Logo Repositorio Institucional

Por favor, use este identificador para citar o enlazar este ítem: https://dspace.ucuenca.edu.ec/handle/123456789/37881
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorDuque Perez, Oscar-
dc.contributor.authorMariano Hernández, Deyslen-
dc.contributor.authorHernández Callejo, Luis-
dc.contributor.authorSolís, Martín-
dc.contributor.authorSantos García, Felix-
dc.contributor.authorGonzalez Morales, Luis Gerardo-
dc.contributor.authorZorita Lamadrid, Ángel Luis-
dc.date.accessioned2022-01-28T14:39:18Z-
dc.date.available2022-01-28T14:39:18Z-
dc.date.issued2021-
dc.identifier.issn2076-3417-
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/37881-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85114110387&doi=10.3390%2fapp11177886&partnerID=40&md5=04c6c1521938105f1a7ceab00ba6e9a7-
dc.description.abstractSmart buildings seek to have a balance between energy consumption and occupant com-fort. To make this possible, smart buildings need to be able to foresee sudden changes in the build-ing’s energy consumption. With the help of forecasting models, building energy management sys-tems, which are a fundamental part of smart buildings, know when sudden changes in the energy consumption pattern could occur. Currently, different forecasting methods use models that allow building energy management systems to forecast energy consumption. Due to this, it is increasingly necessary to have appropriate forecasting models to be able to maintain a balance between energy consumption and occupant comfort. The objective of this paper is to present an energy consumption forecasting strategy that allows hourly day-ahead predictions. The presented forecasting strategy is tested using real data from two buildings located in Valladolid, Spain. Different machine learning and deep learning models were used to analyze which could perform better with the proposed strategy. After establishing the performance of the models, a model was assembled using the mean of the prediction values of the top five models to obtain a model with better performance. © 2021 by the authors. Licensee MDPI, Basel, Switzerland-
dc.language.isoes_ES-
dc.sourceApplied Sciences-
dc.subjectSmart building-
dc.subjectEnergy consumption-
dc.subjectForecasting models-
dc.subjectMulti-step forecasting-
dc.subjectShort-term forecasting-
dc.titleA data-driven forecasting strategy to predict continuous hourly energy demand in smart buildings-
dc.typeARTÍCULO-
dc.ucuenca.idautor0000-0003-4750-1198-
dc.ucuenca.idautor1729711059-
dc.ucuenca.idautor0000-0003-2973-3657-
dc.ucuenca.idautor0000-0002-8822-2948-
dc.ucuenca.idautor0000-0002-4255-3450-
dc.ucuenca.idautor0000-0001-7593-691X-
dc.ucuenca.idautor0000-0003-2994-2520-
dc.identifier.doi10.3390/app11177886-
dc.ucuenca.versionVersión publicada-
dc.ucuenca.areaconocimientounescoamplio05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas-
dc.ucuenca.afiliacionSolís, M., Instituto Tecnológico de Costa Rica (ITCR), Cartago, Costa rica-
dc.ucuenca.afiliacionGonzalez, L., Universidad de Cuenca, Departamento de Ingeniería Eléctrica, Electrónica y Telecomunicaciones(DEET), Cuenca, Ecuador-
dc.ucuenca.afiliacionHernández, L., Universidad de Valladolid, Soria, España-
dc.ucuenca.afiliacionZorita, Á., Universidad de Valladolid, Soria, España-
dc.ucuenca.afiliacionMariano, D., Universidad de Valladolid, Soria, España-
dc.ucuenca.afiliacionSantos, F., Instituto Tecnológico de Santo Domingo INTEC, Santo Domingo, Republica dominicana-
dc.ucuenca.afiliacionDuque, O., Universidad de Valladolid, Soria, España-
dc.ucuenca.correspondenciaHernández Callejo, Luis, uis.hernandez.callejo@uva.es-
dc.ucuenca.correspondenciaMariano Hernández, Deyslen, deyslen.mariano@intec.edu.do-
dc.ucuenca.volumenVolumen 11, número 17-
dc.ucuenca.indicebibliograficoSCOPUS-
dc.ucuenca.factorimpacto0.44-
dc.ucuenca.cuartilQ2-
dc.ucuenca.numerocitaciones0-
dc.ucuenca.areaconocimientofrascatiamplio1. Ciencias Naturales y Exactas-
dc.ucuenca.areaconocimientofrascatiespecifico1.5 Ciencias de la Tierra y el Ambiente-
dc.ucuenca.areaconocimientofrascatidetallado1.5.8 Ciencias del Medioambiente-
dc.ucuenca.areaconocimientounescoespecifico053 - Ciencias Físicas-
dc.ucuenca.areaconocimientounescodetallado0533 - Física-
dc.ucuenca.urifuentehttps://www.mdpi.com/journal/applsci/special_issues/AI_Smart_Buildings-
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
documento.pdfdocument8.37 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00