Logo Repositorio Institucional

Please use this identifier to cite or link to this item: https://dspace.ucuenca.edu.ec/handle/123456789/45795
Title: Enhancing Peak Runoff Forecasting through Feature Engineering Applied to X-Band Radar Data
Authors: Alvarez Estrella, Julio Joaquin
Muñoz Pauta, Paul Andres
Contreras Andrade, Pablo Andres
Celleri Alvear, Rolando Enrique
metadata.dc.ucuenca.correspondencia: Alvarez Estrella, Julio Joaquin, joaquin.alvareze@ucuenca.ec
Keywords: Andes
Peak runoff forecast
Random Forest
X-band radar
metadata.dc.ucuenca.areaconocimientofrascatiamplio: 2. Ingeniería y Tecnología
metadata.dc.ucuenca.areaconocimientofrascatidetallado: 2.7.1 Ingeniería Ambiental y Geológica
metadata.dc.ucuenca.areaconocimientofrascatiespecifico: 2.7 Ingeniería del Medio Ambiente
metadata.dc.ucuenca.areaconocimientounescoamplio: 07 - Ingeniería, Industria y Construcción
metadata.dc.ucuenca.areaconocimientounescodetallado: 0714 - Electrónica y Automatización
metadata.dc.ucuenca.areaconocimientounescoespecifico: 071 - Ingeniería y Profesiones Afines
Issue Date: 2024
metadata.dc.ucuenca.volumen: Volumen 16, número 7
metadata.dc.source: Water (Switzerland)
metadata.dc.identifier.doi: 10.3390/w16070968
metadata.dc.type: ARTÍCULO
Abstract: 
Floods cause significant damage to human life, infrastructure, agriculture, and the economy. Predicting peak runoffs is crucial for hazard assessment, but it is challenging in remote areas like the Andes due to limited hydrometeorological data. We utilized a 300 km2 catchment over the period 2015–2021 to develop runoff forecasting models exploiting precipitation information retrieved from an X-band weather radar. For the modeling task, we employed the Random Forest (RF) algorithm in combination with a Feature Engineering (FE) strategy applied to the radar data. The FE strategy is based on an object-based approach, which derives precipitation characteristics from radar data. These characteristics served as inputs for the models, distinguishing them as “enhanced models” compared to “referential models” that incorporate precipitation estimates from all available pixels (1210) for each hour. From 29 identified events, enhanced models achieved Nash-Sutcliffe efficiency (NSE) values ranging from 0.94 to 0.50 for lead times between 1 and 6 h. A comparative analysis between the enhanced and referential models revealed a remarkable 23% increase in NSE-values at the 3 h lead time, which marks the peak improvement. The enhanced models integrated new data into the RF models, resulting in a more accurate representation of precipitation and its temporal transformation into runoff.
URI: https://www.scopus.com/record/display.uri?eid=2-s2.0-85190246348&doi=10.3390%2fw16070968&origin=inward&txGid=d49669dfbfc81f20594c97355537e232
metadata.dc.ucuenca.urifuente: https://www.mdpi.com/2073-4441/16/7/968
ISSN: 2073-4441
Appears in Collections:Artículos

Files in This Item:
File SizeFormat 
documento.pdf6.6 MBAdobe PDFView/Open


This item is protected by original copyright



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00