of the session of the user plane, manages the
IP addresses of the UEs, and manages the selection and control
of the Protocol Data Unit (PDU) to route traffic to the correct
destinations, among others [30].

• The Application Function (AF) manages applications and provides
core network services.

Concerning to NR, it introduces a new User Plane Function (UPF)
that works as an anchor point for internal or external mobility to the
data network. In addition, this entity is responsible for packet routing
and forwarding, packet inspection, and everything related to data
traffic [30,35]. In the same way, NG-RAN allows access to the nodes
of the gNB base station belonging to NR and the nodes of the Evolved
Node B (eNB) belonging to the LTE BS. The Next Generation Node B
(gNB) and the eNB are two integral components of the 5G architecture,
which are interconnected through the Xn interface. Additionally, both
are linked to the 5GC, enhancing the network’s capabilities. The gNB,
an essential 5G component, provides NR user plane and control plane
protocol terminations towards the UE and manages radio resource
management: radio bearer control, radio admission control, connection
mobility control, dynamic allocation of resources, etc. [5,30]. Commu-
nication protocols between UE, gNB, and 5GC are distributed across
control and user planes. This study explores the role of the physical
layer within this complex network architecture.

2.3. 5G NR network physical layer

The physical layer plays a key role in the 5G NR network by
handling baseband modulation of signals on the radio interface, en-
coding/interleaving, decoding, and mapping for multiple antennas. It
selects the appropriate modulation and coding scheme, as well as the
multiantenna transmission mode (i.e., MIMO setup), to ensure the
desired reliability, robustness, and performance in mobile NR commu-
nications [30,31]. In addition, it provides services to the MAC medium
access control sublayer and processes MAC PDUs [30]. A critical aspect
of the physical layer is the downlink (DL), which comprises functional
blocks and protocols configured based on various information gleaned
from the physical DL channel, such as the use case and implementa-
tion scenario [30]. The subsequent section describes the channels and
signals within the physical layer.
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Fig. 2. Overall downlink physical layer interaction.

2.4. DL physical layer channels and signals

The DL physical layer processes the information received from the
gNB MAC, UE MAC, and MAC scheduler and manages the hybrid
automatic repeat request (HARQ) process. This layer segments the
information into three distinct channels: the Physical Downlink Shared
Channel (PDSCH), the Physical Downlink Control Channel (PDCCH),
and the Physical Broadcast Channel (PBSCH). The PBCH is responsible
for transmitting essential information (such as system bandwidth and
system frame number within the Master Information Block (MIB)) from
the base station to all UEs in a cell, enabling them to understand the
network configuration and begin communication. The PDCCH helps
UEs identify their allocated resources (scheduling), process data by
providing HARQ information, and adjust power levels, thereby playing
a crucial role in the network’s coordination and efficiency. This study
concentrates on the PDSCH, the main data channel that delivers user
data from the base station to the UE, with its performance determining
the quality and reliability of the data services provided to users [30,31].

The 5G MAC layer, defined in 3GPP Technical Specification 38.321,
manages radio resources and ensures efficient communication in 5G
networks. Positioned above the physical layer and below the radio
link control and packet data convergence protocol, it controls access to
shared radio resources, schedules transmissions, and manages services
and functions [36].

Fig. 2 illustrates the DL physical layer channels and their interaction
with the HARQ and Medium Access Control (MAC) processes.

2.4.1. PDSCH downlink channel
The Physical Downlink Shared Channel (PDSCH) is essential for

unicast data transmission in 5G networks [31]. It accommodates mod-
ulation formats like QPSK, 16QAM, 64QAM, and 256QAM, as well as
Low-Density Parity Check (LDPC) channel coding [5]. Additionally, the
number of antennas determines the transmission flows. Specifically,
these flows are structured based on transmission layers and codewords,
which are produced at the transport channel’s output and serve as the
input data for the physical layer. The PDSCH supports a maximum of
two codewords [30]. Depending on the precoding scheme employed,
the PDSCH can transmit one or two coded transport blocks simultane-
ously. The processing chain of the PDSCH encompasses several critical
steps that are detailed in Fig. 3 and described below:

• Transport Block CRC Attachment: A cyclic redundancy check (CRC)
is employed to identify errors in transport blocks. The CRC parity
bits are computed using the complete transport block.

• Code Block Segmentation and CRC Attachment: The block of bits is
divided into smaller segments with a 24-bit CRC added to each
segment. Then, the data is processed through LDPC encoding for
error correction.

• Channel Coding: The code blocks are subjected to turbo coding to

enhance error correction and increase channel capacity.

