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This study analyzed in the Tomebamba subbasin the relationships between droughts, the con-
dition of the vegetation, global scale climatic indices and local atmospheric variables. The vari-
ability of monthly meteorological and hydrological droughts, as well as the condition of the
vegetation, were characterized using the standardized precipitation index (SPI), the standardized
streamflow index (SSI), and the vegetation condition index (VCI). The wavelet coherence method
was used to establish time-frequency relationships. The results indicate that the vegetation in
good condition reduces the impact of hydrological drought events when there are no sudden
precipitation impacts. The atmospheric variables at the local scale with the highest significant
correlation are cloud cover, relative humidity, specific humidity, temperature and specific rain-
water content between 500 and 750 hPa. The Multivariate ENSO Index (MEI), ENSO 3, the
Southern Oscillation Index (SOI), the Pacific Decadal Oscillation (PDO), and the Pacific North
American Index (PNA) are strongly linked to SPI and the ENSO 4 index to SSI. Vegetation does not
show strong relationships with any climate indices, obtaining the best relationship with the PNA.
The results provide a basis for the analysis of variability and propagation of the droughts in
Andean basins, their relationships with local and large-scale factors, and the influence of drought
on vegetation.

1. Introduction

Drought is a natural non-permanent phenomenon and recurring water scarcity (Dracup et al., 1980; Hao and Singh, 2015; Mishra
and Singh, 2010) and one of the most expensive climate-related hazards around the world (Wardlow et al., 2012; Wilhite, 2000; Zhong
et al., 2021), causing societal problems, economic losses and ecological system detriment (Choat et al., 2012; Crausbay et al., 2017,
Kogan et al., 2013; Piao et al., 2010; UNESCO, 2020). From 1995 to 2015, droughts represented 5% of natural disasters, harming 1.1
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billion people and causing U.S. $100 billion in economic losses (UNESCO, 2020). Unlike other natural hazards, drought is recognized
as a complex and multifaceted phenomenon that occurs both in high and low rainfall areas (Van Loon et al., 2016b; Wang et al., 2020;
Wilhite and Glantz, 1985). Therefore, for a better understanding and study of droughts, it has been classified into a meteorological,
hydrological, agricultural, and socio-economic drought (Wilhite and Glantz, 1985).

Meteorological drought is related to a period with abnormally low precipitation (Mishra and Singh, 2010). Hydrological drought
follows meteorological drought causing a scarcity in surface, and subsurface water (Van Loon, 2015), this type of drought can be
modified simultaneously by reservoirs or landscape conditions (Van Loon and Laaha, 2015; Wu et al., 2016). Moreover, natural
processes such as photosynthesis, evaporation, and transpiration of vegetation play an essential role in the hydrological cycle by
directly and indirectly affecting the basin water fluxes (Alvarenga et al., 2016; Carlson and Arthur, 2000). Scarce precipitation,
decreased soil moisture and streamflow or any combination of three trigger agricultural drought, which immediately impacts crop
production and vegetation condition (Dracup et al., 1980; Mishra and Singh, 2010). As a consequence of unsatisfied water demand,
adverse effects on irrigation, streamflow and vegetation, the socio-economic drought arises (Guo et al., 2019). Socio-economic drought
is a non-physical phenomenon associated with local water supply, which leads to water demand problems through socioeconomic
systems (Tu et al., 2018).

Meteorological and vegetation indices based on ground and remote sensing information have been widely used to monitor
droughts. Since Standardized Precipitation Index (SPI) (McKee et al., 1993) and Standardized Streamflow Index (SSI) (Vicente-Serrano
etal., 2012) are solely based on precipitation and streamflow, respectively, both indices are frequently used to characterize the change
of meteorological to hydrological droughts (Real-Rangel et al., 2020; Wu et al., 2017; Yu et al., 2020). Meanwhile, for agricultural
drought detection have been applied indices such as Crop Moisture Index (CMI) (Palmer, 1968), Normalized Difference Vegetation
Index (NDVI), Vegetation Condition Index (VCI) (Kogan, 1995), Vegetation Health Index (VHI) (Kogan, 1997), Vegetation drought
index (VDI) (Sun et al., 2013), Spectral vegetation index (SVI) (Sun et al., 2017), Scaled Drought Condition Index (SDCI) (Rhee et al.,
2010), Normalized Difference Latent Heat Index (NDLI) (Liou et al., 2019)(Liou et al., 2019) among others. This last approach derived
from remote sensing represents the latent heat on the earth’s surface and, therefore, the dynamics of the states of water in the hy-
drological cycle. However, other studies condider that NDVI, VCI, and VHI are suitable indices from remotely sensed data to study the
response of vegetation to drought (Aquino et al., 2021; Casa et al., 2021; Dalezios et al., 2000; Dutta et al., 2015; Khosravi et al., 2017;
Zambrano et al., 2016).

