Logo Repositorio Institucional

Please use this identifier to cite or link to this item: https://dspace.ucuenca.edu.ec/handle/123456789/38010
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMacalupu, Simón-
dc.contributor.authorRollenbeck, Rütger-
dc.contributor.authorOrellana Alvear, Johanna Marlene-
dc.contributor.authorRodriguez, Rodolfo-
dc.contributor.authorNolasco, Pool-
dc.date.accessioned2022-02-09T16:41:52Z-
dc.date.available2022-02-09T16:41:52Z-
dc.date.issued2021-
dc.identifier.issn2073-4433-
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/38010-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85120337319&doi=10.3390%2fatmos12121561&partnerID=40&md5=c0acc853b1ba0421f63cd707f9e3e030-
dc.description.abstractCost-efficient single-polarized X-band radars are a feasible alternative due to their highsensitivity and resolution, which makes them well suited for complex precipitation patterns. Thefirst horizontal scanning weather radar in Peru was installed in Piura in 2019, after the devastatingimpact of the 2017 coastal El Niño. To obtain a calibrated rain rate from radar reflectivity, we employa modified empirical approach and draw a direct comparison to a well-established machine learningtechnique used for radar QPE. For both methods, preprocessing steps are required, such as clutterand noise elimination, atmospheric, geometric, and precipitation-induced attenuation correction,and hardware variations. For the new empirical approach, the corrected reflectivity is related to raingauge observations, and a spatially and temporally variable parameter set is iteratively determined.The machine learning approach uses a set of features mainly derived from the radar data. Therandom forest (RF) algorithm employed here learns from the features and builds decision trees toobtain quantitative precipitation estimates for each bin of detected reflectivity. Both methods capturethe spatial variability of rainfall quite well. Validating the empirical approach, it performed betterwith an overall linear regression slope of 0.65 and r of 0.82. The RF approach had limitations with thequantitative representation (slope = 0.44 and r = 0.65), but it more closely matches the reflectivitydistribution, and it is independent of real-time rain-gauge data. Possibly, a weighted mean of bothapproaches can be used operationally on a daily basis-
dc.language.isoes_ES-
dc.sourceAtmosphere-
dc.subjectExtreme events-
dc.subjectMachine learning-
dc.subjectQuantitative precipitation estimate-
dc.subjectRandom forest-
dc.subjectTropical desert-
dc.subjectTropical mountains-
dc.subjectWeather radar-
dc.titleCalibration of X-band radar for extreme events in a spatially complex precipitation region in north peru: machine learning vs. empirical approach-
dc.typeARTÍCULO-
dc.ucuenca.idautor0000-0002-1423-4356-
dc.ucuenca.idautorSGRP-5014-05-
dc.ucuenca.idautor0000-0002-5415-7404-
dc.ucuenca.idautor0000-0002-8322-7950-
dc.ucuenca.idautor0104162268-
dc.identifier.doi10.3390/atmos12121561-
dc.ucuenca.versionVersión publicada-
dc.ucuenca.areaconocimientounescoamplio06 - Información y Comunicación (TIC)-
dc.ucuenca.afiliacionRodriguez, R., Universidad de Piura, Piura, Peru-
dc.ucuenca.afiliacionOrellana, J., University of Marburg, Marburg, Alemania; Orellana, J., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador-
dc.ucuenca.afiliacionRollenbeck, R., Universitat Marburg, Marburg, Alemania-
dc.ucuenca.afiliacionMacalupu, S., Universidad de Piura, Piura, Peru-
dc.ucuenca.afiliacionNolasco, P., Universidad de Piura, Piura, Peru-
dc.ucuenca.correspondenciaRollenbeck, Rütger, rollenbeck@lcrs.de-
dc.ucuenca.volumenVolumen 12, número 12-
dc.ucuenca.indicebibliograficoSCOPUS-
dc.ucuenca.factorimpacto0.7-
dc.ucuenca.cuartilQ2-
dc.ucuenca.numerocitaciones0-
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología-
dc.ucuenca.areaconocimientofrascatiespecifico2.7 Ingeniería del Medio Ambiente-
dc.ucuenca.areaconocimientofrascatidetallado2.7.1 Ingeniería Ambiental y Geológica-
dc.ucuenca.areaconocimientounescoespecifico061 - Información y Comunicación (TIC)-
dc.ucuenca.areaconocimientounescodetallado0613 - Software y Desarrollo y Análisis de Aplicativos-
dc.ucuenca.urifuentehttps://www.mdpi.com/2073-4433/12/12-
Appears in Collections:Artículos

Files in This Item:
File Description SizeFormat 
documento.pdfdocument14.81 MBAdobe PDFThumbnail
View/Open


This item is protected by original copyright



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00