4 
Fig. 3. Simplified functional diagram of the PDSCH processing chain.

• Rate Matching and Code Block Concatenation: Turbo-coded blocks
undergo rate matching and concatenation to form the output of
the channel coding process.

• PDSCH Scrambling: Codewords are scrambled using orthogonal
and user equipment-specific sequences to generate sequences be-
fore modulation.

• Modulation: Scrambled codewords are subjected to QPSK, 16-
QAM, 64-QAM, or 256-QAM modulation depending on the con-
ditions of the channel.

• Layer Mapping, Precoding, and Resource Element Mapping: Follow-
ing modulation, codewords are subject to layer mapping, precod-
ing, and resource element mapping before being transmitted.

Finally, PDSCH processing ensures efficient and reliable data trans-
mission by following these detailed steps in the downlink shared chan-
nel chain.

2.4.2. Reference signals
Within the DL physical layer, reference signals or pilot subcarriers

are used to facilitate the estimation of the multipath communication
channel and the reliable detection of control/traffic channels. The main
reference signals are summarized in Table 1.

2.4.3. Channel estimation
Channel estimation in the PDSCH relies on reference signals such

as CSI-RS and DM-RS. These signals facilitate the estimation of the
channel as well as the subsequent selection of suitable precoding matri-
ces for beamforming. The channel estimation process involves inserting
known DM-RS pilot symbols into the transmission, enabling the inter-
polation of the remaining channel response between the transmitter
and receiver. This process initiates when the UE receives the CSI-RS
signals. Conversely, the gNB receives a Precoding Matrix Indicator
(PMI) to determine the appropriate Precoding Matrix (PM) for data
transmission and specification. Following this, the DM-RS signals use
the estimated channel matrix along with the PM to enable a sec-
ondary precoding selection procedure without a codebook, which is
then transmitted to the UE. In channels using the same beam, orthogo-
nal coefficients are assigned to each data channel via DM-RS to reduce
interference [12].
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Table 1
Overall reference signal.

Reference signal Acronym Description

Demodulation reference signals DM-RS Mainly used for channel estimation. There is a trade-off between the accuracy of channel estimation
and the density of DM-RS in time (Type A and B) and frequency (Type 1 and 2). Therefore, a DM-RS
mapping with adequate density is required to maximize throughput [30,31].

Phase tracking reference signals PT-RS It is used for time and frequency tracking and estimating the delay spread and Doppler spread on the
UE side. In addition, it compensates for the oscillator’s phase noise [30,31].

Channel-state information reference signal CSI-RS Used for estimation of channel status information. In addition, it is used in beam management,
time/frequency tracking for demodulation, and uplink reciprocity-based precoding, among others,
[30,37].

Tracking reference signal TRS TRS is a special configuration of CSI-RS. It is used for accurate time and frequency tracking and
estimation of path delay spread and Doppler spread [30,38].
Channel estimation aims to obtain channel conditions like atten-
uation, delay, and distortion, enabling efficient signal decoding and
enhancing wireless communication performance.

2.4.4. Synchronization
During the connection procedure of a UE to the network, the

UE must synchronize time and frequency with a specific gNB using
synchronization signals or related SSBs and DM-RS to estimate the
time offset on the physical DL channel on PBCH. BSs are structured by
the primary synchronization signal (PSS) and the secondary synchro-
nization signal (SSS). SSB impacts PDSCH decoding, so multiple SSB
measurements are needed [23]. PSS and SSS help UEs enter the system,
identify the radio carrier boundary and cell ID, and find reference
signals for coherent demodulation of other channels [30,31].

2.5. Channel models

Channel models are critical stochastic elements in wireless mobile
networks. According to [39], 5G channel models include CDL and TDL.
These models simulate features such as fading channels with vari-
ous delay profiles and provide information on large-scale calibration,
path loss configurations, and channel impulse responses [40,41]. The
5G network architecture uses these models to improve performance
and efficiency, supporting advancements like network slicing, network
function virtualization, and edge computing.

2.5.1. Clustered Delay Line (CDL)
In the CDL model, the signal consists of groups with different delays.

Within a group, multipath components share the same delay but have
different departure (AoD) and arrival (AoA) angles [42]. A cluster
represents a scattering region, and [39] specifies multiple clusters, each
with specific trajectories and sub-paths. Fig. 4 shows two groups, where
𝜃𝑖 are the departure angles relative to the line of sight. The CDL model,
used in 5G mmWave communications and implemented in Matlab’s
5G toolbox, simulates link-level block error rate (BLER) and fading
channels with various delay profiles [43].