Drought propagation refers to the analysis response of one type of drought to another (Huang et al., 2015; Wu et al., 2017). The
study of drought propagation is essential to understand complex relationships among different types of drought (Hao and Singh, 2015).
Relationships between droughts are often linked to natural factors such as climate (Ceron et al., 2020; Ganguli and Janga Reddy, 2013;
Madadgar et al., 2016; Mulualem and Liou, 2020; Shahid, 2008; Tadesse et al., 2004; Wang et al., 2019), human activities or a
combination of two (Baek et al., 2017; Berghuijs et al., 2014; Tijdeman et al., 2018; Van Loon et al., 2016b). Hence, several studies
revealed that climate variables such as El Nino-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) could aggravate the
characteristics, duration, and intensity of droughts (Mortensen et al., 2018; Oliveira-Jtnior et al., 2018; Vicente-Serrano et al., 2011,
2017). Other studies have analyzed the relationship between drought types in wet and dry tropical areas considering the effect of
atmospheric and land variables (Imfeld et al., 2019; Marengo and Espinoza, 2016; Mortensen et al., 2018; Real-Rangel et al., 2020;
Tramblay and Hertig, 2017; Vicente-Serrano et al., 2017; Zambrano Mera et al., 2018) simultaneously. In addition, studies have shown
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Fig. 1. The Tomebamba subbasin and location of the meteorological stations.
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the complex interplay among precipitation patterns, streamflow, vegetation, soil moisture and atmosphere phenomenon cause
different catchments around the world to have a different response to drought (Ding et al., 2021; Gebrehiwot et al., 2011;
Gomez-Limon, 2020; Javed et al., 2020; Jiang et al., 2022; Rousta et al., 2020; Wang et al., 2016; Wu et al., 2016; Zhang et al., 2015).

Many investigations have focused on tropical Andes catchments due to the hydrological importance and various ecosystem services
(Bonnesoeur et al., 2019; Buytaert et al., 2006; Célleri and Feyen, 2009; Cincotta et al., 2000; Flores-Lopez et al., 2016; Ochoa-Tocachi
et al., 2016). Even though studies have been carried out specifically on droughts in Andean ecosystems (Avilés et al., 2015, 2016;
Campozano et al., 2020a; Valverde-Arias et al., 2018; Zambrano Mera et al., 2018; Zhina et al., 2019), there is still a lack of knowledge
about the relationships between droughts and its relations with hydrometeorological and climatic conditions. Therefore, the study
aims to perform a drought time-frequency analysis with local atmospheric-land conditions and large-scale climatic factors in a tropical
Andean catchment of southern Ecuador. The main objectives we seek to address were: 1) to characterize droughts using SPI, SSI and
VCI indices, 2) establish relationships between drought indices and 3) define the relationship among drought indices and
atmospheric-land variables and large-scale climatic indices. This study presents the first exploration of relationships among meteo-
rological, hydrological and agricultural droughts (referring to the condition of vegetation) in a tropical Andean basin. This study also
provides valuable insights about local/regional and global atmospheric drivers that control droughts in the study area and the region.

2. Methods and materials
2.1. Study area

The investigation was conducted in the upper and middle part of the Tomebamba river subbasin, located in the Southern Ecua-
dorian Andes. This basin is located in the inter-Andean depression, covering the latitude 2°43’ — 2°54'S and longitude 79°15* - 79° 3'W
(Fig. 1). Its elevation varies between 2700 and 4400 m above sea level (m a.s.l.) and covers an area of approximately 300 km?. The
climate of the catchment is influenced by the continental air masses of the Amazon basin, by the seasonal change of the Intertropical
Convergence Zone, and by the Humboldt ocean current, resulting in the formation of convective and orographic clouds (Bendix et al.,
2006). Predominant soil types are Andosols and Histosols (Munoz et al., 2018). The upper part of the basin (>3500 m a.s.l.) is a natural
area covered by a mix of wetlands, lagoons, and paramo grasslands. The middle land landscapes (2700-3500 m a.s.1.) are composed of
a mosaic of forest, agricultural/grazing, and sparse urban settlements. Approximately 40% of the basin area belongs to the Cajas
National Park. The Tomebamba subbasin provides drinking water, water for irrigation and industry for Cuenca, the third-largest city in
Ecuador with nearly 580000 inhabitants (Munoz et al., 2018).

2.2. Data series

The monthly precipitation for the period 1976-2014 (38 years) of three weather stations (see Table 1) of the National Institute of
Meteorology and Hydrology of Ecuador (INAMHI) were used for the characterization of the meteorological droughts. Data gaps in the
rainfall time series were filled using the MissForest imputation method (Stekhoven and Biithlmann, 2012). The monthly average
rainfall of the study area was obtained through the Thiessen polygons method (Brassel, 1979). INAMHI also provided the monthly
streamflow data of the Matadero en Sayausi gauge station (outlet of the upper and middle part of the Tomebamba subbasin) for
1968-2014 (46 years). Streamflow series contained around 5% gaps, which were filled through linear regression (R? = 0.91) using
data from the ETAPA EP station, Cuenca’s drinking water enterprise, located few meters downstream of the Matadero en Sayausi gauge
station (Fig. 1). The filled streamflow series were used for the hydrological drought characterization.

EVI satellite images from the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Indices (MOD13Q1)
Version 6 data, generated every 16 days at 250 m spatial resolution as a Level 3 product, were downloaded for the period 2000-2014
(Dutta et al., 2015). The downloading procedure was carried out using the Application for Extracting and Exploring Analysis Ready
Samples (AppEEARS) developed by the United States Geological Survey (USGS, https://Ipdaac.usgs.gov/product_search/). In addition,
the datasets were downloaded of following synoptic-scale climate indices: Bivariate ENSO Time Series (BEST) (Smith and Sardesh-
mukh, 2000), Multivariate ENSO Index (MEI) (Wolter and Timlin, 2011), North Atlantic Oscillation Index (NAO) (Barnston and
Livezey, 1987), ENSO 1 + 2, ENSO 3, ENSO 4, ENSO 3.4 (Trenberth, 2016), Oceanic Nino Index (ONI) (Yu et al., 2011), Pacific Decadal
Oscillation (PDO) (Mantua and Hare, 2002), Pacific North American Index (PNA) (Ebdon, 1960), Quasi-Biennial Oscillation (QBO)
(Reed et al., 1961), Southern Oscillation Index (SOI) (Troup, 1965), Tropical Northern Atlantic Index (TNA) (Enfield et al., 1999),
Trans-Nino Index (TNI) (Trenberth and Stepaniak, 2001), and the Tropical Southern Atlantic Index (TSA) (Rajagopalan et al., 1998).
The time series are available at https://www.esrl.noaa.gov/psd/data/climateindices/list/. These indices were chosen in analogy with
various studies in the Andean Region in which the selected Tomebamba subbasin is located (Ballari et al., 2020; Campozano et al.,
2016, 2018; Esquivel-Hernandez et al., 2019; Mendoza et al., 2019; Mora and Willems, 2012; Tobar and Wyseure, 2018; Vuille et al.,

