Logo Repositorio Institucional

Por favor, use este identificador para citar o enlazar este ítem: https://dspace.ucuenca.edu.ec/handle/123456789/45877
Título : Evaluation of a Machine Learning-based Algorithm for AC Optimal Power Flow
Autor: Torres Contreras, Santiago Patricio
Astudillo Salinas, Darwin Fabian
Astudillo Astudillo, Walter Ramiro
Correspondencia: Astudillo Astudillo, Walter Ramiro, walter.astudillo2101@ucuenca.edu.ec
Palabras clave : Electrical Networks
ACOPF
Machine Learning
OPF
Área de conocimiento FRASCATI amplio: 2. Ingeniería y Tecnología
Área de conocimiento FRASCATI detallado: 2.2.2 Robótica y Control Automático
Área de conocimiento FRASCATI específico: 2.2 Ingenierias Eléctrica, Electrónica e Información
Área de conocimiento UNESCO amplio: 07 - Ingeniería, Industria y Construcción
ÁArea de conocimiento UNESCO detallado: 0714 - Electrónica y Automatización
Área de conocimiento UNESCO específico: 071 - Ingeniería y Profesiones Afines
Fecha de publicación : 2024
Fecha de fin de embargo: 31-dic-2050
Volumen: Volumen 0
Fuente: 2024 IEEE Eighth Ecuador Technical Chapters Meeting (ETCM)
metadata.dc.identifier.doi: 10.1109/ETCM63562.2024.10746103
Editor: IEEE
Ciudad: 
Cuenca
Tipo: ARTÍCULO DE CONFERENCIA
Abstract: 
Numerous efforts have been made to find efficient optimization methods that reduce resolution times to obtain solutions to the optimal power flow problem in alternating current (ACOPF). ACOPF is a non-convex and highly nonlinear problem. Power flow optimization problems (OPF) are usually solved using interior point methods, also known as barrier methods. One of the most commonly used approaches is the dual interior point method with filter line search. These methods are robust but expensive, as they require the calculation of the second derivative of the Lagrangian at each iteration. A promising research direction is utilizing machine learning (ML) techniques to solve operation and control problems in electrical networks. ML has been shown to significantly reduce the computational resources required in many real-world problems. Various solution methods have been employed, such as random forest, multi-objective decision tree, and extreme learning machine. In this case, ML is applied as a method that predicts voltage magnitudes and angles at each node, using physics-based network equations to calculate power injection at different nodes. For ML training, the data is divided into three sets: training, validation, and testing. These algorithms focus on minimizing their objective function and the operational cost of an AC transmission network.
URI : https://dspace.ucuenca.edu.ec/handle/123456789/45877
https://www.scopus.com/record/display.uri?eid=2-s2.0-85211776972&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28Evaluation+of+a+Machine+Learning-based+Algorithm+for+AC+Optimal+Power+Flow%29&relpos=0
URI Fuente: https://ieeexplore.ieee.org/xpl/conhome/10745917/proceeding
ISBN : 979-8-3503-9158-9
ISSN : 0000-0000
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
documento.pdf
  Until 2050-12-31
310.66 kBAdobe PDFVisualizar/Abrir     Solicitar una copia


Este ítem está protegido por copyright original



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00