2.5.2. Tapped Delay Line (TDL)
In TDL models, taps with different delays are modeled as random

variables with power, delay, and Doppler spectrum information. Tap
values follow Rayleigh distributions for NLoS components and Rician
distributions for LoS components [44]. TDL models are suitable for in-
door environments with high shadowing and penetration losses because
they capture the characteristics of multipath components. Conversely,
the CDL model is better for outdoor environments to model clustered
delays prevalent in such scenarios [3]. According to [45], CDL and TDL
have different settings for LoS and NLoS, as detailed in Table 2.
5 
Fig. 4. Example of a CDL channel with two multipath groups.

2.6. Convolutional neural networks (CNN)

Neural networks are versatile, providing solutions in various scien-
tific fields. Specifically, in mobile networks, they have gained signifi-
cant interest in channel estimation [24,46,47]. An application in [24,
48] demonstrates channel reconstruction using a CNN, similar to image
reconstruction.

CNNs are deep learning models effective in processing and ana-
lyzing grid-structured data like images [49]. They use convolutional
layers to apply filters and extract high-level features [50]. Inspired
by the biological visual cortex, CNNs automatically learn relevant
features [51]. The fundamental operation, convolution, applies filters
to input data to extract specific features such as edges, textures, or
colors [52].

CNNs use pooling layers, like max pooling, to reduce data dimen-
sionality and prevent overfitting [49,50]. Regularization techniques
like batch normalization and dropout further enhance model robustness
and prevent overfitting [50]. Integrating various elements improves
CNN efficacy in tasks such as structured grid data analysis and wireless
channel state reconstruction from pilot symbols. This work uses a CNN
with DM-RS pilot symbols for channel estimation, as detailed in [24],
and adapts the algorithm for MIMO. The CNN-based channel estimation
is compared with default interpolation-based estimation.

3. Methodology

This work identifies critical physical layer components impacting
5G NR network performance via Matlab simulations under 3GPP stan-
dards. We establish configurations for synchronization, channel estima-
tion techniques, and network conditions for macro-urban and indoor
environments using TDL and CDL models. Through ceiling analysis
based on 3GPP specifications [53], we quantify the maximum theo-
retical performance values achievable under ideal conditions and the
level of performance degradation caused by each component under
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Table 2
CDL and TDL specifications.
Variation Figure Clusters/Taps Power [dB] Description

CDL model designed for outdoor or urban environment

A NLoS 23 [−29.7, 0] Selective fading with rapid changes.
B NLoS 23 [−14.9, 0] Less selective fading, smoother changes.
C NLoS 24 [−22.8, 0] Even less selective fading, smoother.
D LoS 13 [−12.5, −0.2] Long-term shadowing, slow variations.
E LoS 14 [−20.6, −0.3] Minimal shadowing for LoS.

TDL model designed for indoor environment

A NLoS 23 [−29.7, 0] Rapid time-varying fading, dense taps.
B NLoS 23 [−12.2, 0] Less rapid fading, fewer taps.
C NLoS 24 [−22.8, 0] Moderate fading with clustered taps.
D LoS 13 [−30, −0.2] Slow-varying fading, isolated taps.
E LoS 14 [−29.8, −0.3] Minimal time variations, LOS conditions.
realistic/practical operating conditions. Finally, we compare findings
with a convolutional neural network-based channel estimation method.

We describe the ceiling analysis procedure, including configura-
tion parameters, simulation environments for evaluating PDSCH in
5G NR, and CNN channel estimation method. We define performance
evaluation criteria and evaluate channel estimation using potential
numerology for 5G Advance or 6G based on 3GPP release 17 [54]
to assess maximum achievable performance under high-performance
system configuration.

3.1. Ceiling analysis

We first analyze the PDSCH under TDL and CDL models using the
Matlab 5G NR toolbox [43]. The evaluation includes perfect and practi-
cal conditions, with a focus on synchronization and channel estimation.
Channel estimation uses CSI-RS and DM-RS, while synchronization uses
PSS and SSS. We then use the 3GPP recommended 5G network con-
figuration [45,53], followed by simulations with the highest capacity
configuration per 3GPP release 17 [54]. This aims to meet performance
benchmarks for next-generation networks, aligned with the upcoming
B5G standard.

In addition, in the simulations, perfect channel estimation and
synchronization for each channel model is assumed. Subsequently, the
performance is assessed, considering only synchronization based on
reference signals. Finally, a practical scenario is established that simu-
lates channel estimation and synchronization using reference signals.
The network throughput, as a function of the signal-to-noise ratio
(SNR), is comprehensively analyzed across all these cases. Our analysis
spanned urban macro (UMa) and indoor environments, providing a
thorough understanding of the typical 5G configuration. This decision is
prompted by the distinctive coverage attributes of small cells operating
in the mmWave band. In both scenarios, the simulations are conducted
using the PDSCH Matlab component, which accounts for various CDL
and TDL configurations under NLoS and line-of-sight (LoS) conditions.