Table 1
Hydrological and rain gauge stations considered in the study.
Code Name Longitude Latitude Elevation (m a.s.l.) Mean annual rainfall/streamflow Missing values (%)
MO0141 El Labrado 79°04'23" W 2°43'54" S 3335 1268" 111
MO0417 Piscicola Chirimachay 79°10'20" W 2°46'24" S 3270 1280" 13.2
MO0427 Sayausi (Matadero DJ.) 79°04'34" W 2°51'53" § 2780 1037° 3.2
HO0896 Matadero en Sayausi 79°04'23" W 2°52/32" S 2693 7.0° 5.5

@ Unit in mm.
b Units in m%/s.
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2000).

Monthly averaged reanalysis data from the European Center for Medium-Range Weather Forecasts Re-Analysis version 5 (ERA-5)
were downloaded for the study area. ERA-5 has a horizontal resolution of 0.25° x 0.25° and a temporal coverage from 1979 to the
present. Several estudies have demonstrated the superiority of ERA-5 estimates in hydrological evaluations over other reanalysis
products such as ERA-Interim (Tarek et al., 2020), Climate Forecast System Reanalysis, Modern Era Retrospective Analysis for
Research and Applications version 2, and the Japanese 55-a-Reanalysis project (Mahto and Mishra, 2019). For our study, seven at-
mospheric variables at local scale were considered, including the fraction of cloud cover, geopotential, relative humidity, specific
cloud liquid water content, specific humidity, specific rainwater content and temperature. All these variables were downloaded for 14
pressure levels (from 200 to 850 hPa - in intervals of 50 hPa) for the period 1979-2014. The reanalysis data was downloaded from the
Copernicus repository (https://cds.climate.copernicus.eu).

2.3. Methods

SPI determines the deficit or excess of precipitation in a given location and period. This index was calculated on a monthly scale
(SPI11) following the methodology proposed by McKee et al. (1993). Data were adjusted to a gamma probability distribution which
subsequently was transformed into a standardized normal distribution. According to McKee et al. (1993), the classification of wet and
dry events is shown in Table 2.

The Standardized Streamflow Index (SSI), used to characterize hydrological droughts, was calculated on a monthly scale (SSI1)
following the methodology proposed by Vicente-Serrano et al. (2012). For this, the streamflow data were filtered by months (January
to December), obtaining 12 series adjusted to different probability distributions: Chi-square, Gamma, Logistics, Log-normal, and
Normal and Weibull (Penalba and Rivera, 2016; Vicente-Serrano et al., 2012). The theoretical distribution that best represented the
behavior of the analyzed streamflow data was determined using the Anderson-Darling (A.D.) goodness of fit statistical test (Penalba
and Rivera, 2016). The selected probability distribution was transformed into a normal distribution to derive the SSI, of which the
values were classified according to the classification proposed by Vicente-Serrano et al. (2012) (Table 3).

Generally, the elements of drought characterization include the duration, magnitude and severity of the drought event (Thomas
et al., 2014). The thresholds for the quantification of those variables were selected from Fleig et al. (2006), Tallaksen and Van Lanen
(2004), and Van Loon et al. (2016a). The duration of a drought event corresponds to the number of consecutive months with an SPI or SSI
value below the threshold (—1, corresponding to moderate drought). The magnitude is equal to the sum of the deficit from the threshold
during a drought event, and for severity, two types were considered. The first, called maximum severity, is defined by the maximum
deviation regarding the threshold and the second, the average severity, represents the division between the magnitude and duration of
a dry event.

The vegetation state was calculated with the Vegetation Condition Index (VCI) using values of EVI as input (see Eq. (1)). VCI;j is
the index value within pixel i, during the analysis period j (every 16 days according to MODIS sensor), for the year k; EVI;j is the EVI
index value for pixel i, for the period j and the year k; EVI; pin and EVI;q, correspond to the minimum and maximum value of the EVI
index evaluated over several years (or the total period of analysis), for pixel i.

EVI[,/’,k - EVIi:min *

VCLj = ——————
K EVlax — EVI i

100 @

The spatially averaged VCI values on a monthly scale (VCI1) were classified using the ranges presented by Kogan (1995). Vege-
tation is considered in good condition in 40-100%; lower values represent vegetation stress, and the closer to 0%, the worse the
vegetation state.

