Logo Repositorio Institucional

Por favor, use este identificador para citar o enlazar este ítem: https://dspace.ucuenca.edu.ec/handle/123456789/40646
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorHernández Callejo, Luis
dc.contributor.authorJaramillo Duque, Álvaro
dc.contributor.authorAlonso Gómez, Victor
dc.contributor.authorGonzalez Morales, Luis Gerardo
dc.contributor.authorSantos García, Félix
dc.contributor.authorZorita Lamadrid, Ángel Luis
dc.contributor.authorSolís Salazar, Martín
dc.contributor.authorHernández Deyslen, Mariano
dc.contributor.authorDuque Pérez, Óscar
dc.date.accessioned2023-01-10T13:40:04Z-
dc.date.available2023-01-10T13:40:04Z-
dc.date.issued2022
dc.identifier.issn2050-0505
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/40646-
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85137244928&doi=10.1002%2fese3.1298&origin=inward&txGid=55ac34e3df5e7bac3909437e6fbff2d6
dc.description.abstractBuildings are one of the largest consumers of electrical energy, making it important to develop different strategies to help to reduce electricity consumption. Building energy consumption forecasting strategies are widely used to support demand management decisions, but these strategies require large data sets to achieve an accurate electric consumption forecast, so they are not commonly used for buildings with a short history of record keeping. Based on this, the objective of this study is to determine, through continuous hourly electricity consumption forecasting strategies, the amount of data needed to achieve an accurate forecast. The proposed forecasting strategies were evaluated with Random Forest, eXtreme Gradient Boost, Convolutional Neural Network, and Temporal Convolutional Network algorithms using 4 years of electricity consumption data from two buildings located on the campus of the University of Valladolid. For performance evaluation, two scenarios were proposed for each of the proposed forecasting strategies. The results showed that for forecasting horizons of 1 week, it was possible to obtain a mean absolute percentage error (MAPE) below 7% for Building 1 and a MAPE below 10% for Building 2 with 6 months of data, while for a forecast horizon of 1 month, it was possible to obtain a MAPE below 10% for Building 1 and below 11% for Building 2 with 10 months of data. However, if the distribution of the data captured in the buildings does not undergo sudden changes, the decision tree algorithms obtain better results. However, if there are sudden changes, deep learning algorithms are a better choice
dc.language.isoes_ES
dc.sourceEnergy Science and Engineering
dc.subjectLearning algorithms
dc.subjectShort term forecasting
dc.subjectMultistep forecasting
dc.subjectBuilding energy consumption
dc.subjectForecasting
dc.titleComparative study of continuous hourly energy consumption forecasting strategies with small data sets to support demand management decisions in buildings
dc.typeARTÍCULO
dc.ucuenca.idautor0000-0001-5281-7336
dc.ucuenca.idautor0000-0002-4255-3450
dc.ucuenca.idautor0000-0002-8822-2948 View this author’s ORCID profile
dc.ucuenca.idautor0000-0003-4750-1198
dc.ucuenca.idautor0000-0001-7593-691X
dc.ucuenca.idautor0000-0003-2994-2520
dc.ucuenca.idautor1729711059
dc.ucuenca.idautor0000-0001-5107-4892
dc.ucuenca.idautor0000-0003-2973-3657
dc.identifier.doi10.1002/ese3.1298
dc.ucuenca.versionVersión publicada
dc.ucuenca.areaconocimientounescoamplio07 - Ingeniería, Industria y Construcción
dc.ucuenca.afiliacionJaramillo, Á., Universidad de Antioquia, Medellin, Colombia
dc.ucuenca.afiliacionHernández, M., Instituto Tecnológico de Santo Domingo INTEC, Santo Domingo, Republica dominicana; Hernández, M., Universidad de Valladolid, Soria, España
dc.ucuenca.afiliacionSolís, M., Instituto Tecnológico de Costa Rica (ITCR), Cartago, Costa rica
dc.ucuenca.afiliacionAlonso, V., Universidad de Valladolid, Soria, España
dc.ucuenca.afiliacionZorita, Á., Universidad de Valladolid, Soria, España
dc.ucuenca.afiliacionSantos, F., Instituto Tecnológico de Santo Domingo INTEC, Santo Domingo, Republica dominicana
dc.ucuenca.afiliacionHernández, L., Universidad de Valladolid, Soria, España
dc.ucuenca.afiliacionDuque, Ó., Universidad de Valladolid, Soria, España
dc.ucuenca.afiliacionGonzalez, L., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador; Gonzalez, L., Universidad de Cuenca, Departamento de Ingeniería Eléctrica, Electrónica y Telecomunicaciones(DEET), Cuenca, Ecuador
dc.ucuenca.correspondenciaHernández Callejo, Luis, luis.hernandez.callejo@uva.es
dc.ucuenca.volumenVolumen 10, número 12
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.factorimpacto069
dc.ucuenca.cuartilQ2
dc.ucuenca.numerocitaciones0
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología
dc.ucuenca.areaconocimientofrascatiespecifico2.2 Ingenierias Eléctrica, Electrónica e Información
dc.ucuenca.areaconocimientofrascatidetallado2.2.1 Ingeniería Eléctrica y Electrónica
dc.ucuenca.areaconocimientounescoespecifico071 - Ingeniería y Profesiones Afines
dc.ucuenca.areaconocimientounescodetallado0713 - Electricidad y Energia
dc.ucuenca.urifuentehttps://onlinelibrary.wiley.com/journal/20500505
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
documento.pdf3.14 MBAdobe PDFVisualizar/Abrir


Este ítem está protegido por copyright original



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00