Initially, the simulations presume ideal channel estimation and
synchronization for each channel model. Next, the performance is
evaluated with synchronization based on reference signals alongside
perfect channel estimation. Lastly, a realistic scenario is set up that
mimics channel estimation and synchronization using reference signals.
Network throughput as a function of SNR is analyzed for urban macro
(UMa) and indoor environments, reflecting typical 5G setups. The
analysis is driven by the unique coverage of small cells in the mmWave
band. Simulations use the PDSCH Matlab component for various CDL
and TDL configurations under NLoS and LoS conditions.

Lastly, in exploring the possible numerology of 5G advancements,
a simulation within an indoor setting is performed using a specialized
TDL channel model to evaluate the expected performance metrics for
the next-generation mobile networks.
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Table 3
Reference signal parameter settings.

Parameters Value

DM-RS in time Type A
DM-RS in frequency Type 2
DM-RS additional position 1 symbol
PT-RS time density 2 symbols
PT-RS frequency density 2 symbols

3.2. Experimental setup for 5G NR: Configuration parameters and simula-
tion environments

To evaluate the effects of channel estimation and synchronization
under TDL and CDL channel conditions, we perform simulations us-
ing a conventional 5G NR system consisting of currently available
gNB and UE. The characteristics of the reference signals used in the
communication system model are defined in Table 3.

These parameters are crucial in estimating and transmitting sig-
nals within the underlying system. The detailed configuration of the
physical layer is presented in Table 4. These parameter settings are
consistently applied in UMa and indoor environment simulations.

An apparent distinction between 5G NR and LTE is incorporating
various environments. In this study, we evaluate two environments,
UMa and Indoor, to assess the system’s performance under these mod-
els. These environments have been chosen because of their contrasting
characteristics and diverse applications. The specific details of each
environment are described below.

3.2.1. Indoor environment
This scenario aims to replicate the characteristics of indoor de-

ployments, such as office environments and shopping malls. Office
environments often include cubicle areas, closed offices, open spaces,
and corridors. Shopping malls typically span 1–5 stories and may
feature a central open area accessible from multiple floors. In this
scenario, the gNBs are typically mounted on ceilings or walls at 2–3 m
height, while the UEs are approximately 1.5 m above the ground. Please
refer to Table 4 for the specific configuration details of this scenario,
as outlined in [45].

3.2.2. Urban Macro environment (UMa)
The Urban Macro (UMa) scenario aims to replicate an open area

resembling a densely populated city with tall buildings. The typical
coverage area spans approximately 200 m, and the gNB is mounted
approximately 25 m above the surrounding building roofs. The user
equipment is positioned between 1.5 and 2.5 m in height. For this sce-
nario, the specific configuration based on [45] is presented in Table 4,
which describes the parameters relevant to the UMa environment.

It is essential to mention that the specific environment in the toolbox
5G NR is characterized using channel configuration parameters such
as Desired Delay Spread (DSD), Sub-Carrier Frequency Spacing (SCS),
Number of Resource Blocks (NRB), and Cyclic Prefix (CP).
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Fig. 5. Enhanced depiction of channel estimation by CNN within the downlink process flowchart for Matlab’s PDSCH.
3.3. Channel estimation based on convolutional neural network

In channel estimation based on CNN, the main idea is to estimate
the time–frequency channel response akin to a 2D image, utilizing DM-
RS reference signals. Therefore, the CNN retrieves the channel response
as a high-resolution image, as demonstrated in [24]. The architecture
of the CNN is based on the Super-resolution CNN [55]. For the initial
phase, an interpolation scheme approximates the channel response
values through a convolutional layer employing 64 filters of size 9 × 9,
followed by ReLu activation. Subsequently, resolution enhancement
is achieved using a three-layer convolutional network comprising 32
filters of size 5 × 5, each followed by ReLu activations. The final layer
employs a single-size filter of 5 × 5 to reconstruct the image. Also, the
CNN is trained using a dataset of reference signals with their respective
channel responses. This study utilized a dataset of 16,000 samples,
partitioned into 70% for training and 30% for validation.

In this work, the channel estimation by CNN is performed in a
MIMO (8 × 2) environment for the configuration described in Table 4.
Therefore, the modified implementation is depicted in Fig. 5. The
application begins after the CP-OFDM Demodulation process, which
obtains the DM-RS symbols for each transmission layer. Later, the
type of estimation required is determined. In the case of CNN-based
channel estimation, the input data consists of the Orthogonal Frequency
Division Multiplexing (OFDM) grid solely with the indices and DM-RS
symbols of each receiving antenna corresponding to the transmitting
antenna. The input data enters the CNN and generates a channel
estimation, which then undergoes the process of resource extraction
and precoding matrix determination.