The Wavelet Coherence method (W.C.) was used to analyze the relationships between SPI1, SSI1 and VCI1 and their relationships
with global climate indices and local-scale atmospheric variables. The method was applied with a significance level of 5%. The basic
principle of the Continuous Wavelet Transform (CWT) is to derive coefficients, a function of frequency and time and measures the
similarity between a signal and an analysis function. In this case, the signal corresponds to the time series, and the function is a
prototype wavelet (mother wavelet). Different wavelet families have been developed according to the purpose of the analysis. Dau-
bechies, Haar, Symlets, and Coiflets families are often used for discrete transforms. On the other hand, Gauss, Morlet and Mexican hat
are used for continuous transforms. Commonly for studies of geophysical time series, the Morlet family is used, which allows better
extraction of the characteristics of a signal by providing a good balance between time and frequency location. The Morlet wavelet is
defined according to equation (2) (Grinsted et al., 2004), where wy is a dimensionless frequency, and 7 is the time multiplied by a scale
factor.

Table 2

Classification of meteorological drought according to SPI.
Category SPI Value
Extreme Drought (-00, —2]
Severe Drought (-2, —1.5]
Moderate Drought (-1.5, —-1]
Normal -1,1)
Moderately humid [1,1.5]
Very wet [1.5,2)
Extremely wet [2, o0)
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Table 3

Classification of hydrological drought according to SSI.
Category SSI Value
Extreme Drought (-00, —2)
Severe Drought [-2, —1.5)
Moderate Drought [-1.5, -1)
Mild drought [-1,0)
Normal [0, +o0)

o) = it I 2

The continuous transform of x;,, with x, a time series with equal intervals § t and localized time indexn =0 ... N-1 (Torrence and
Compo, 1998), is defined as the convolution of x, with a scaled and displaced version of y, (1), as shown in equation (3), where, § t is
the analysis time interval, s the scale, x, the time series, and v, the determined mother wavelet (Grinsted et al., 2004).

5t & , Ss
_ \/;;WO [(n —n);] 3)

Finally, the wavelet power can be defined as |W¥(s )|* which is used to represent the energy contained in the time series. Due to the
finite length of time series are the errors located at the beginning and end of the transform, and to handle the errors, a cone of influence
(COD) is introduced. Results located outside or near the limits of the cone should be treated carefully because of the edge effects. Such
effects become essential in this region, being necessary to analyze whether the obtained data are the product of chance or a true change
in the variance of the series (causality) (Torrence and Compo, 1998).

The statistical significance of the wavelet power was calculated using the method proposed by Torrence and Compo (1998), which
consists of generating a random background signal and comparing it with the wavelet power. The null hypothesis is that the time-series
signal is generated by a stationary process with a background power signal. A 5% significant level is used for this method, which is
equivalent to a 95% confidence level. If needed to analyze the similarity between two wavelet signals derived from two different time
series, it is inaccurate only to compare the wavelet power of each one separately. That is why procedures such as Crossed Wavelet
Transform have been developed and from this the Wavelet Coherence. Cross Wavelet Transformed identifies common areas with high
energy between the series. Its primary principle states: Assuming that WX (s) and WY (s), are continuous wavelets transforms of two time
series: X = { x1,x2,....xn} y Y = {y1,y2,...,yn}, the Cross Wavelet Transform between them would be WX¥(s) = WX(s)WY"(s) , where
WY" (s) represents the conjugate complex of WY (s) and s is the scale (Lin et al., 2017).

Finally, the Wavelet Coherence measures the covariance between X and Y series in the time-frequency plane, using the Cross
Wavelet Transform as the basis. Wavelet Coherence is calculated according to equation (4), where R? represents the quadratic
coherence or coherence level (the closer to 1, the higher correlation), S is a smoothing operator that depends on the wavelet family
used, and WXY(s) is the Cross Wavelet Transform (Grinsted et al., 2004).
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Fig. 2. Times series of monthly meteorological (SPI1) and hydrological (SSI1) droughts. MD: Moderate Drought, SD: Severe Drought, ED: Extreme Drought.
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3. Results and discussion

3.1. Evolution and frequency of the meteorological droughts

The time evolution of SPI1 for 1976-2014 is depicted in Fig. 2. Droughts with highest severities correspond to —2.86 (May/1993),
—2.79 (Aug/1995) and —2,64 (Jan/1992). The duration of most identified drought events is 1-month, and the longest drought event
lasted 3-months and occurred in the period Oct/1979-Dec/1979, Feb/1985-Apr/1985 and Ago/2009-Oct/2009. Fig. 3 shows the
monthly frequency analysis of the extreme, severe and moderate meteorological droughts. It is observed from the figure that moderate
drought events score the highest frequency followed by severe and extreme events. Based on the SPI1 values for the period 1980-2010,
some of the identified events are similar to the events in the region published by Pacheco et al. (2017). These authors found that the
driest months were May and November in 1985, July 1990, August 1992, and June and September 2002.

3.2. Evolution and frequency of the hydrological droughts

The time evolution of the SSI1 is shown in Fig. 2. The driest periods correspond to Nov/1977-Feb/1978, Oct/1979-Jan/1980,
Aug/1981-Nov/1981, Feb/1985-May/1985, Jun/1988-Aug/1988 and Aug/1985-Oct/1985. The most recurrent dry month was
February. However, the month with the highest average severities was July. The frequency distribution of extreme, severe and
moderate hydrological drought events are depicted in Fig. 3, illustrating that moderate drought events prevail over the two other
drought categories. Furthermore, it was observed that the total percentage of dry months did not exceed 20% of all analyzed months.

3.3. Characterization of the vegetation condition

The VCI1 for the period 2000-2014 for the upper and middle part of the Tomebamba subbasin is shown in Fig. 4. A total of 32
events reflecting bad vegetation conditions were identified for monthly VCI's. The years 2001, 2003, 2007, 2008, 2012 and 2014
showed poor vegetation conditions (VCI<40%). About 70% of the analyzed months present good vegetation conditions. The most
frequent month that shows bad conditions in vegetation was April. The month with the lowest VCI values was November. The year
2012 contained the highest amount of months with lowest VCI values (less than 40%).