3.4. Experimental numerology for B5G: Configuration parameters and sim-
ulation environments

As a final contribution of this study, we analyze the effect of chan-
nel estimation using potential numerology for B5G and 5G Advance
networks to achieve maximum system performance. The configuration
and numerology leverage mmWave frequency ranges with a bandwidth
of 2 GHz, aiming to optimize data rates and network performance in
high-capacity scenarios. This leads to limited coverage configuration
for small cells, as radio waves cannot propagate over long distances
due to operating frequencies. By implementing these parameters in
the simulations, we focus on assessing the network’s capability to
handle increased data demands and exploit the advantages of mmWave
technology for enhanced throughput and efficiency for future mobile
7 
Table 4
Physical layer parameter settings for 5G NR.

Parameters Value

Transmission Antennas (Tx): MIMO: 8
Reception Antennas (Rx): MIMO: 2
Frequency Range (FR): FR1: 410 MHz–7.125 GHz
Equalizer: Minimum Mean Square Error (MMSE)
Beamforming: Hybrid Analog-Digital
Scheduling: Hybrid ARQ (HARQ)
Channel Encoding and Decoding: Layered belief propagation (LDPC)
Modulación: 16QAM
Target Code Rate: 378
PDSCH allocation: All 14 symbols

Environment: UMa Indoor

Delay Spread Desired (DSD): 363 ns (normal) 30 ns (normal)
Sub-Carrier Spacing (SCS): 30 kHz 30 kHz
Number of Resource Blocks (NRB): 65 51
Bandwidth (BW): 25 MHz 20 MHz
Cyclic Prefix (CP): 2.3 μs (normal) 2.3 μs (normal)
gNBs’ Antennas height (Tx): 25 m 2–3 m
UE’s Antennas height(Rx): 1.5–2.5 m 1.5 m

Table 5
Physical layer parameters setting for B5G.

Parameters Value

Transmission Antennas (Tx) MIMO: 128
Reception Antennas (Rx) MIMO: 4
Frequency Range (FR) FR2-2: 52.6–71 [GHz]
Equalizer Minimum Mean Square

Error (MMSE)
Beamforming Hybrid Analog-Digital
Scheduling Hybrid ARQ (HARQ)
Channel Encoding and Decoding Belief Propagation

(LDPC)
Modulation 256QAM
Target Code Rate (TCR) 4/5
PDSCH allocation All 14 symbols

Small cell (Indoor)

Channel model TDL
Delay Spread Desired (DSD) 50 ns (normal)
Sub-Carrier Spacing (SCS) 960 kHz
Number of Resource Blocks (NRB) 148
Bandwidth (BW) 2 GHz
Cyclic Prefix (CP) 2.3 μs (normal)
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communication systems. Hence, the physical layer configuration and
the characteristics of the reference signals used in the communication
system are described in Table 5.

3.5. Performance evaluation criteria

Performance evaluation in UMa and indoor scenarios involved
PDSCH Matlab simulations, considering various configurations of CDL
and TDL in NLoS (in variations1 A, B, and C) and LoS conditions
in variations D and E). In the NLoS profiles, variation A represents
ighly dense and complex environments, while variation B represents
rban areas with lower density and less temporal dispersion. Variation
corresponds to suburban or residential areas with fewer obstruc-

ions. Regarding the LoS profiles, variation D represents suburban or
esidential environments with consistent fading, whereas variation E
orresponds to rural areas with minimal temporal variations.

Initially, simulations assumed perfect channel estimation and syn-
hronization for each channel model. Then, 5G performance is assessed
onsidering realistic conditions, incorporating channel estimation and
ynchronization based on reference signals. Then, the behavior of the
hannel estimation method based on the CNN is evaluated; this method
s only applied to the configuration shown in Table 4. Finally, the
etwork throughput as a function of the SNR is considered as the main
erformance metric to evaluate the 5G system for all the cases.