3.4. Relationship between droughts and vegetation conditions

Wavelet coherence analysis was conducted to evaluate the strength of the relationship between SPI1-VCI1, VCI1-SSI1 and
SPI1-SSI1 (Fig. 5). As a preliminary analysis, bi-monthly and three-monthly scales were also assessed in this study because most
drought events had a duration from one to three months. However, the results were similar to the one-month scale, concerning the
same periods and span of years with a highly significant correlation. In Fig. 5 are the significant consistencies (5% significance level)
framed with a thick contour. Arrows with a left to right direction indicate that the indices are in phase; there is a positive relationship.
Arrows with a right to left direction indicate a negative relationship (antiphase) (Lin et al., 2017). The influence cone is bounded by the
white shaded area and indicates where the edge effects occur in the coherence data (Torrence and Compo, 1998).

Fig. 5a depicts the Wavelet Coherency obtained between the SPI1 and VCI1. In the 1.6 years, the best correlation was obtained
between 2009 and 2012 with a coherence level around 0.8. The variables were out of phase, which means the correlation is negative.
In addition, VCI1 had a delay between 1 and 1.5 months with SPI1. Between 2009 and 2012, five meteorological drought events
occurred. The longest one (3 months) occurred between August and October 2009, with an average intensity of —1.32. The other
events were monthly, and the most intense (—2.27) occurred in March 2011. In comparison, the VCI1 range indicates that vegetation
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Fig. 3. Distribution of the monthly frequency of meteorological and hydrological drought events.
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Fig. 5. Wavelet coherence between (a) SPI1 and VCI1, (b) VCI1 and SSI1, and (c) SPI1 and SSI1.

was predominantly in good condition. At lower periods, significant negative correlations were obtained; however, its values were
lower than 0.5.

Fig. 5b shows the relationships between VCI1 and SSI1. The most relevant correlations (higher than 0.7) occurred around the
period 0.8 and 1.2 years, both out of phase. Between 2010 and 2012, in the period ~1.6 years, a delay of VCI of approximately 0-2.5
months was found. On the other hand, in the period around 0.8 years, between 2009 and 2012, an advance of the VCI of ~1 month was
observed. There were only three drought events of bimonthly duration and one of quarterly duration (July to Sep/2012). All of these
events with an intensity of less than —1.5. During the lower periods (less than six months), the vegetation remains in optimal condition
(VCI greater than 40%) most of the time despite the inverse relationship with SSI; only two drought events of monthly duration were
registered.

Fig. 5¢c shows the relationship between SPI1 and SSI1. In approximately 3-7 years, a strong positive correlation greater than 0.9 (on
average) was observed. Besides, a constant positive correlation was observed between the periods ~3-7 months (0.25-0.58 years). The
period of 5 months (0.42 years) had the best average coherence (0.75), where SPI1 influences SSI1 with a delay ranging between zero
and three weeks.

The relationships between the SPI1, SSI1 and VCI1 indices revealed that the vegetation is not entirely modified by the rain or the
streamflow, unless extreme weather conditions occur. With streamflow, a varied antiphase behavior, which shows two scenarios, was
identified; respectively, a scenario where the vegetation controls the flow rates and a second one where the changes in the flow rates
affect the vegetation. In the first scenario, the streamflow decreases when the vegetation is in good condition; however, the effect is not
drastic and does not generate significant hydrological drought events. In the second case, when relevant changes in streamflow occur
not being the consequence of the condition of the vegetation, the increase in the number of hydrological drought events are linked to
SPI1.

The relationship between drought and vegetation conditions is complex. Studies on the impact of drought on vegetation showed
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significant spatial variability in the relationship between VCI and SPI (Rousta et al., 2020). The highest correlations were found in dry
places (Sorman et al., 2018), farmland and grasslands (Vicente-Serrano, 2007), while humid areas with high permeability (Quiring and
Ganesh, 2010), irrigation land and forests (Zou et al., 2020) showed weak correlations. The latter results agree with our findings in the
Tomebamba subbasin which corresponds to a humid climate. The VCI was also evaluated with the discharge anomaly percentage index
(PDA). Although the correlations are significant but weak, the VCI index shows a neutral trend as the PDA increases or decreases
(Bandad and Rahmani, 2018).

For the paramo area, the vegetation’s condition is only positively affected when moderate meteorological drought events lasting
longer than three months occur. Under other conditions, the VCI index does not capture the reaction of the vegetation to meteoro-
logical changes. This result could be explained by the low performance of this remote sensing index for the biophysical and
biochemical properties of the vegetation (Zou et al., 2020). Also, the paramo soils remain saturated, and several studies have shown
weak correlations between VCI and droughts when the land cover and soil moisture conditions control vegetation’s condition (Quiring
and Ganesh, 2010; Sorman et al., 2018; Vicente-Serrano, 2007; Zou et al., 2020).

On the other hand, for the analysis of the influence of hydrological drought in the vegetation condition, it was found that the
number of hydrological drought events is minimal when the vegetation condition is good (over 40%). However, based on the results of
this study, when SPI1 generates sudden changes in the SSI1, the vegetation no longer controls the condition of the hydrological
drought and SSI1 is subsequently affected. Also, by relating the two drought indices, a constant and robust correlation over time
indicates that SPI1 can effectively predict changes in current streamflow.