1 These variations will be fully detailed in the following section.

Fig. 6. Performance results for the indoor environment configuration as detailed in
Table 4.
8 
4. Simulation results and discussion

This section presents the throughput curves for 5G NR under various
channel models and settings. These performance differences are shown
via the throughput vs. SNR metric, spaced 0.25 dB for each model, as
determined from initial testing and available computing resources. The
simulations cover Indoor and UMa scenarios for each 5G NR channel
model. In our configuration, Variation A signifies the environment with
the highest temporal dispersion, indicating areas with dense obstacles
and multiple pathways, typically used in highly urban settings and
complex indoor environments such as large office buildings and shop-
ping malls. Similarly, Variation B shows a more scattered delay profile,
fitting for moderately urban regions with several reflections. Variation
C illustrates settings with some obstacles and reflections, commonly
observed in suburban areas. Variation D is defined by low temporal
dispersion, making it suitable for residential areas with line-of-sight
(LoS) conditions. Lastly, Variation E exhibits a delay profile with low
temporal dispersion, ideal for rural and suburban environments with
direct signal paths (LoS). Next, the simulations for numerology B5G
or 5G advanced in Indoor scenarios for TDL are introduced. This com-
prehensive set of simulations provides a broad perspective to analyze
the 5G/B5G performance across various network parameter settings.
Lastly, the assessment of the 5G NR system utilizing a convolutional
neural network for channel estimation is also featured.

4.1. Performance results in 5G NR

The performance curves for the indoor and UMa scenarios for 5G
NR are shown in Figs. 6 and 7, respectively. Each plot in these figures

Fig. 7. Performance results for the UMa environment configuration as detailed in
Table 4.
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depicts the throughput and the required SNR ranges by adjusting
system settings (i.e., synchronization and channel estimation) under
CDL and TDL channels. The results are categorized for each channel
model setup (e.g., A, B, C, D, or E) along the horizontal axis in the
figures. Similarly, the right vertical axis shows the throughput values
in Mbps, and the left vertical axis displays the SNR values in dB. The
colors for the configurations are as follows: perfect synchronization and
channel estimation (blue), practical synchronization (orange), practical
synchronization and channel estimation (green). For all these cases, the
SNR ranges from the lower to the upper limit, representing the mini-
mum and the maximum SNR values at which maximum throughput
is achieved. Also, the achievable throughput is illustrated on the right
horizontal axis (purple).

4.1.1. Performance evaluation under indoor environments
From the illustrations in Fig. 6, it is observed that the UEs operating

under TDL channels require higher received signal power than CDL
environments. These results agree with what was stated in [44], where
the TDL channel was explicitly designed for indoor scenarios.

Fig. 8(a) illustrates the results for NLoS variation A. From Figs. 6 and
8(a), synchronization has an average impact of 1 dB on TDL, compared
to the 0.5 dB effect of channel estimation alone, and both together
have a 1.5 dB effect. Notably, channel estimation has a more significant
influence on CDL, with a 50% impact compared to TDL’s 12.5% impact.
Additionally, in the practical scenario for both TDL and CDL, there is a
2.5 dB difference, but TDL achieves higher throughput. In summary,
the system under CDL channels demonstrates inferior results in this
scenario primarily due to the channel estimation.

To complement the analysis, Fig. 8(b) presents the results for the
variation B of NLoS. The difference between TDL and CDL is gener-
ally reduced to 2 dB for all cases. In contrast to variation A, TDL
exhibits the lowest throughput with a reduction of 21.25%, and the
channel estimation does not significantly impact both CDL and TDL.
Consequently, both models exhibit similar behavior in this scenario.
On the other hand, in variation C (Figs. 6 and 8(c)), TDL requires an
average of 6.6 dB higher signal power than CDL. Interestingly, TDL
achieves the lowest throughput, reaching 19.01 Mbps, primarily due to
the impact of channel estimation. These results indicate that variation C
represents the poorest performance for NLoS channel models in indoor
environments, as it closely mimics the real-world moderate fading
effects.

The results for the LoS channel models (variations D and E) exhibit
similarities (Figs. 9(a) and 9(b)). In both cases, synchronization is
the only parameter that affects the throughput, with an impact of
approximately 1 dB. Moreover, TDL requires a higher received signal
power, with 6.6 dB for variation D and 7.7 dB for variation E (Fig. 9).
Interestingly, in the case of TDL-E, even with perfect channel estima-
tion and synchronization, the maximum throughput is not achieved.
Overall, in LoS scenarios, synchronization similarly affects both CDL
and TDL.

4.1.2. Performance evaluation under UMa environments
The throughput graphs for the Urban Macro scenario are presented

in Figs. 10 and 11. Similarly to the previous section, each subgraph
compares the corresponding variations of the CDL and TDL models. The
maximum throughput achieved and the corresponding SNR range are
provided in Fig. 7. Similar to the Indoor scenario, both in NLoS and LoS
cases, the system under TDL channel models requires higher received
signal power than CDL.

Regarding variation A of the TDL and CDL channel models (Figs. 7
and 11(a)), the channel estimation significantly affects the maximum
throughput achieved. In TDL, the maximum throughput is reduced by
40.01%, while in CDL, it experiences a reduction of 36.26%. Addition-
ally, TDL requires approximately 15 dB higher received signal power

to attain the maximum throughput.