3.5. Relationship between reanalysis data and SPI1, SSI1 and VCI1 indices

Reanalysis products are considered reference datasets for hydrological modeling, demonstrating that their performance using
precipitation and temperature variables of ERA-5 is equivalent to the use of observations in a large area (Tarek et al., 2020). In some
regions of China, meteorological drought indices and drought areas are even more representative when estimated from reanalysis data
(Chen et al., 2019). It is important to note that not all reanalysis products have the same reliability and applicability for climate and
hydrological studies. For example, in India, when using reanalysis data such as NCEP/NCAR Reanalysis (NCEP R1), NCEP-DOE AMIP-2
Reanalysis (NCEP R2), Climate Forecast System Reanalysis (CFSR), ECMWF Interim Reanalysis (ERA-Interim), Modern Era Retro-
spective Analysis for Research and Application Land only model (MERRA-Land) and JMA 55-year Reanalysis (JRA-55), researchers
concluded that none of these products could correctly reproduce the precipitation and temperature trends (Ghodichore et al., 2018;
Shah and Mishra, 2014). However, recently, ERA-5 has proven to be more functional than other products and gave in India evidence
that it can be used effectively for hydrological assessments (Mahto and Mishra, 2019).

The best correlations between drought indices/vegetation condition index and reanalysis data sets for our study area were obtained
at 500-750 hPa. At pressure levels lower or higher than the range mentioned above, the coherence between the analyzed variables is
negligible.

Our study found the best correlations between reanalysis variables and SPI1 with the fraction of cloud cover at 500 hPa and relative
humidity at 600 hPa (Fig. 6). Regarding the fraction of cloud cover, an average positive correlation of 0.95 was observed between 5 and
6 years, where the series did not present significant delays between them, and the SPI1 is less than one month ahead. The positive
relationship between the fraction of cloud cover and the SPI1 indicates that the reduction in cloud cover is linked to drought events.
These results are similar to previous studies carried out in tropical South America using reanalysis data (Campozano et al., 2016;
Jimenez et al., 2018) or using other types of satellite data (Butt et al., 2009; Martins et al., 2018; Salazar et al., 2007). These studies
claim that total cloud cover tends to decrease in the dry season and increase in the wet season.

For the relative humidity, the correlation is also positive with a delay of SPI1 between 0 and 3 months around 5-year intervals in
1985-1997. These results agree with Behrangi et al. (2016), who indicated that the relative humidity decreases during the formation
and intensification of dry events. The concurrence of abnormally high temperatures and low humidity has also been found to be an
essential driver of the rapid development and evolution of droughts (Behrangi et al., 2015).

At lower periods for both atmospheric variables, between 0.25 and 0.5 years is the average correlation ~0.5. However, the phase
between the series is unclear, finding time lapses in periods where the SPI1 is delayed or advanced concerning the fraction of
cloudiness and relative humidity.

The best correlations with SSI1 were obtained with the fraction of cloud cover at 500 hPa, relative humidity at 750 hPa, and
temperature at 600 hPa (Fig. 7). The results are similar to those obtained with SPI (Fig. 6). For the first two reanalysis variables, for
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Fig. 6. Wavelet Coherence between SPI1 and a) fraction of cloud cover 500 hPa, and b) relative humidity 600 hPa.
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Fig. 7. Wavelet Coherence between SSI1 and a) the fraction of cloud cover 500 hPa, b) relative humidity 750 hPa, and c) temperature 600 hPa.

periods between 4 and 6 years, the correlations were positive, more significant than 0.9, with an advance (delay) of SSI1 between 0 and
1 month concerning the fraction of cloudiness (relative humidity). For temperature, the highest coherence levels (~0.9) occur between
1 and 2 years, being negative during 1980-1985, 1989-1995, and positive during 2008-2013, with an SSI1 delay between 2 and 4
months. Considering only the period where hydrological drought events occurred, it was observed that the air temperature at 600 hPa
increased. Studies carried out in southwestern Europe and on a global scale have linked extreme hot temperatures to precipitation
deficit, showing that the probability of hot extremes is linked to the scarcity of rain (Hirschi et al., 2011; Mueller and Seneviratne,
2012). In China and Iran, where the relationship between precipitation and surface temperature has been studied, it was identified that
water deficits are generally associated with high temperatures (He et al., 2015), as well as that trends for temperature are increasing,
while for rainfall decreasing (Bazrafshan, 2017).

The best correlations for the reanalysis data and VCI1 were obtained with the specific rain content at 650 hPa and specific humidity
at 700 hPa (Fig. 8). For the specific content of rain, a negative relationship was obtained, in the ~2-year period, from 2006 to 2012,
with a delay in VCI1 of fewer than 1.5 months. Another negative correlation of ~0.7 stands out in the period around 0.3 years during
2010-2013, with a delay in VCI1 of less than one month. Regarding specific humidity, a positive correlation of ~0.9 was observed
around the two years during 2009-2012, with an advance of ~ three months of VCI1. At lower periods, a correlation was found in 6
months (2002-2005) and 3.6 months (2010-2013); both correlations are negative with a coherence level of ~0.7 and ~0.6,
respectively, and a delay in VCI1 between 1 and 2 months. These results suggest that the increase in the specific content of rain and
specific humidity could negatively affect the condition of the vegetation (range less than 40%). Fu and Shen (2016) found similar
results in their study, concluding that environmental humidity conditions and precipitation significantly affect the vegetation index
and biomass production of the alpine grasslands on the Tibetan Plateau. However, Muradyan et al. (2019) found positive correlations
between vegetation conditions and precipitation in mountains ecosystems in Armenia. Also, a strong positive correlation of vegetation
in Iran with other atmospheric factors such as cloud fraction has been found (Ghasemifar et al., 2018).

3.6. Relationship between large-scale climatic indices and SPI1, SSI1 and VCI1 indices

Research about drought development recognized that changes in global ocean temperature or large-scale climatic factors could be
crucial for drought development (Lin et al., 2017). Therefore, the relationships between the severity of the different droughts and the
leading climatic indices were examined using the Wavelet Coherence Analysis.
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Fig. 8. Wavelet Coherence between VCI1 and a) specific rainwater content at 650 hPa and b) specific humidity at 700 hPa.
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The correlations between the 15 climatic indices and the SPI1 indicated that the best relations occur with MEIL, ENSO 3, SOI, PNA
and PDO (Fig. 9). Relationships were also found with other indices associated with ENSO; however, only the best results are reported.
In general, the correlations found with the indices associated with the ENSO phenomenon coincide in time-frequency. The most
appropriate coherence levels were found between 3 and 7 years. During 1990-2001 for periods between 5 and 7 years, a positive
correlation was observed between SPI1 with MEI, ENSO 3, and SOI indices. Concerning MEI and ENSO 3, correlations were observed
around four years between 1981 and 1988, 2009-2012. The variables were in phase (positive correlation) in the first period, with a
SPI1 delay of approximately ten months. The relationship changed to antiphase (negative correlation) with a SPI1 delay of 4 months in
the second period. Besides, for the period between 5 and 7 years, the relationship was positive during ~1990-2001, with a SPI1 delay
of ~15 months.

Regarding SOI, similar results as MEI and ENSO 3 indices were found in the same time-frequency span. However, a difference in the
phase change was observed. The relationship is negative in the four years between 1981 and 1988, with a delay of the SPI1 of
approximately one year. In contrast, the relationship is positive between 2009 and 2012, with a delay of the SPI1 of ~ five months.
Other indices, such as ENSO 4, ENSO 3.4 and ONI showed a correlation in time-frequency; however, the level of coherence is slightly
lower. The results agree with those reported by Avila and Ballari (2020), who found that the leading climatic indices that affect
precipitation in the southern Andean region of Ecuador are: ENSO 1 + 2, MEI, ENSO 4, and ONI. Also, the influence of ENSO 1 + 2 and
TSA on the variability of local rainfall has been reported, particularly in the dry months within the study area (Mora et al., 2014).
Besides, the positive relation between the MEI index and meteorological droughts coincides with other world areas (Tadesse et al.,
2004; Wang et al., 2019); however, it is against with results of other authors (Ganguli and Janga Reddy, 2013; Shahid, 2008). These
contradictions were to be expected since the influence of ENSO is different in various parts of the world (Sun et al., 2015).

In comparison with similar studies in Andean basins, for example, in the southern Peruvian Andes, it was found that rainfall de-
creases during an intense El Nino event and increases during a strong La Nina event (Lavado and Espinoza, 2014). Besides, in Cali
(Colombia), it was found that macroclimatic variables such as ONI and MEI have the most significant influence on the precipitation and
streamflow variables (Ceron et al., 2020). It was highlighted that the influence in streamflow by the ENSO (r = —0.44) is primarily due
to the process of water storage in aquifers, or the conditions of antecedent humidity in the soil; which generated a historical memory in
the streamflow series (Avila Diaz et al., 2014). Other studies have found relationships between rainfall in South America and the ENSO
phenomenon. These indicate that El Nino warm phase is undoubtedly associated with the meteorological droughts of northern South
America, including the Amazon rainforest, while La Nina cold phase affects the South of the continent (Bento et al., 2019).

Relationships were also found with indices associated with the North Pacific, PNA and PDO. The following relevant relationships
were found with PNA: in the period of about 1.5 years, during 1990-1991 negative with a delay of ~ two months; in the period of 4.5
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years, during 1982-1988 positive with a delay of ~ six months; and in the period ~6 years, 1989-2000 positive with a delay of ~ nine
months. With PDO, better correlations were found between periods 3-7 years since 1981, where the correlations were positive before
1997; later, a progressive phase change with a negative correlation was observed. From that year onwards, the correlation remained
strong until 2012. The phase angle to determine a time of delay or advance is not entirely defined, and this may be due to the in-
termediate phase variations of PDO between 1998 and 2010. This index is positive when the temperature is abnormally warm, like
along the coast of North America, Central America and Ecuador, and cold in the Central North Pacific (Trenberth and Hurrell, 1994).

There are some coincidences in the correlated time between SPI1 with PDO, PNA and the indices associated with ENSO; as other
authors mentioned, PDO can modulate the relationship of ENSO in different regions (Cérdoba-Machado et al., 2016; Onate-Valdivieso
et al., 2020). Campozano et al. (2020b) determined that PDO influences the relationship between ENSO and rainfall in the Ecuadorian
coastal region. Besides, PNA phases are associated with the phase state of ENSO and PDO (Trouet and Taylor, 2010).

The relationships between the 15 climatic indices and SSI1 were analyzed. In general, MEI, ENSO 3, ENSO 3.4, ENSO 4, ONI, and
SOI indices show similar correlations. ENSO 4 index stands out among them, as shown in Fig. 10. It is observed that the correlated
indices are similar to those found for SPI1. The periods with the best correlations for ENSO 4 are: 1 year (between 1999 and 2000) with
a negative relationship and delayed SSI1 ~3 months; 1.5 years (between 1994 and 1995) with a negative relationship and delay of ~
five months; and 3.5 years (between 2005 and 2010) with a negative relationship and delay of ~ one month.