9 
Fig. 8. Evaluation under NLoS channel models for the indoor scenario in 5G NR.

On the other hand, variation B (Figs. 7 and 11(b)) exhibits the low-
est throughput in TDL, with a reduction of 58.74%. Both the channel
estimation and synchronization equally influence this decrease. In the
case of the system under the CDL channel, which is solely affected by
synchronization, an additional 1.5 dB is required.

The results indicate that channel estimation has no significant im-
pact on throughput in variation C (NLoS) and variations D and E (LoS).
However, in the specific case of TDL-E (Fig. 10(b)), channel estimation
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Fig. 9. Evaluation under LoS channel models for the indoor scenario in 5G NR.
Fig. 10. Evaluation under LoS channel models for the UMa scenario in 5G NR.
reduces the maximum throughput achieved by 32.5%. In variation C,
the difference between TDL and CDL is 6.9 dB, while in variation D,
it is 6.4 dB. The difference widens to 10.2 dB in variation E. Notably,
in both variation C (NLoS) and variation D (LoS), TDL and CDL exhibit
similar behavior within the UMa scenario.

4.2. Performance results in B5G NR

In furtherance of this study, we assess the B5G mobile system
under LoS and NLoS environments of TDL channels using advanced
numerology to optimize performance, as delineated in Section 2.4.
Fig. 12 provides an elucidation of the performance outcomes, with
TDL variants depicted in varying colors TDL-A in blue, TDL-B in or-
ange, TDL-C in yellow, TDL-D in violet, and TDL-E in green. Each
channel model is delineated by solid lines representing perfect channel
estimation and dashed lines denoting practical channel estimation.

The theoretical maximum throughput achievable with the param-
eters delineated in Table 5 stands at 14.42 Gbps, accommodating
four transmission layers (equivalent to 4 receiving antennas) by the
specifications outlined in Table A.3.3.5 of [54]. Notably, variant A
necessitates a higher average received signal power of 5 dB. Conversely,
variant B fails to achieve the maximum throughput, reaching only 7.22
Gbps and necessitating a higher power input of approximately 6 dB.

Similarly, variant C achieves a throughput of only 9.38 Gbps.

10 
Nevertheless, the LoS environments are particularly susceptible to
the impacts of practical channel estimation. Variant D experiences a sig-
nificant reduction of around 35% (equating to 4.96 Gbps), demanding
an SNR of 22 dB compared to the requisite 5 dB for perfect estimation.
Variant E exhibits the most profound disparity, with a mere 631 Mbps
throughput achieved with perfect estimation, constituting a staggering
95% reduction from the theoretical maximum throughput.

The results obtained with the anticipated numerology B5G, when
compared to those for 5G in Section 4.1, demonstrate a significant
increase in throughput. This improvement is primarily attributed to
the increase in the number of transmission layers (from 4 reception
antennas), the modulation scheme evolving from 16QAM in 5G NR to
256QAM in B5G, and the number of resource blocks increasing from 51
in 5G NR to 148. This corresponds to a 6 GHz bandwidth and 960 kHz
sub-carrier spacing in B5G.

It is important to note that, as expected, achieving the through-
put values shown in Fig. 12, corresponding to the numerology B5G,
requires a higher SNR than those shown in Section 4.1.1 for 5G NR.
Specifically, for Variation A B5G, at least 5 dB more SNR is needed
compared to 5G NR. For Variations B, C, and D, approximately 8.5 dB
additional SNR is required. For Variation E, a further 17 dB is necessary.
This increased SNR requirement highlights the heightened demands of
new technologies to manage the complexity of communication environ-

ments.



J.D. Belesaca et al.

4
N

t
t
t
n

Ad Hoc Networks 164 (2024) 103609 
Fig. 11. Evaluation under NLoS channel models for the UMa scenario in 5G NR.

.3. Performance evaluation of channel estimation by CNN applied to 5G
R

From the results of the previous simulations, it can be observed
hat the channel estimation generally has a more significant impact on
he physical layer performance. Therefore, in this work, we evaluate
he application of a channel estimation method based on convolutional
eural networks as an alternative to improve the overall performance of
11 
Fig. 12. Assessment of channel models for Indoor scenarios with advanced numerology
B5G networks as detailed in Table 5.