Studies about the relations between climatic phenomena such as ENSO and the Paute river basin’s hydrology (in Ecuador) show
significant relationships between such variables (Hoorelbeke et al., 2000). In 1999, it was shown that El Nino did affect the distribution
of monthly streamflow in Amazon basins. Besides, it was stated that annual volumes that enter the Amaluza reservoir are significantly
correlated with the anomalies of sea surface temperature (SST) in the regions ENSO 1 + 2, in the La Nina phase. Moreover, Quish-
pe-Vasquez et al. (2019) indicated the significant relationship between ENSO 4 and the streamflow during dry months (June-August)
in several locations of the Andes in Ecuador.

The coherence between the VCI1 series and the leading climatic indices was analyzed. In general, the results revealed the existence
of minimal correlations with all the indices, highlighting the consistency with the PNA index, as shown in Fig. 10. The PNA index had
the best correlation, but the correlation areas are scarce even so. The correlation was negative during 2007-2009 (2,5-years period)
with a lag of less than one month and during 2008-2011 (the period between 1 and 2 years) but with lags of ~ two months. The short
periods can limit establishing deeper relationships between vegetation and climatic indices. Therefore, it is necessary to extend the
VCI1 time series in future studies, or instead, to test other vegetation indexes in order to find the one that best fits the evaluated area.

3.7. Uncertainties and implications of this study

Based on the results reported in the previous sections, we identify some aspects of uncertainty in this study. Firstly, the scarce
availability of meteorological stations in the study area inhibits proper characterization of meteorological droughts’ spatial and
temporal variability. Although the dynamic variations of meteorological drought were identified in the Tomebamba basin, in order to
recognize the drought phenomenon more clearly, other meteorological variables (e.g., temperature, relative humidity, solar radiation
and wind speed) based on remote sensing information should be considered in the future. Secondly, the performance of VCI used to
represent vegetation conditions (emulating agricultural droughts) in the study area strongly affects our findings. Further studies are
required to identify the best index to study the variability of soil moisture and vegetation in mountain ecosystems such as paramo, such
as water-related indexes that represent better the hydrologic cycle (Liou et al., 2019). Third, we only used a coherency wavelet to study
the propagation and relation of droughts with meteorological and climatic factors. In order to corroborate our findings, it could be
interesting to compare the results of other commonly used methods such as Pearson and Spearman correlation. Additionally, the
drought process is complex and may be simultaneously affected by more than one driver (e.g., local/regional atmospheric conditions
and large-scale climate indices), which requires the exploration of coupled effects of multiple factors on drought. For a better un-
derstanding of the drought process, multivariate analysis employing novel techniques such as the multivariate cross wavelet is
required (Wang et al., 2022).

4. Conclusions

The fundamental part of this study corresponds to the analysis of relationships between meteorological and hydrological droughts
and the condition of the vegetation, and in turn with atmospheric variables at the local scale and large-scale climatic indices. For this
purpose, the wavelet coherence method was used. Our study provides valuable knowledge about the propagation of droughts and the
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Fig. 10. Wavelet coherence between (a) ENSO 4 and SSI1 and (b) PNA and VCI1.
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identification of drivers that influence droughts in the study area and the region. The principal findings of this study are listed below.

1) Concerning the relationships between droughts types and vegetation conditions, it was shown that the vegetation modulates flows
as long as there are no abrupt changes in precipitation when analysing the relationships with hydrological drought. Thus, when
VCI1 remains above 40%, there are few short duration and low severity hydrological drought events. Still, when there are marked
variations in precipitation, a direct affectation occurs first to the flows and later to the vegetation. Besides, we found a solid and
constant relationship throughout the analyzed period between SPI1 and SSI1.

The relationships of SPI1, SSI1 and VCI1 with the atmospheric variables at the local scale revealed that dry events are associated
with atmospheric conditions between 500 and 750 hPa, with a decrease in the fraction of cloud cover and relative humidity and an
increase in temperature. When the vegetation is in bad condition, it is associated with increased specific rainwater content and
specific humidity.

Respectively, for the relationships between climatic indices and the meteorological and hydrological droughts, it was found that the
best indices are MEI, ENSO 3, ENSO 3.4, ENSO 4, ONI and SOI. All of them were associated with ENSO. Among those mentioned,
ENSO 4 stands out regarding hydrological drought, while MEI, SOI, and ENSO 3 highlight better correlations with SPI1. A scale
correlation was also obtained for PDO and PNA with the SPI1. The influence on the precipitation was attributed to the phase
changes of PDO in 1997 and in the following years until ~2010. The PNA and PDO show associations that partially coincide with
the indices related to ENSO, which suggests the interconnection and modulation between these climatic factors.

Relationships between the VCI1 and climatic indexes did not show good results; PNA is the index with the higher relationship. None
of the indices associated with ENSO influenced the condition of the vegetation. These results may be imprecise due to the short
period of analysis, limitations of the satellite data for the calculation of the VCI, or to the low performance of the VCI for describing
the state of the vegetation in an area that contains land use such as paramo (high elevation wetlands). It is recommended to
characterize the vegetation employing other indices that better fit the study area for future studies.

The high and consistent relationship of SPI1 and SSI1 indicates a high potential to predict hydrological droughts based on
meteorological droughts in the study area. More importantly, large-scale climate indices that show high relationships at high lag
times could be suitable for the basin’s drought early warning systems.
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