Fig. 13. Comparative performance results of channel estimation by CNN for the Indoor
environment configuration as detailed in Table 4.

the mobile system. The comparative performance curves of the different
channel estimation methods for indoor and UMa scenarios for 5G NR
are depicted in Figs. 13 and 14, respectively. All plots in both figures
show the throughput and the required SNR by varying the channel
estimation method (i.e., perfect, practical, and by CNN) under CDL and

TDL channels.
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Fig. 14. Comparative performance results of channel estimation by CNN for the UMa
nvironment configuration as detailed in Table 4.

Similar to the plots shown in Section 4.1, the obtained results are
egmented for each channel model setup (e.g., A, B, C, D, or E) on the
orizontal axis in the figures. Likewise, the right vertical axis displays
he throughput values in Mbps, and the left vertical axis presents SNR
alues in dB. The colors for the system model configurations are set to:
ynchronization and channel estimation perfect (blue), synchronization
nd channel estimation practical (green), and channel estimation by
NN (orange). For all these cases, the SNR ranges from the lower to
he upper limit, representing the minimum and the maximum SNR
alues at which maximum throughput is achieved. Also, the achievable
hroughput is illustrated on the right horizontal axis (purple).

For all channel models in indoor environment, the channel esti-
ation by CNN achieves maximum throughput compared to practical

hannel estimation (Fig. 13). A detailed comparison is depicted in
igs. 15 and 16, which reveals that channel estimation by CNN per-
orms less effectively at low SNR than practical channel estimation.
his can be attributed to the 2D image principle employed to represent
he channel response, wherein at low SNR, noise predominates in
he channel response, preventing CNN from accurately reconstructing
he channel response and thereby impacting performance directly.
owever, CNN gains an advantage with a higher SNR, outperforming

he practical channel estimate in all cases and allowing maximum
erformance with a lower SNR (average 2.7 dB).

In the case of the UMa environment, Fig. 14 summarizes the perfor-
ance results. These show that in both the TDL and CDL channel mod-

ls, the channel estimation performed by the CNN shows a marginal
mprovement in performance, approximately 4 Mbps (TDL-A, TDL-B,

DL-C and CDL-A) compared to the indoor scenario. However, for other

12 
Fig. 15. Evaluation under NLoS channel models for the indoor scenario in 5G NR.

channel models, there is no significant difference in performance. It is
important to note that SNR is reduced by an average of 1 dB in all cases,
as seen in Figs. 17 and 18.

5. Conclusions and future works

The growth of mobile broadband and new technologies like C-IoT,
D2D, URLLC, and MTC have increased demand for higher perfor-
mance and lower latency. Evaluating NR system components to identify
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Fig. 16. Evaluation under LoS channel models for the indoor scenario in 5G NR.
Fig. 17. Evaluation under LoS channel models for the UMa scenario in 5G NR.
weaknesses through ceiling analysis is crucial. This can guide future
research efforts to improve techniques for next-generation networks
(5G Advance or 6G).

To improve CDL or TDL channel modeling techniques further, em-
phasis was placed on the specific environments they are intended to
represent, such as Indoor or UMa. Additionally, a careful examination
of the individual effects of synchronization, traditional channel esti-
mation, and IA-based channel estimation (e.g., CNN approach) was
essential. In this regard, it was noted that channel estimation and
practical synchronization rely on reference signals (such as DM-RS,
PT-RS, PSS, SSS) to fulfill their roles.

CNNs were trained to rebuild the channel response using DM-RS
for channel estimation. On the other hand, CNN channel estimation
across all TDL and CDL variations exhibited outstanding performance
advantages at higher received signal powers than practical channel
estimation. CNN was independently trained for Indoor and UMa sce-
narios, but was not applied to B5G simulations due to computational
complexity.

In the case of Indoor scenarios, it was observed that channel estima-
tion only affects the TDL-C model, while the rest of the TDL variations
13 
were significantly influenced by synchronization. Conversely, the CDL
model demonstrated greater robustness, with synchronization having a
relatively minor impact. Similarly, in the UMa scenario, it was seen that
the system under the CDL model demonstrated robustness against chan-
nel estimation, with only minor degradation caused by synchronization.
However, variation A stands out as an exception, where CDL and TDL
experienced significant degradation of 40% and 36%, respectively, due
to channel estimation. Contrarily, TDL exhibited proportional degrada-
tion resulting from channel estimation and synchronization in variation
B.

In future research, it would be compelling to extend the ceil-
ing analysis to encompass additional physical layer components in
both downlink and uplink. This approach would allow us to further
investigate and pinpoint possible enhancement areas in channel mod-
els specifically designed for the pertinent scenarios. Additionally, this
study has offered valuable insights into incorporating AI as a basis for
formulating strategies to improve the performance of 5G NR systems in
envisaged deployment contexts.
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Fig. 18. Evaluation under NLoS channel models for the UMa scenario in 5G NR.
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